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Warning

This is work in progress!

Information in this document is subject to change at any time without
prior notification.




Note

The code examples in this course use a 50-column limit, which
greatly improves the readability of the code on devices with a small
screen size. This constraint, however, leads to an unusual coding
style. For instance, instead of calling Put_Line in a single
line, we have this:

Put_Line
  (" is in the northeast quadrant");





or this:

Put_Line ("  (X => "
          & Integer'Image (P.X)
          & ")");





Note that typical Ada code uses a limit of at least 79 columns.
Therefore, please don't take the coding style from this course as a
reference!




Note

Each code example from this book has an associated "code block
metadata", which contains the name of the "project" and an MD5 hash
value. This information is used to identify a single code example.

You can find all code examples in a zip file, which you can
download from the learn website[#2].
The directory structure in the zip file is based on the code block
metadata. For example, if you're searching for a code example with
this metadata:


	Project: Courses.Intro_To_Ada.Imperative_Language.Greet


	MD5: cba89a34b87c9dfa71533d982d05e6ab




you will find it in this directory:

projects/Courses/Intro_To_Ada/Imperative_Language/Greet/cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:


	Unpack the zip file;


	Go to target directory;


	Start GNAT Studio on this directory;


	Build (or compile) the project;


	Run the application (if a main procedure is available in the
project).






This course will teach you advanced topics of the Ada programming language.
The
Introduction to Ada[#3]
course is a prerequisite for this course.

This document was written by Gustavo A. Hoffmann, with major
contributions from Robert A. Duff. The document also includes
contributions from Franco Gasperoni, Gary Dismukes,
Patrick Rogers, and Robert Dewar.

These contributions are clearly indicated in the document, together
with the original publication source.

Special thanks to Patrick Rogers for all comments and suggestions. In
particular, thanks for sharing the training slides on access types:
many ideas from those slides were integrated into this course.

This document was reviewed by Patrick Rogers and Tucker Taft.





CHANGELOG

Changes are being tracked on the CHANGELOG page.
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Types


Names

In simple terms, a "name" can be an identifier, i.e. the name that we use to
refer to an object or a subprogram, for example. This is what we call a
direct name. However, in Ada, a name can also refer to other language
constructs, as we discuss later on in this section.


In the Ada Reference Manual


	4.1 Name[#1]







Direct names

Direct names are the simplest form of names in Ada. They can be either
identifiers or operator symbols.


Identifiers

An identifier — as the term implies — is a (direct) name that we
use to identify an object, a subprogram, a type, and so on. When specifying
an identifier, we aren't limited to ASCII[#2]  characters: we
can use a subset of the Unicode[#3]
standard.


For further reading...

To be more precise, the Normalization Form KC of the Unicode standard is
applied to identifiers. You can find more information about it in the
Unicode Standard Annex #15[#4].



For example:


show_identifiers.adb

 1procedure Show_Identifiers is
 2--        ^^^^^^^^^^^^^^^^
 3--           identifier
 4
 5   type New_Integer is new
 6   --   ^^^^^^^^^^^
 7   --     identifier
 8     Integer;
 9   --  ^^^^^
10   --   identifier
11
12   Something_Important : New_Integer;
13   --  ^^^^^^^^^^^^^^^
14   --  identifier
15   --                    ^^^^^^^^^^^
16   --                     identifier
17begin
18  null;
19end Show_Identifiers;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Names.Identifiers
MD5: e427d3e5fe5f549df593b5e5941cf2ba







In this example, we see the following identifiers: Show_Identifiers
(subprogram), New_Integer (type), Integer (type), and
Something_Important (object).



Operator symbols

The set of operator symbols that we can use is restricted to the following
symbols or reserved words specified in the Ada language:



	Operator kind

	Operators





	Logical operators

	and, or, xor



	Relational operators

	=, /=, <, <=
>, >=



	Binary adding operators

	+, -, &



	Unary adding operators

	+, -



	multiplying opertors

	*, /, mod, rem



	Highest precedence operators

	**, abs, not







In the Ada Reference Manual


	4.5 Operators and Expression Evaluation[#5]









Other kinds of names

In addition to direct names, we have the following kinds of names:
explicit dereferences, indexed components,
slices, selected components, attribute references,
type conversions, function calls,
character literals,
qualified expressions,
generalized references, and
target name.

Let's see an example of some of them:


show_other_names.adb

 1pragma Ada_2022;
 2
 3procedure Show_Other_Names is
 4
 5   type Integer_Access is
 6     access Integer;
 7
 8   type Integer_Array is array
 9     (Positive range <>) of Integer;
10
11   type New_Integer is new
12     Integer;
13
14   function Zero
15     return New_Integer is
16       (0);
17
18   subtype Sub_Integer is
19     Integer;
20
21   type Rec is record
22      Val : Integer := 0;
23   end record;
24
25   type ABC_Enum is
26     ('A', 'B', 'C');
27
28   IA  : Integer_Access := new Integer;
29   Arr : Integer_Array (1 .. 5) :=
30           (others => 0);
31   R   : Rec;
32   NI  : New_Integer;
33   SI  : Sub_Integer;
34   E   : ABC_Enum := 'A';
35begin
36   R.Val := IA.all;
37   --       ^^^^^^
38   --  explicit dereference
39
40   R.Val := Arr (1);
41   --       ^^^^^^^
42   --    indexed component
43
44   Arr (1 .. 2) := Arr (3 .. 4);
45   --              ^^^^^^^^^^^^
46   --                  slice
47
48   Arr (1 .. 2) := (others => R.Val);
49   --                         ^^^^^
50   --              selected component
51
52   R.Val := Arr'Size;
53   --       ^^^^^^^^
54   --  attribute reference
55
56   NI := New_Integer (IA.all);
57   --    ^^^^^^^^^^^^^^^^^^^^
58   --      type conversion
59
60   NI := Zero;
61   --    ^^^^
62   --  function call
63
64   E  := 'A';
65   --    ^^^
66   --  character literal
67
68   IA.all := Sub_Integer (R.Val);
69   --        ^^^^^^^^^^^^^^^^^^^
70   --        qualified expression
71
72   R.Val := @ + 1;
73   --       ^
74   --  target name
75   --
76   --  equivalent to:
77   --     R.Val := R.Val + 1;
78
79end Show_Other_Names;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Names.Other_Names
MD5: 8063a4c9ff7a01ff7a69454fae096089







In this example, we see instances of the following kinds of names:


	explicit dereference: IA.all;


	indexed components: Arr (1);


	slices: Arr (1 .. 2), Arr (3 .. 4);


	selected components: R.Val;


	attribute references: Arr'Size;


	type conversions: New_Integer (IA.all);


	function calls: Zero;


	character literals: 'A';


	qualified expressions: Sub_Integer (R.Val);


	target name: @.





In the Ada Reference Manual


	4.1 Name[#6]


	4.1.1 Indexed Components[#7]


	4.1.2 Slices[#8]


	4.1.3 Selected Components[#9]


	4.1.4 Attributes[#10]


	4.1.5 User-Defined References[#11]


	4.6 Type Conversions[#12]


	4.7 Qualified Expressions[#13]


	5.2.1 Target Name Symbols[#14]









Objects

The term object may be misleading for readers that have a strong background
in object-oriented programming. Moreover, its meaning can vary depending on the
context. Therefore, it's important to define what we mean by objects when
focusing on Ada programming.

In computer science, the term object[#15]
can refer to a piece of data stored in memory — but it can also refer to
a table or a form in a database. Also, even when we define the term object as
data in memory, we can still classify programming languages as
object-based[#16] or
object-oriented[#17] languages.


Important

In object-oriented programming, an object belongs to a class of objects.
In Ada, objects of this kind are called tagged objects. Note, however,
that we can have objects that don't belong to a class of objects: those are
called untagged objects.



In the context of Ada programming, an object is an "entity that contains a
value, and is either a constant or a variable" — according to the Ada
Reference Manual. In other words, any constants or variables that we declare in
Ada source code are objects. In addition, there are other examples of objects
that don't originate from object declarations:


show_objects.adb

 1procedure Show_Objects is
 2
 3   type New_Integer is new
 4     Integer;
 5
 6   type Integer_Array is
 7     array (Positive range <>) of
 8       Integer;
 9
10   procedure Dummy (Obj : Integer)
11     is null;
12   --               ^^^
13   --              object
14
15   task type TT is
16      entry Start (Id : Integer);
17      --           ^^
18      --         object
19   end TT;
20
21   task body TT is
22   begin
23      accept Start (Id : Integer) do
24         null;
25      end Start;
26   end TT;
27
28   function Add_One (V : Integer)
29   --                ^
30   --    view of an object
31                     return Integer is
32   begin
33      return V + 1;
34      --     ^^^^^
35      --     object
36   end Add_One;
37
38   Arr : Integer_Array (1 .. 10);
39   --  ^^^^^^^^^^^^^^^
40   --  object
41
42   NI  : New_Integer;
43begin
44   Arr (1 .. 3) := (others => 1);
45   --  ^^^^^^^^
46   --  object
47   --              ^^^^^^^^^^^^^
48   --                 object
49
50   NI := New_Integer (Arr (1));
51   --    ^^^^^^^^^^^^^^^^^^^^^
52   --      object
53
54   for I in Arr'Range loop
55   --  ^
56   --  object
57
58      Arr (I) := Add_One (Arr (I));
59      --                  ^^^^^^^
60      --                  object
61   end loop;
62end Show_Objects;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Objects.Object_Examples
MD5: edf9eab70ec0ecce90ef71591324ac94







As we can see in this code example a formal parameter of a subprogram or an
entry is also an object — in addition, so are
value conversions, the result returned by a
function, the result of evaluating an aggregate, loop
parameters, arrays, or the slices of arrays objects, or the
components of composite objects.

Other examples of objects include:


	the object created via a view conversion;


	a dereference of an
access-to-variable value;


	the return object of a function;


	a choice parameter of an
exception handler[#18].





In the Ada Reference Manual


	3.3 Objects and Named Numbers[#19]







Constant and variable objects

Objects can be classified as constant and variable objects. When declaring
objects, the distinction is clear:


show_objects.adb

1procedure Show_Objects is
2   Const : constant Integer := 42;
3   Var   :          Integer := 0;
4begin
5   null;
6end Show_Objects;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Objects.Object_Declaration_Examples
MD5: 16b4d9546e9c05443ced05c7f6608cc9







In this example, Const is a constant object, while Var is a
variable object.

In addition to this, constant objects include:


	the discriminant component of a
variable discriminant;


	a formal parameter or generic formal object of mode in.




On the other hand, variable objects include:


	the object created via a view conversion of
a variable;


	a dereference of an
access-to-variable value.




For example:


show_objects.adb

 1procedure Show_Objects is
 2
 3   type Device (Id : Positive) is
 4   record
 5      Value : Integer;
 6   end record;
 7
 8   type Device_Access is
 9     access all Device;
10
11   Dev : aliased Device (99);
12   --                    ^^
13   --  Discriminant `Id` is a
14   --  constant object.
15   --
16   --  `Dev` is a variable object,
17   --  though.
18
19   Dev_Acc : Device_Access := Dev'Access;
20
21   procedure Process (D : Device) is
22     null;
23   --                 ^
24   --         constant object
25begin
26   Dev.Value := 0;
27   --  ^^^^^
28   --  variable object
29
30   Dev_Acc.all.Value := 1;
31   --  ^^^^^^^
32   --  variable object
33end Show_Objects;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Objects.Object_Examples
MD5: c0d1386a37e5ed31f0d3163fadbb1b30







In this example, we see that Dev is a variable object, while its
Id discriminant is a constant object. In addition, the
Dev_Acc.all dereference is a variable object. Finally, the in
parameter of procedure Process is a constant object.


In the Ada Reference Manual


	3.3 Objects and Named Numbers[#20]


	3.3.1 Object Declarations[#21]








View of an object

As we've just seen, an object can be either constant or variable. In addition,
the view of an object is classified as constant or variable as well.

Before we start, note that the classification of an object as constant or
variable doesn't directly imply how its view is classified. You may, for
example, expect that a constant object has a constant view, but this is not
necessarily the case, as we discuss in this section. (In fact, a constant
object only has a constant view if it doesn't have a part that has a variable
view.)

A part of an object has a variable view if it is of
immutably limited type,
controlled type,
private type, or private extension.
In that sense, if any of those parts with variable view exist in a constant
object, then we say that the whole object has a variable view.
Only if a constant object doesn't have any parts with variable view, then
this object has a constant view.

In contrast, variable objects always have a variable view.

Let's see an example:


devices.ads

 1package Devices is
 2
 3   type Device_Settings is
 4   record
 5      Started : Boolean;
 6   end record;
 7
 8   type Device (Id : Positive) is
 9     private;
10
11   function Init (Id : Positive)
12                  return Device;
13
14private
15
16   type Device (Id : Positive) is
17     null record;
18
19   function Init (Id : Positive)
20                  return Device is
21      (Device'(Id => Id));
22
23end Devices;








show_object_view.adb

 1with Devices; use Devices;
 2
 3procedure Show_Object_View is
 4   Dev      : constant Device := Init (5);
 5   --  Constant object with
 6   --  variable view.
 7
 8   Default  : constant Device_Settings
 9               := (Started => False);
10   --  Constant object with
11   --  constant view.
12
13   Settings : Device_Settings;
14
15begin
16   Settings := (Started => True);
17end Show_Object_View;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Objects.Object_View
MD5: b9a56ee937e71c728bac116f21d98742







In this example, both Default_S and Dev are constant objects.
However, they have different views: while Default_S has a constant view
because it doesn't have any parts with variable view, Dev has a variable
view because it's a private type. Finally, as expected, Settings has a
variable view because it's a variable object.



Named numbers

In addition to objects, we can have named numbers. Those aren't objects, but
rather names that we assign to numeric values. For
example:


show_named_number.adb

1procedure Show_Named_Number is
2
3   Pi : constant := 3.1415926535;
4
5begin
6   null;
7end Show_Named_Number;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Objects.Named_Number
MD5: ee6808bb7ecb7fef687831f53a8b6668







In this example, Pi is a named number.

A named number is always known at compilation time. Also, it doesn't have a
type associated with it. In fact, its type is called universal real or
universal integer — depending on the number being a real or integer
number. (In this specific case, Pi is a universal real number.) We talk
about universal types later on in this
chapter and about
universal real and integer types
in another chapter.
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	3.3.2 Number Declarations[#22]









Scalar Types

In general terms, scalar types are the most basic types that we can get. As
we know, we can classify them as follows:



	Category

	Discrete

	Numeric





	Enumeration

	Yes

	No



	Integer

	Yes

	Yes



	Real

	No

	Yes






Many attributes exist for scalar types. For example, we can use the
Image and Value attributes to convert between a given type and a
string type. The following table presents the main attributes for scalar types:



	Category

	Attribute

	Returned value





	Ranges

	First

	First value of the discrete subtype's range.



	Last

	Last value of the discrete subtype's range.



	Range

	Range of the discrete subtype (corresponds
to Subtype'First .. Subtype'Last).



	Iterators

	Pred

	Predecessor of the input value.



	Succ

	Successor of the input value.



	Comparison

	Min

	Minimum of two values.



	Max

	Maximum of two values.



	String
conversion

	Image

	String representation of the input value.



	Value

	Value of a subtype based on input string.






We already discussed some of these attributes in the
Introduction to Ada course (in the sections about
range and related attributes[#23] and
image attribute[#24]). In this
section, we'll discuss some aspects that have been left out of the previous
course.
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	3.5 Scalar types[#25]







Ranges

We've seen that the First and Last attributes can be used with
discrete types. Those attributes are also available for real types. Here's an
example using the Float type and a subtype of it:


show_first_last_real.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_First_Last_Real is
 4   subtype Norm is Float range 0.0 .. 1.0;
 5begin
 6   Put_Line ("Float'First: " & Float'First'Image);
 7   Put_Line ("Float'Last:  " & Float'Last'Image);
 8   Put_Line ("Norm'First:  " & Norm'First'Image);
 9   Put_Line ("Norm'Last:   " & Norm'Last'Image);
10end Show_First_Last_Real;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Ranges_Real_Types
MD5: 89745a94fbdc41a2880ba14e50401acb








Runtime output



Float'First: -3.40282E+38
Float'Last:   3.40282E+38
Norm'First:   0.00000E+00
Norm'Last:    1.00000E+00







This program displays the first and last values of both the Float type
and the Norm subtype. In the case of the Float type, we see the
full range, while for the Norm subtype, we get the values we used in the
declaration of the subtype (i.e. 0.0 and 1.0).



Predecessor and Successor

We can use the Pred and Succ attributes to get the predecessor
and successor of a specific value. For discrete types, this is simply the next
discrete value. For example, Pred (2) is 1 and Succ (2) is 3.
Let's look at a complete source-code example:


show_succ_pred_discrete.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Succ_Pred_Discrete is
 4   type State is (Idle, Started,
 5                  Processing, Stopped);
 6
 7   Machine_State : constant State := Started;
 8
 9   I : constant Integer := 2;
10begin
11   Put_Line ("State                     : "
12             & Machine_State'Image);
13   Put_Line ("State'Pred (Machine_State): "
14             & State'Pred (Machine_State)'Image);
15   Put_Line ("State'Succ (Machine_State): "
16             & State'Succ (Machine_State)'Image);
17   Put_Line ("----------");
18
19   Put_Line ("I               : "
20             & I'Image);
21   Put_Line ("Integer'Pred (I): "
22             & Integer'Pred (I)'Image);
23   Put_Line ("Integer'Succ (I): "
24             & Integer'Succ (I)'Image);
25end Show_Succ_Pred_Discrete;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Show_Succ_Pred_Discrete
MD5: e11d0f50105864fdc1594b3bb72d927e








Runtime output



State                     : STARTED
State'Pred (Machine_State): IDLE
State'Succ (Machine_State): PROCESSING
----------
I               :  2
Integer'Pred (I):  1
Integer'Succ (I):  3







In this example, we use the Pred and Succ attributes for a
variable of enumeration type (State) and a variable of Integer
type.

We can also use the Pred and Succ attributes with real types. In
this case, however, the value we get depends on the actual type we're using:


	for fixed-point types, the value is calculated using the smallest value
(Small), which is derived from the declaration of the fixed-point
type;


	for floating-point types, the value used in the calculation depends on
representation constraints of the actual target machine.




Let's look at this example with a decimal type (Decimal) and a
floating-point type (My_Float):


show_succ_pred_real.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Succ_Pred_Real is
 4   subtype My_Float is
 5     Float range 0.0 .. 0.5;
 6
 7   type Decimal is
 8     delta 0.1 digits 2
 9     range 0.0 .. 0.5;
10
11   D : Decimal;
12   N : My_Float;
13begin
14   Put_Line ("---- DECIMAL -----");
15   Put_Line ("Small: " & Decimal'Small'Image);
16   Put_Line ("----- Succ -------");
17   D := Decimal'First;
18   loop
19      Put_Line (D'Image);
20      D := Decimal'Succ (D);
21
22      exit when D = Decimal'Last;
23   end loop;
24   Put_Line ("----- Pred -------");
25
26   D := Decimal'Last;
27   loop
28      Put_Line (D'Image);
29      D := Decimal'Pred (D);
30
31      exit when D = Decimal'First;
32   end loop;
33   Put_Line ("==================");
34
35   Put_Line ("---- MY_FLOAT ----");
36   Put_Line ("----- Succ -------");
37   N := My_Float'First;
38   for I in 1 .. 5 loop
39      Put_Line (N'Image);
40      N := My_Float'Succ (N);
41   end loop;
42   Put_Line ("----- Pred -------");
43
44   for I in 1 .. 5 loop
45      Put_Line (N'Image);
46      N := My_Float'Pred (N);
47   end loop;
48end Show_Succ_Pred_Real;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Show_Succ_Pred_Real
MD5: f426d6539c3ce863101f1e6afb21c08f








Runtime output



---- DECIMAL -----
Small:  1.00000000000000000E-01
----- Succ -------
 0.0
 0.1
 0.2
 0.3
 0.4
----- Pred -------
 0.5
 0.4
 0.3
 0.2
 0.1
==================
---- MY_FLOAT ----
----- Succ -------
 0.00000E+00
 1.40130E-45
 2.80260E-45
 4.20390E-45
 5.60519E-45
----- Pred -------
 7.00649E-45
 5.60519E-45
 4.20390E-45
 2.80260E-45
 1.40130E-45







As the output of the program indicates, the smallest value (see
Decimal'Small in the example) is used to calculate the previous and next
values of Decimal type.

In the case of the My_Float type, the difference between the current
and the previous or next values is 1.40130E-45 (or 2-149) on a
standard PC.



Scalar To String Conversion

We've seen that we can use the Image and Value attributes to
perform conversions between values of a given subtype and a string:


show_image_value_attr.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show_Image_Value_Attr is
4   I : constant Integer := Integer'Value ("42");
5begin
6   Put_Line (I'Image);
7end Show_Image_Value_Attr;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Image_Value_Attr
MD5: 9daa13b1f05511fac7e108eb9b8eefa7








Runtime output



 42







The Image and Value attributes are used for the String
type specifically. In addition to them, there are also attributes for different
string types — namely Wide_String and Wide_Wide_String.
This is the complete list of available attributes:



	Conversion type

	Attribute

	String type





	Conversion to string

	Image

	String



	Wide_Image

	Wide_String



	Wide_Wide_Image

	Wide_Wide_String



	Conversion to subtype

	Value

	String



	Wide_Value

	Wide_String



	Wide_Wide_Value

	Wide_Wide_String






We discuss more about Wide_String and Wide_Wide_String in
another section.



Width attribute

When converting a value to a string by using the Image attribute, we get
a string with variable width. We can assess the maximum width of that string
for a specific subtype by using the Width attribute. For example,
Integer'Width gives us the maximum width returned by the Image
attribute when converting a value of Integer type to a string of
String type.

This attribute is useful when we're using bounded strings in our code to store
the string returned by the Image attribute. For example:


show_width_attr.adb

 1with Ada.Text_IO;         use Ada.Text_IO;
 2with Ada.Strings;         use Ada.Strings;
 3with Ada.Strings.Bounded;
 4
 5procedure Show_Width_Attr is
 6   package B_Str is new
 7     Ada.Strings.Bounded.Generic_Bounded_Length
 8       (Max => Integer'Width);
 9   use B_Str;
10
11   Str_I : Bounded_String;
12
13   I : constant Integer := 42;
14   J : constant Integer := 103;
15begin
16   Str_I := To_Bounded_String (I'Image);
17   Put_Line ("Value:         "
18             & To_String (Str_I));
19   Put_Line ("String Length: "
20             & Length (Str_I)'Image);
21   Put_Line ("----");
22
23   Str_I := To_Bounded_String (J'Image);
24   Put_Line ("Value:         "
25             & To_String (Str_I));
26   Put_Line ("String Length: "
27             & Length (Str_I)'Image);
28end Show_Width_Attr;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Width_Attr
MD5: 82cff0cf4fecfdecce3020135cf98fd2








Runtime output



Value:          42
String Length:  3
----
Value:          103
String Length:  4







In this example, we're storing the string returned by Image in the
Str_I variable of Bounded_String type.

Similar to the Image and Value attributes, the Width
attribute is also available for string types other than String. In fact,
we can use:


	the Wide_Width attribute for strings returned by Wide_Image;
and


	the Wide_Wide_Width attribute for strings returned by
Wide_Wide_Image.






Base

The Base attribute gives us the unconstrained underlying hardware
representation selected for a given numeric type. As an example, let's say we
declared a subtype of the Integer type named One_To_Ten:


my_integers.ads

1package My_Integers is
2
3   subtype One_To_Ten is Integer
4     range 1 .. 10;
5
6end My_Integers;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Base_Attr
MD5: e3f8310ed742e61a65728fecb6caa557







If we then use the Base attribute — by writing
One_To_Ten'Base —, we're actually referring to the unconstrained
underlying hardware representation selected for One_To_Ten. As
One_To_Ten is a subtype of the Integer type, this also means that
One_To_Ten'Base is equivalent to Integer'Base, i.e. they refer to
the same base type. (This base type is the underlying hardware type
representing the Integer type — but is not the Integer type
itself.)


For further reading...

The Ada standard defines that the minimum range of the Integer type
is -2**15 + 1 .. 2**15 - 1. In modern 64-bit systems —
where wider types such as Long_Integer are defined — the range
is at least -2**31 + 1 .. 2**31 - 1. Therefore, we could think of
the Integer type as having the following declaration:

type Integer is
  range -2 ** 31 .. 2 ** 31 - 1;





However, even though Integer is a predefined Ada type, it's actually
a subtype of an anonymous type. That anonymous "type" is the hardware's
representation for the numeric type as chosen by the compiler based on the
requested range (for the signed integer types) or digits of precision (for
floating-point types). In other words, these types are actually subtypes of
something that does not have a specific name in Ada, and that is not
constrained.

In effect,

type Integer is
  range -2 ** 31 .. 2 ** 31 - 1;





is really as if we said this:

subtype Integer is
  Some_Hardware_Type_With_Sufficient_Range
  range -2 ** 31 .. 2 ** 31 - 1;





Since the Some_Hardware_Type_With_Sufficient_Range type is anonymous
and we therefore cannot refer to it in the code, we just say that
Integer is a type rather than a subtype.

Let's focus on signed integers — as the other numerics work the same
way. When we declare a signed integer type, we have to specify the required
range, statically. If the compiler cannot find a hardware-defined or
supported signed integer type with at least the range requested, the
compilation is rejected. For example, in current architectures, the code
below most likely won't compile:


int_def.ads

1package Int_Def is
2
3   type Too_Big_To_Fail is
4     range -2 ** 255 .. 2 ** 255 - 1;
5
6end Int_Def;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Very_Big_Range
MD5: 29f54776dc814dc8a5d245105b527992








Build output



int_def.ads:4:06: error: integer type definition bounds out of range
gprbuild: *** compilation phase failed







Otherwise, the compiler maps the named Ada type to the hardware "type",
presumably choosing the smallest one that supports the requested range.
(That's why the range has to be static in the source code, unlike for
explicit subtypes.)



The following example shows how the Base attribute affects the bounds of
a variable:


show_base.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with My_Integers; use My_Integers;
 3
 4procedure Show_Base is
 5   C : constant One_To_Ten := One_To_Ten'Last;
 6begin
 7   Using_Constrained_Subtype : declare
 8      V : One_To_Ten := C;
 9   begin
10      Put_Line
11        ("Increasing value for One_To_Ten...");
12
13      V := One_To_Ten'Succ (V);
14   exception
15      when others =>
16         Put_Line ("Exception raised!");
17   end Using_Constrained_Subtype;
18
19   Using_Base : declare
20      V : One_To_Ten'Base := C;
21   begin
22      Put_Line
23      ("Increasing value for One_To_Ten'Base...");
24
25      V := One_To_Ten'Succ (V);
26   exception
27      when others =>
28         Put_Line ("Exception raised!");
29   end Using_Base;
30
31   Put_Line ("One_To_Ten'Last: "
32             & One_To_Ten'Last'Image);
33   Put_Line ("One_To_Ten'Base'Last: "
34             & One_To_Ten'Base'Last'Image);
35end Show_Base;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Base_Attr
MD5: ce3e9fb3ff1619e835e9108ae0a787e7








Build output



show_base.adb:13:22: warning: value not in range of type "One_To_Ten" defined at my_integers.ads:3 [enabled by default]
show_base.adb:13:22: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output



Increasing value for One_To_Ten...
Exception raised!
Increasing value for One_To_Ten'Base...
One_To_Ten'Last:  10
One_To_Ten'Base'Last:  2147483647







In the first block of the example (Using_Constrained_Subtype), we're
asking for the next value after the last value of a range — in this case,
One_To_Ten'Succ (One_To_Ten'Last). As expected, since the last value of
the range doesn't have a successor, a constraint exception is raised.

In the Using_Base block, we're declaring a variable V of
One_To_Ten'Base subtype. In this case, the next value exists —
because the condition One_To_Ten'Last + 1 <= One_To_Ten'Base'Last is
true —, so we can use the Succ attribute without having an
exception being raised.

In the following example, we adjust the result of additions and subtractions
to avoid constraint errors:


my_integers.ads

 1package My_Integers is
 2
 3   subtype One_To_Ten is Integer range 1 .. 10;
 4
 5   function Sat_Add (V1, V2 : One_To_Ten'Base)
 6                     return One_To_Ten;
 7
 8   function Sat_Sub (V1, V2 : One_To_Ten'Base)
 9                     return One_To_Ten;
10
11end My_Integers;








my_integers.adb

 1--  with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body My_Integers is
 4
 5   function Saturate (V : One_To_Ten'Base)
 6                      return One_To_Ten is
 7   begin
 8      --  Put_Line ("SATURATE " & V'Image);
 9
10      if V < One_To_Ten'First then
11         return One_To_Ten'First;
12      elsif V > One_To_Ten'Last then
13         return One_To_Ten'Last;
14      else
15         return V;
16      end if;
17   end Saturate;
18
19   function Sat_Add (V1, V2 : One_To_Ten'Base)
20                     return One_To_Ten is
21   begin
22      return Saturate (V1 + V2);
23   end Sat_Add;
24
25   function Sat_Sub (V1, V2 : One_To_Ten'Base)
26                     return One_To_Ten is
27   begin
28      return Saturate (V1 - V2);
29   end Sat_Sub;
30
31end My_Integers;








show_base.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with My_Integers; use My_Integers;
 3
 4procedure Show_Base is
 5
 6   type Display_Saturate_Op is (Add, Sub);
 7
 8   procedure Display_Saturate
 9     (V1, V2 : One_To_Ten;
10      Op     : Display_Saturate_Op)
11   is
12      Res : One_To_Ten;
13   begin
14      case Op is
15      when Add =>
16         Res := Sat_Add (V1, V2);
17      when Sub =>
18         Res := Sat_Sub (V1, V2);
19      end case;
20      Put_Line ("SATURATE " & Op'Image
21                & " (" & V1'Image
22                & ", " & V2'Image
23                & ") = " & Res'Image);
24   end Display_Saturate;
25
26begin
27   Display_Saturate (1,  1, Add);
28   Display_Saturate (10, 8, Add);
29   Display_Saturate (1,  8, Sub);
30end Show_Base;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Scalar_Types.Base_Attr_Sat
MD5: e9b31345c2efc056bdb71824072852d0








Runtime output



SATURATE ADD ( 1,  1) =  2
SATURATE ADD ( 10,  8) =  10
SATURATE SUB ( 1,  8) =  1







In this example, we're using the Base attribute to declare the
parameters of the Sat_Add, Sat_Sub and Saturate functions.
Note that the parameters of the Display_Saturate procedure are of
One_To_Ten type, while the parameters of the Sat_Add,
Sat_Sub and Saturate functions are of the (unconstrained) base
subtype (One_To_Ten'Base). In those functions, we perform operations
using the parameters of unconstrained subtype and adjust the result — in
the Saturate function — before returning it as a constrained value
of One_To_Ten subtype.

The code in the body of the My_Integers package contains lines that were
commented out — to be more precise, a call to Put_Line call in the
Saturate function. If you uncomment them, you'll see the value of the
input parameter V (of One_To_Ten'Base type) in the runtime output
of the program before it's adapted to fit the constraints of the
One_To_Ten subtype.




Enumerations

We've introduced enumerations back in the
Introduction to Ada course[#26].
In this section, we'll discuss a few useful features of enumerations, such as
enumeration renaming, enumeration overloading and representation clauses.
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	3.5.1 Enumeration Types[#27]







Enumerations as functions

If you have used programming language such as C in the past, you're familiar
with the concept of enumerations being constants with integer values. In Ada,
however, enumerations are not integers. In fact, they're actually parameterless
functions! Let's consider this example:


days.ads

 1package Days is
 2
 3   type Day is (Mon, Tue, Wed,
 4                Thu, Fri,
 5                Sat, Sun);
 6
 7   --  Essentially, we're declaring
 8   --  these functions:
 9   --
10   --  function Mon return Day;
11   --  function Tue return Day;
12   --  function Wed return Day;
13   --  function Thu return Day;
14   --  function Fri return Day;
15   --  function Sat return Day;
16   --  function Sun return Day;
17
18end Days;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_As_Function
MD5: fa3e58b58edffa5a3e04b060a7f8cb8b







In the package Days, we're declaring the enumeration type Day.
When we do this, we're essentially declaring seven parameterless functions, one
for each enumeration. For example, the Mon enumeration corresponds to
function Mon return Day. You can see all seven function declarations in
the comments of the example above.

Note that this has no direct relation to how an Ada compiler generates machine
code for enumeration. Even though enumerations are parameterless functions, a
typical Ada compiler doesn't generate function calls for code that deals with
enumerations.


Enumeration renaming

The idea that enumerations are parameterless functions can be used when we want
to rename enumerations. For example, we could rename the enumerations of the
Day type like this:


enumeration_example.ads

 1package Enumeration_Example is
 2
 3   type Day is (Mon, Tue, Wed,
 4                Thu, Fri,
 5                Sat, Sun);
 6
 7   function Monday    return Day renames Mon;
 8   function Tuesday   return Day renames Tue;
 9   function Wednesday return Day renames Wed;
10   function Thursday  return Day renames Thu;
11   function Friday    return Day renames Fri;
12   function Saturday  return Day renames Sat;
13   function Sunday    return Day renames Sun;
14
15end Enumeration_Example;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Renaming
MD5: e2e12bb3bfcb0b6e94769ced9a4b80f9







Now, we can use both Monday or Mon to refer to Monday of the
Day type:


show_renaming.adb

 1with Ada.Text_IO;         use Ada.Text_IO;
 2with Enumeration_Example; use Enumeration_Example;
 3
 4procedure Show_Renaming is
 5   D1 : constant Day := Mon;
 6   D2 : constant Day := Monday;
 7begin
 8   if D1 = D2 then
 9      Put_Line ("D1 = D2");
10      Put_Line (Day'Image (D1)
11                & " =  "
12                & Day'Image (D2));
13   end if;
14end Show_Renaming;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Renaming
MD5: 2d7177def2c9e9fb11c7dc5e036c3be3








Runtime output



D1 = D2
MON =  MON







When running this application, we can confirm that D1 is equal to
D2. Also, even though we've assigned Monday to D2 (instead
of Mon), the application displays Mon = Mon, since Monday
is just another name to refer to the actual enumeration (Mon).


Hint

If you just want to have a single (renamed) enumeration visible in your
application — and make the original enumeration invisible —,
you can use a separate package. For example:


enumeration_example.ads

1package Enumeration_Example is
2
3   type Day is (Mon, Tue, Wed,
4                Thu, Fri,
5                Sat, Sun);
6
7end Enumeration_Example;








enumeration_renaming.ads

 1with Enumeration_Example;
 2
 3package Enumeration_Renaming is
 4
 5   subtype Day is Enumeration_Example.Day;
 6
 7   function Monday    return Day renames
 8     Enumeration_Example.Mon;
 9   function Tuesday   return Day renames
10     Enumeration_Example.Tue;
11   function Wednesday return Day renames
12     Enumeration_Example.Wed;
13   function Thursday  return Day renames
14     Enumeration_Example.Thu;
15   function Friday    return Day renames
16     Enumeration_Example.Fri;
17   function Saturday  return Day renames
18     Enumeration_Example.Sat;
19   function Sunday    return Day renames
20     Enumeration_Example.Sun;
21
22end Enumeration_Renaming;








show_renaming.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Enumeration_Renaming;
 4use  Enumeration_Renaming;
 5
 6procedure Show_Renaming is
 7   D1 : constant Day := Monday;
 8begin
 9   Put_Line (Day'Image (D1));
10end Show_Renaming;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Renaming
MD5: 87fe75026f0fc118921eaee45fe55a8a








Runtime output



MON







Note that the call to Put_Line still display Mon instead of
Monday.






Enumeration overloading

Enumerations can be overloaded. In simple terms, this means that the same name
can be used to declare an enumeration of different types. A typical example is
the declaration of colors:


colors.ads

 1package Colors is
 2
 3   type Color is
 4     (Salmon,
 5      Firebrick,
 6      Red,
 7      Darkred,
 8      Lime,
 9      Forestgreen,
10      Green,
11      Darkgreen,
12      Blue,
13      Mediumblue,
14      Darkblue);
15
16   type Primary_Color is
17     (Red,
18      Green,
19      Blue);
20
21end Colors;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Overloading
MD5: b808f90d9164f044b6b7a8931863726f







Note that we have Red as an enumeration of type Color and of type
Primary_Color. The same applies to Green and Blue. Because
Ada is a strongly-typed language, in most cases, the enumeration that we're
referring to is clear from the context. For example:


red_colors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Colors;      use Colors;
 3
 4procedure Red_Colors is
 5   C1 : constant Color         := Red;
 6   --  Using Red from Color
 7
 8   C2 : constant Primary_Color := Red;
 9   --  Using Red from Primary_Color
10begin
11   if C1 = Red then
12      Put_Line ("C1 = Red");
13   end if;
14   if C2 = Red then
15      Put_Line ("C2 = Red");
16   end if;
17end Red_Colors;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Overloading
MD5: dd590eab88164773e974e748d77a51af








Runtime output



C1 = Red
C2 = Red







When assigning Red to C1 and C2, it is clear that, in the
first case, we're referring to Red of Color type, while in the
second case, we're referring to Red of the Primary_Color type.
The same logic applies to comparisons such as the one in
if C1 = Red: because the type of C1 is defined
(Color), it's clear that the Red enumeration is the one of
Color type.


Enumeration subtypes

Note that enumeration overloading is not the same as enumeration subtypes. For
example, we could define the following subtype:


colors-shades.ads

1package Colors.Shades is
2
3   subtype Blue_Shades is
4     Colors range Blue .. Darkblue;
5
6end Colors.Shades;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Overloading
MD5: 9c13508bda487cae02dbf8b403271540







In this case, Blue of Blue_Shades and Blue of
Colors are the same enumeration.



Enumeration ambiguities

A situation where enumeration overloading might lead to ambiguities is when we
use them in ranges. For example:


colors.ads

 1package Colors is
 2
 3   type Color is
 4     (Salmon,
 5      Firebrick,
 6      Red,
 7      Darkred,
 8      Lime,
 9      Forestgreen,
10      Green,
11      Darkgreen,
12      Blue,
13      Mediumblue,
14      Darkblue);
15
16   type Primary_Color is
17     (Red,
18      Green,
19      Blue);
20
21end Colors;








color_loop.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Colors;      use Colors;
 3
 4procedure Color_Loop is
 5begin
 6   for C in Red .. Blue loop
 7   --       ^^^^^^^^^^^
 8   --  ERROR: range is ambiguous!
 9      Put_Line (Color'Image (C));
10   end loop;
11end Color_Loop;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Ambiguities
MD5: 82d0d3f28f1faf6b296a4f44db71f41b








Build output



color_loop.adb:6:17: error: ambiguous bounds in range of iteration
color_loop.adb:6:17: error: possible interpretations:
color_loop.adb:6:17: error: type "Primary_Color" defined at colors.ads:16
color_loop.adb:6:17: error: type "Color" defined at colors.ads:3
color_loop.adb:6:17: error: ambiguous bounds in discrete range
color_loop.adb:9:30: error: expected type "Color" defined at colors.ads:3
color_loop.adb:9:30: error: found type "Primary_Color" defined at colors.ads:16
gprbuild: *** compilation phase failed







Here, it's not clear whether the range in the loop is of Color type or
of Primary_Color type. Therefore, we get a compilation error for this
code example. The next line in the code example — the one with the call
to Put_Line — gives us a hint about the developer's intention to
refer to the Color type. In this case, we can use qualification —
for example, Color'(Red) — to resolve the ambiguity:


color_loop.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Colors;      use Colors;
3
4procedure Color_Loop is
5begin
6   for C in Color'(Red) .. Color'(Blue) loop
7      Put_Line (Color'Image (C));
8   end loop;
9end Color_Loop;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Ambiguities
MD5: c3e946d330bb6aed258bcd005a540794








Runtime output



RED
DARKRED
LIME
FORESTGREEN
GREEN
DARKGREEN
BLUE







Note that, in the case of ranges, we can also rewrite the loop by using a range
declaration:


color_loop.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Colors;      use Colors;
3
4procedure Color_Loop is
5begin
6   for C in Color range Red .. Blue loop
7      Put_Line (Color'Image (C));
8   end loop;
9end Color_Loop;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Ambiguities
MD5: 23f8db4fcb5710f7bda6b511234e0448








Runtime output



RED
DARKRED
LIME
FORESTGREEN
GREEN
DARKGREEN
BLUE







Alternatively, Color range Red .. Blue could be used in a subtype
declaration, so we could rewrite the example above using a subtype (such as
Red_To_Blue) in the loop:


color_loop.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Colors;      use Colors;
 3
 4procedure Color_Loop is
 5   subtype Red_To_Blue is Color range Red .. Blue;
 6begin
 7   for C in Red_To_Blue loop
 8      Put_Line (Color'Image (C));
 9   end loop;
10end Color_Loop;










Position and Internal Code

As we've said above, a typical Ada compiler doesn't generate function calls for
code that deals with enumerations. On the contrary, each enumeration has values
associated with it, and the compiler uses those values instead.

Each enumeration has:


	a position value, which is a natural value indicating the position of the
enumeration in the enumeration type; and


	an internal code, which, by default, in most cases, is the same as the
position value.




Also, by default, the value of the first position is zero, the value of the
second position is one, and so on. We can see this by listing each enumeration
of the Day type and displaying the value of the corresponding position:


days.ads

1package Days is
2
3   type Day is (Mon, Tue, Wed,
4                Thu, Fri,
5                Sat, Sun);
6
7end Days;








show_days.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Days;        use Days;
 3
 4procedure Show_Days is
 5begin
 6   for D in Day loop
 7      Put_Line (Day'Image (D)
 8                & " position      = "
 9                & Integer'Image (Day'Pos (D)));
10      Put_Line (Day'Image (D)
11                & " internal code = "
12                & Integer'Image
13                    (Day'Enum_Rep (D)));
14   end loop;
15end Show_Days;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Enumerations.Enumeration_Values
MD5: d6c5cb99b9770893b7277c470f40e805








Runtime output



MON position      =  0
MON internal code =  0
TUE position      =  1
TUE internal code =  1
WED position      =  2
WED internal code =  2
THU position      =  3
THU internal code =  3
FRI position      =  4
FRI internal code =  4
SAT position      =  5
SAT internal code =  5
SUN position      =  6
SUN internal code =  6







Note that this application also displays the internal code, which, in this
case, is equivalent to the position value for all enumerations.

We may, however, change the internal code of an enumeration using a
representation clause. We discuss this topic
in another section.




Universal and Root Types

Previously, in the section about scalar types,
we said that scalar types are the most basic types that we can get. However,
Ada has the concept of universal and root types, which could be
considered more basic than scalar types. In fact, universal and root types
are underlying scalar types used by the language designers to define the
language semantics. In this section, we briefly introduce this topic.


Universal Types

The Ada standard defines four universal types:


	universal integer types


	universal real types


	universal fixed types


	universal access types




The first three are numeric types, and we discuss them in detail later on
in another chapter. The last one
is used for anonymous access types.

Universal types aren't types we can use directly, but rather via specific
languages constructs. In this sense, we cannot derive from universal types, but
only make use of them indirectly.

For instance, if we declare named numbers using
a real value, we're indirectly using a universal real type. If we declare
another named number using an expression, the computation is performed based on
the universal types of the elements of that expression:


show_universal_real_integer.ads

 1package Show_Universal_Real_Integer is
 2
 3   Pi     : constant := 3.1415926535;
 4   --                   ^^^^^^^^^^^^
 5   --               universal real type
 6
 7   Two_Pi : constant := Pi * 2.0;
 8   --                   ^^^^^^^^
 9   --                 operation on
10   --              universal real type
11
12   N      : constant := 10;
13   --                   ^^
14   --           universal integer type
15
16   N_10   : constant := N * 10;
17   --                   ^^^^^^
18   --                operation on
19   --           universal integer type
20
21end Show_Universal_Real_Integer;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Universal_And_Root_Types.Universal_Real_Integer
MD5: c9f002461d8ee7f11f2c42a33691f30d







In this example, the expression Pi * 2.0 is computed using universal
real types, while the expression N * 10 is computed using universal
integer types.

Similarly, for anonymous access types, the equality operator uses universal
access types for the comparison:


show_universal_access.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Universal_Access is
 4   I : aliased Integer;
 5   A : access Integer := I'Access;
 6   B : access Integer := I'Access;
 7begin
 8   if A = B then
 9      Put_Line ("A = B");
10   else
11      Put_Line ("A /= B");
12   end if;
13end Show_Universal_Access;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Universal_And_Root_Types.Universal_Access
MD5: e6a37de980cc3b2c19e36baa3a51c329








Runtime output



A = B







In this example, both A and B are variables of anonymous access
types. Because the type isn't a known named type, the equality operation
= uses the universal access type for the comparison.


In the Ada Reference Manual


	3.3.2 Number Declarations[#28]


	4.5.2 Relational Operators and Membership Tests[#29]








Root Types

The root types can be found on a level above the universal types. In this
category, we can find the same numeric types that we have for universal types,
namely the root real, root integer and root fixed types.

The term root is used in the context of type derivation. In fact, the root
type is the first type that we derive all other types from. In other words, if
we declare an integer range as a new type, that type is derived from the root
integer type. Similarly, if we declare a new floating-point type, that type is
derived from the root real type. For example:


show_root_integer_real.ads

 1package Show_Root_Integer_Real is
 2
 3   type Score is range 0 .. 10;
 4   --  Type Score is derived from
 5   --  the root integer type.
 6
 7   type Real_Score is
 8     digits 10 range 0.0 .. 10.0;
 9   --  Type Real_Score is derived from
10   --  the root real type.
11
12end Show_Root_Integer_Real;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Universal_And_Root_Types.Root_Integer_Real
MD5: 619ecddeab6fd751cc1af9daa8794a25







Here, Score and Real_Score are derived from the root integer and
real types, respectively. Note that the derivation is always implicit, as we
cannot write something like
type Score is new Root_Integer range 0 .. 10 or
type Real_Score is new Root_Real digits 10 range 0.0 .. 10.0.

In contrast, if we derive from an existing floating-point or integer type
defined by the Ada standard, we're not deriving directly from the root types:


show_standard_derivation.ads

 1package Show_Standard_Derivation is
 2
 3   type Score is new Integer
 4     range 0 .. 10;
 5   --  Type Score is derived from
 6   --  the Integer type.
 7
 8   type Real_Score is new Float
 9     range 0.0 .. 10.0;
10   --  Type Real_Score is derived from
11   --  the Float type.
12
13end Show_Standard_Derivation;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Universal_And_Root_Types.Standard_Integer_Float_Derivation
MD5: d32261966e1f1ae9626336f57ab16d89







In this case, we're explicitly deriving from the standard Ada types
Integer and Float, which, on their turn, are derived from the
root integer and root real types, respectively.


For further reading...

You might remember our discussion about the
Base attribute and the fact that it
indicates the underlying subtype of a type. We said, for example, that
Integer'Base gives us the base type of Integer, i.e. the
the underlying hardware type representing the Integer type.

Although the concept of the base type sounds similar to the concept of
the root type, the focus of each one is different: while the base type
refers to the constraints of a type, the root type refers to the derivation
tree of a type.






Definite and Indefinite Subtypes

Indefinite types were mentioned back in the
Introduction to Ada course[#30].
In this section, we'll recapitulate and extend on both definite and indefinite
types.

Definite types are the basic kind of types we commonly use when programming
applications. For example, we can only declare variables of definite types;
otherwise, we get a compilation error. Interestingly, however, to be able to
explain what definite types are, we need to first discuss indefinite types.

Indefinite types include:


	unconstrained arrays;


	record types with unconstrained discriminants without defaults.




Let's see some examples of indefinite types:


unconstrained_types.ads

 1package Unconstrained_Types is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   type Simple_Record (Extended : Boolean) is
 7   record
 8      V : Integer;
 9      case Extended is
10         when False =>
11            null;
12         when True  =>
13            V_Float : Float;
14      end case;
15   end record;
16
17end Unconstrained_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: e569dc73150b834c9315b14d46c0ac79







In this example, both Integer_Array and Simple_Record are
indefinite types.

As we've just mentioned, we cannot declare variable of indefinite types:


using_unconstrained_type.adb

 1with Unconstrained_Types; use Unconstrained_Types;
 2
 3procedure Using_Unconstrained_Type is
 4
 5   A : Integer_Array;
 6
 7   R : Simple_Record;
 8
 9begin
10   null;
11end Using_Unconstrained_Type;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: 806d4ec64b911a9978ad30fa45a6df10








Build output



using_unconstrained_type.adb:5:08: error: unconstrained subtype not allowed (need initialization)
using_unconstrained_type.adb:5:08: error: provide initial value or explicit array bounds
using_unconstrained_type.adb:7:08: error: unconstrained subtype not allowed (need initialization)
using_unconstrained_type.adb:7:08: error: provide initial value or explicit discriminant values
using_unconstrained_type.adb:7:08: error: or give default discriminant values for type "Simple_Record"
gprbuild: *** compilation phase failed







As we can see when we try to build this example, the compiler complains about
the declaration of A and R because we're trying to use indefinite
types to declare variables. The main reason we cannot use indefinite types here
is that the compiler needs to know at this point how much memory it should
allocate. Therefore, we need to provide the information that is missing. In
other words, we need to change the declaration so the type becomes definite. We
can do this by either declaring a definite type or providing constraints in the
variable declaration. For example:


using_unconstrained_type.adb

 1with Unconstrained_Types; use Unconstrained_Types;
 2
 3procedure Using_Unconstrained_Type is
 4
 5   subtype Integer_Array_5 is
 6     Integer_Array (1 .. 5);
 7
 8   A1 : Integer_Array_5;
 9   A2 : Integer_Array (1 .. 5);
10
11   subtype Simple_Record_Ext is
12     Simple_Record (Extended => True);
13
14   R1 : Simple_Record_Ext;
15   R2 : Simple_Record (Extended => True);
16
17begin
18   null;
19end Using_Unconstrained_Type;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: f8e192537f42eea0ebc7873bdaa898f1







In this example, we declare the Integer_Array_5 subtype, which is
definite because we're constraining it to a range from 1 to 5, thereby
defining the information that was missing in the indefinite type
Integer_Array. Because we now have a definite type, we can use it to
declare the A1 variable. Similarly, we can use the indefinite type
Integer_Array directly in the declaration of A2 by specifying the
previously unknown range.

Similarly, in this example, we declare the Simple_Record_Ext subtype,
which is definite because we're initializing the record discriminant
Extended. We can therefore use it in the declaration of the R1
variable. Alternatively, we can simply use the indefinite type
Simple_Record and specify the information required for the
discriminants. This is what we do in the declaration of the R2 variable.

Although we cannot use indefinite types directly in variable declarations,
they're very useful to generalize algorithms. For example, we can use them as
parameters of a subprogram:


show_integer_array.ads

1with Unconstrained_Types; use Unconstrained_Types;
2
3procedure Show_Integer_Array (A : Integer_Array);








show_integer_array.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Integer_Array (A : Integer_Array)
 4is
 5begin
 6   for I in A'Range loop
 7      Put_Line (Positive'Image (I)
 8                & ": "
 9                & Integer'Image (A (I)));
10   end loop;
11   Put_Line ("--------");
12end Show_Integer_Array;








using_unconstrained_type.adb

 1with Unconstrained_Types; use Unconstrained_Types;
 2with Show_Integer_Array;
 3
 4procedure Using_Unconstrained_Type is
 5   A_5  : constant Integer_Array (1 .. 5)  :=
 6            (1, 2, 3, 4, 5);
 7   A_10 : constant Integer_Array (1 .. 10) :=
 8            (1, 2, 3, 4, 5, others => 99);
 9begin
10   Show_Integer_Array (A_5);
11   Show_Integer_Array (A_10);
12end Using_Unconstrained_Type;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: 3f744fa5921a55865bc5361ec4c6eb88








Runtime output



 1:  1
 2:  2
 3:  3
 4:  4
 5:  5
--------
 1:  1
 2:  2
 3:  3
 4:  4
 5:  5
 6:  99
 7:  99
 8:  99
 9:  99
 10:  99
--------







In this particular example, the compiler doesn't know a priori which range is
used for the A parameter of Show_Integer_Array. It could be a
range from 1 to 5 as used for variable A_5 of the
Using_Unconstrained_Type procedure, or it could be a range from 1 to 10
as used for variable A_10, or it could be anything else. Although the
parameter A of Show_Integer_Array is unconstrained, both calls to
Show_Integer_Array — in Using_Unconstrained_Type procedure
— use constrained objects.

Note that we could call the Show_Integer_Array procedure above with
another unconstrained parameter. For example:


show_integer_array_header.ads

1with Unconstrained_Types; use Unconstrained_Types;
2
3procedure Show_Integer_Array_Header
4  (AA : Integer_Array;
5   HH : String);








show_integer_array_header.adb

 1with Ada.Text_IO;         use Ada.Text_IO;
 2with Show_Integer_Array;
 3
 4procedure Show_Integer_Array_Header
 5  (AA : Integer_Array;
 6   HH : String)
 7is
 8begin
 9   Put_Line (HH);
10   Show_Integer_Array (AA);
11end Show_Integer_Array_Header;








using_unconstrained_type.adb

 1with Unconstrained_Types; use Unconstrained_Types;
 2
 3with Show_Integer_Array_Header;
 4
 5procedure Using_Unconstrained_Type is
 6   A_5  : constant Integer_Array (1 .. 5)  :=
 7            (1, 2, 3, 4, 5);
 8   A_10 : constant Integer_Array (1 .. 10) :=
 9            (1, 2, 3, 4, 5, others => 99);
10begin
11   Show_Integer_Array_Header (A_5,
12                              "First example");
13   Show_Integer_Array_Header (A_10,
14                              "Second example");
15end Using_Unconstrained_Type;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: dd09f8c4089c6ad4c18410879f80f731








Runtime output



First example
 1:  1
 2:  2
 3:  3
 4:  4
 5:  5
--------
Second example
 1:  1
 2:  2
 3:  3
 4:  4
 5:  5
 6:  99
 7:  99
 8:  99
 9:  99
 10:  99
--------







In this case, we're calling the Show_Integer_Array procedure with
another unconstrained parameter (the AA parameter). However, although we
could have a long chain of procedure calls using indefinite types in their
parameters, we still use a (definite) object at the beginning of this chain.
For example, for the A_5 object, we have this chain:

A_5

    ==> Show_Integer_Array_Header (AA => A_5,
                                   ...);

        ==> Show_Integer_Array (A => AA);





Therefore, at this specific call to Show_Integer_Array, even though
A is declared as a parameter of indefinite type, the actual argument
is of definite type because A_5 is constrained — and, thus, of
definite type.

Note that we can declare variables based on parameters of indefinite type. For
example:


show_integer_array_plus.ads

1with Unconstrained_Types; use Unconstrained_Types;
2
3procedure Show_Integer_Array_Plus
4  (A : Integer_Array;
5   V : Integer);








show_integer_array_plus.adb

 1with Show_Integer_Array;
 2
 3procedure Show_Integer_Array_Plus
 4  (A : Integer_Array;
 5   V : Integer)
 6is
 7   A_Plus : Integer_Array (A'Range);
 8begin
 9   for I in A_Plus'Range loop
10      A_Plus (I) := A (I) + V;
11   end loop;
12   Show_Integer_Array (A_Plus);
13end Show_Integer_Array_Plus;








using_unconstrained_type.adb

 1with Unconstrained_Types; use Unconstrained_Types;
 2
 3with Show_Integer_Array_Plus;
 4
 5procedure Using_Unconstrained_Type is
 6   A_5 : constant Integer_Array (1 .. 5) :=
 7           (1, 2, 3, 4, 5);
 8begin
 9   Show_Integer_Array_Plus (A_5, 5);
10end Using_Unconstrained_Type;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types
MD5: e58ae62272ff0b27c5f6e171c88a6880








Runtime output



 1:  6
 2:  7
 3:  8
 4:  9
 5:  10
--------







In the Show_Integer_Array_Plus procedure, we're declaring A_Plus
based on the range of A, which is itself of indefinite type. However,
since the object passed as an argument to Show_Integer_Array_Plus must
have a constraint, A_Plus will also be constrained. For example, in the
call to Show_Integer_Array_Plus using A_5 as an argument, the
declaration of A_Plus becomes A_Plus : Integer_Array (1 .. 5);.
Therefore, it becomes clear that the compiler needs to allocate five elements
for A_Plus.

We'll see later how definite and indefinite types apply to
formal parameters.
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	3.3 Objects and Named Numbers[#31]








Incomplete types

Incomplete types — as the name suggests — are types that have
missing information in their declaration. This is a simple example:

type Incomplete;





Because this type declaration is incomplete, we need to provide the missing
information at some later point. Consider the incomplete type R in the
following example:


incomplete_type_example.ads

 1package Incomplete_Type_Example is
 2
 3   type R;
 4   --  Incomplete type declaration!
 5
 6   type R is record
 7      I : Integer;
 8   end record;
 9   --  type R is now complete!
10
11end Incomplete_Type_Example;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Incomplete_Types.Incomplete_Types
MD5: 5ca250595f2b0cc101df286ab319982f







The first declaration of type R is incomplete. However, in the second
declaration of R, we specify that R is a record. By providing
this missing information, we're completing the type declaration of R.

It's also possible to declare an incomplete type in the private part of a
package specification and its complete form in the package body. Let's rewrite
the example above accordingly:


incomplete_type_example.ads

1package Incomplete_Type_Example is
2
3private
4
5   type R;
6   --  Incomplete type declaration!
7
8end Incomplete_Type_Example;








incomplete_type_example.adb

1package body Incomplete_Type_Example is
2
3   type R is record
4      I : Integer;
5   end record;
6   --  type R is now complete!
7
8end Incomplete_Type_Example;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Incomplete_Types.Incomplete_Types_2
MD5: fd2f0301b4a63887add1cb2093692ddb







A typical application of incomplete types is to create linked lists using
access types
based on those incomplete types. This kind of type is called
a recursive type. For example:


linked_list_example.ads

 1package Linked_List_Example is
 2
 3   type Integer_List;
 4
 5   type Next is access Integer_List;
 6
 7   type Integer_List is record
 8      I : Integer;
 9      N : Next;
10   end record;
11
12end Linked_List_Example;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Incomplete_Types.Linked_List_Example
MD5: b2d3a048473d498bbe691bc6e38ca1e9







Here, the N component of Integer_List is essentially giving us
access to the next element of Integer_List type. Because the Next
type is both referring to the Integer_List type and being used in the
declaration of the Integer_List type, we need to start with an
incomplete declaration of the Integer_List type and then complete it
after the declaration of Next.

Incomplete types are useful to declare
mutually dependent types, as we'll
see later on. Also, we can also have formal incomplete types, as
we'll discuss later.
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	3.10.1 Incomplete Type Declarations[#32]








Type view

Ada distinguishes between the partial and the full view of a type. The full
view is a type declaration that contains all the information needed by the
compiler. For example, the following declaration of type R represents
the full view of this type:


full_view.ads

1package Full_View is
2
3   --  Full view of the R type:
4   type R is record
5      I : Integer;
6   end record;
7
8end Full_View;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Full_View
MD5: d37792287d08f9aa3d32499e233516df







As soon as we start applying encapsulation and information hiding — via
the private keyword — to a specific type, we are introducing a
partial view and making only that view compile-time visible to clients. Doing
so requires us to introduce the private part of the package (unless already
present). For example:


partial_full_views.ads

 1package Partial_Full_Views is
 2
 3   --  Partial view of the R type:
 4   type R is private;
 5
 6private
 7
 8   --  Full view of the R type:
 9   type R is record
10      I : Integer;
11   end record;
12
13end Partial_Full_Views;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Partial_Full_View
MD5: b0cf748e43b23ea6c845e283c4266ff3







As indicated in the example, the type R is private declaration is the
partial view of the R type, while the type R is record [...]
declaration in the private part of the package is the full view.

Although the partial view doesn't contain the full type declaration, it
contains very important information for the users of the package where it's
declared. In fact, the partial view of a private type is all that users
actually need to know to effectively use this type, while the full view is only
needed by the compiler.

In the previous example, the partial view indicates that R is a private
type, which means that, even though users cannot directly access any
information stored in this type — for example, read the value of the
I component of R —, they can use the R type to
declare objects. For example:


main.adb

 1with Partial_Full_Views; use Partial_Full_Views;
 2
 3procedure Main is
 4   --  Partial view of R indicates that
 5   --  R exists as a private type, so we
 6   --  can declare objects of this type:
 7   C : R;
 8begin
 9   --  But we cannot directly access any
10   --  information declared in the full
11   --  view of R:
12   --
13   --  C.I := 42;
14   --
15   null;
16end Main;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Partial_Full_View
MD5: 05bc9a75406d0a46f6d009d97885d010







In many cases, the restrictions applied to the partial and full views must
match. For example, if we declare a limited type in the full view of a private
type, its partial view must also be limited:


limited_private_example.ads

 1package Limited_Private_Example is
 2
 3   --  Partial view must be limited,
 4   --  since the full view is limited.
 5   type R is limited private;
 6
 7private
 8
 9   type R is limited record
10      I : Integer;
11   end record;
12
13end Limited_Private_Example;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Limited_Private
MD5: 23d01b93fe052a500c8ca6ff76a2fd51







There are, however, situations where the full view may contain additional
requirements that aren't mentioned in the partial view. For example, a type may
be declared as non-tagged in the partial view, but, at the same time, be tagged
in the full view:


tagged_full_view_example.ads

 1package Tagged_Full_View_Example is
 2
 3   --  Partial view using non-tagged type:
 4   type R is private;
 5
 6private
 7
 8   --  Full view using tagged type:
 9   type R is tagged record
10      I : Integer;
11   end record;
12
13end Tagged_Full_View_Example;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Tagged_Full_View
MD5: 0ff9142b1ee086695b98b72a9d0f50ac







In this case, from a user's perspective, the R type is non-tagged, so
that users cannot use any object-oriented programming features for this type.
In the package body of Tagged_Full_View_Example, however, this type is
tagged, so that all object-oriented programming features are available for
subprograms of the package body that make use of this type. Again, the partial
view of the private type contains the most important information for users that
want to declare objects of this type.
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	7.3 Private Types and Private Extensions[#33]







Non-Record Private Types

Although it's very common to declare private types as record types, this is
not the only option. In fact, we could declare any type in the full view
— scalars, for example —, so we could declare a "private
integer" type:


private_integers.ads

 1package Private_Integers is
 2
 3   --  Partial view of private Integer type:
 4   type Private_Integer is private;
 5
 6private
 7
 8   --  Full view of private Integer type:
 9   type Private_Integer is new Integer;
10
11end Private_Integers;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Integer
MD5: f1fcbed95e0f66a6f67d1bfd9ba9df1c







This code compiles as expected, but isn't very useful. We can improve it by
adding operators to it, for example:


private_integers.ads

 1package Private_Integers is
 2
 3   --  Partial view of private Integer type:
 4   type Private_Integer is private;
 5
 6   function "+" (Left, Right : Private_Integer)
 7                 return Private_Integer;
 8
 9private
10
11   --  Full view of private Integer type:
12   type Private_Integer is new Integer;
13
14end Private_Integers;








private_integers.adb

 1package body Private_Integers is
 2
 3   function "+" (Left, Right : Private_Integer)
 4                 return Private_Integer
 5   is
 6      Res : constant Integer :=
 7              Integer (Left) + Integer (Right);
 8      --  Note that we're converting Left
 9      --  and Right to Integer, which calls
10      --  the "+" operator of the Integer
11      --  type. Writing "Left + Right" would
12      --  have called the "+" operator of
13      --  Private_Integer, which leads to
14      --  recursive calls, as this is the
15      --  operator we're currently in.
16   begin
17      return Private_Integer (Res);
18   end "+";
19
20end Private_Integers;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Integer
MD5: ac161cb5debfde16465c45949cf682d7







Now, let's use the new operator in a test application:


show_private_integers.adb

1with Private_Integers; use Private_Integers;
2
3procedure Show_Private_Integers is
4   A, B : Private_Integer;
5begin
6   A := A + B;
7end Show_Private_Integers;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Integer
MD5: 5933779ce5f0802b448df96c42e65a8d








Build output



show_private_integers.adb:4:07: warning: variable "B" is read but never assigned [-gnatwv]
show_private_integers.adb:6:09: warning: "A" may be referenced before it has a value [enabled by default]







In this example, we use the + operator as if we were adding two common
integer variables of Integer type.


Unconstrained Types

There are, however, some limitations: we cannot use unconstrained types such as
arrays or even discriminants for arrays in the same way as we did for scalars.
For example, the following declarations won't work:


private_arrays.ads

 1package Private_Arrays is
 2
 3   type Private_Unconstrained_Array is private;
 4
 5   type Private_Constrained_Array
 6     (L : Positive) is private;
 7
 8private
 9
10   type Integer_Array is
11     array (Positive range <>) of Integer;
12
13   type Private_Unconstrained_Array is
14     array (Positive range <>) of Integer;
15
16   type Private_Constrained_Array
17     (L : Positive) is
18       array (1 .. 2) of Integer;
19
20   --  NOTE: using an array type fails as well:
21   --
22   --  type Private_Constrained_Array
23   --    (L : Positive) is
24   --      Integer_Array (1 .. L);
25
26end Private_Arrays;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Array
MD5: b873c2d381c159532b429101e4533c05








Build output



private_arrays.ads:13:09: error: full view of "Private_Unconstrained_Array" not compatible with declaration at line 3
private_arrays.ads:13:09: error: one is constrained, the other unconstrained
private_arrays.ads:17:07: error: elementary or array type cannot have discriminants
gprbuild: *** compilation phase failed







Completing the private type with an unconstrained array type in the full view
is not allowed because clients could expect, according to their view, to
declare objects of the type. But doing so would not be allowed according to the
full view. So this is another case of the partial view having to present
clients with a sufficiently true view of the type's capabilities.

One solution is to rewrite the declaration of Private_Constrained_Array
using a record type:


private_arrays.ads

 1package Private_Arrays is
 2
 3   type Private_Constrained_Array
 4     (L : Positive) is private;
 5
 6private
 7
 8   type Integer_Array is
 9     array (Positive range <>) of Integer;
10
11   type Private_Constrained_Array
12     (L : Positive) is
13   record
14      Arr : Integer_Array  (1 .. 2);
15   end record;
16
17end Private_Arrays;








declare_private_array.adb

1with Private_Arrays; use Private_Arrays;
2
3procedure Declare_Private_Array is
4  Arr : Private_Constrained_Array (5);
5begin
6  null;
7end Declare_Private_Array;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Array
MD5: 3830721499a59d85efddd4989aa7c288







Now, the code compiles fine — but we had to use a record type in the
full view to make it work.

Another solution is to make the private type indefinite. In this case, the
client's partial view would be consistent with a completion as an indefinite
type in the private part:


private_arrays.ads

 1package Private_Arrays is
 2
 3   type Private_Constrained_Array (<>) is
 4     private;
 5
 6   function Init
 7     (L : Positive)
 8      return Private_Constrained_Array;
 9
10private
11
12   type Private_Constrained_Array is
13     array (Positive range <>) of Integer;
14
15end Private_Arrays;








private_arrays.adb

 1package body Private_Arrays is
 2
 3   function Init
 4     (L : Positive)
 5      return Private_Constrained_Array
 6   is
 7      PCA : Private_Constrained_Array (1 .. L);
 8   begin
 9      return PCA;
10   end Init;
11
12end Private_Arrays;








declare_private_array.adb

1with Private_Arrays; use Private_Arrays;
2
3procedure Declare_Private_Array is
4  Arr : Private_Constrained_Array := Init (5);
5begin
6  null;
7end Declare_Private_Array;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_View.Private_Array
MD5: cd170a1e44fffb93314776a68f1cb413








Build output



private_arrays.adb:7:07: warning: variable "PCA" is read but never assigned [-gnatwv]







The bounds for the object's declaration come from the required initial value
when an object is declared. In this case, we initialize the object with a call
to the Init function.





Type conversion

An important operation when dealing with objects of different types is type
conversion, which we already discussed in the
Introduction to Ada course[#34]. In fact, we can
convert an object Obj_X of an operand type X to a similar,
closely related target type Y by simply indicating the target type:
Y (Obj_X). In this section, we discuss type conversions for different
kinds of types.

Ada distinguishes between two kinds of conversion: value conversion and view
conversion. The main difference is the way how the operand (argument) of the
conversion is evaluated:


	in a value conversion, the operand is evaluated as an
expression;


	in a view conversion, the operand is evaluated as a name.




In other words, we cannot use expressions such as 2 * A in a view
conversion, but only A. In a value conversion, we could use both forms.
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	4.6 Type Conversions[#35]







Value conversion

Value conversions are possible for various types. In this section, we see some
examples, starting with types derived from scalar types up to array
conversions.


Root and derived types

Let's start with the conversion between a scalar type and its derived types.
For example, we can convert back-and-forth between the Integer type and
the derived Int type:


custom_integers.ads

 1package Custom_Integers is
 2
 3   type Int is new Integer
 4     with Dynamic_Predicate => Int /= 0;
 5
 6   function Double (I : Integer)
 7                    return Integer is
 8     (I * 2);
 9
10end Custom_Integers;








show_conversion.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2with Custom_Integers; use Custom_Integers;
 3
 4procedure Show_Conversion is
 5   Int_Var     : Int     := 1;
 6   Integer_Var : Integer := 2;
 7begin
 8   --  Int to Integer conversion
 9   Integer_Var := Integer (Int_Var);
10
11   Put_Line ("Integer_Var : "
12             & Integer_Var'Image);
13
14   --  Int to Integer conversion
15   --  as an actual parameter
16   Integer_Var := Double (Integer (Int_Var));
17
18   Put_Line ("Integer_Var : "
19             & Integer_Var'Image);
20
21   --  Integer to Int conversion
22   --  using an expression
23   Int_Var     := Int (Integer_Var * 2);
24
25   Put_Line ("Int_Var :     "
26             & Int_Var'Image);
27end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Root_Derived_Type_Conversion
MD5: 7cd324f308edc34de3bc4bccce63f1ee








Runtime output



Integer_Var :  1
Integer_Var :  2
Int_Var :      4







In the Show_Conversion procedure from this example, we first convert
from Int to Integer. Then, we do the same conversion while
providing the resulting value as an actual parameter for the Double
function. Finally, we convert the Integer_Var * 2 expression from
Integer to Int.

Note that the converted value must conform to any constraints that the target
type might have. In the example above, Int has a predicate that dictates
that its value cannot be zero. This (dynamic) predicate is checked at runtime,
so an exception is raised if it fails:


show_conversion.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2with Custom_Integers; use Custom_Integers;
 3
 4procedure Show_Conversion is
 5   Int_Var     : Int;
 6   Integer_Var : Integer;
 7begin
 8   Integer_Var := 0;
 9   Int_Var     := Int (Integer_Var);
10
11   Put_Line ("Int_Var : "
12             & Int_Var'Image);
13end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Root_Derived_Type_Conversion
MD5: 4150cdffd4c1fed39fa1728a77fa599f








Runtime output




raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_conversion.adb:9







In this case, the conversion from Integer to Int fails because,
while zero is a valid integer value, it doesn't obey Int's predicate.



Numeric type conversion

A typical conversion is the one between integer and floating-point values. For
example:


show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Conversion is
 4   F : Float   := 1.0;
 5   I : Integer := 2;
 6begin
 7   I := Integer (F);
 8
 9   Put_Line ("I : "
10             & I'Image);
11
12   I := 4;
13   F := Float (I);
14
15   Put_Line ("F :   "
16             & F'Image);
17end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Numeric_Type_Conversion
MD5: f64649c786377617b0bc9ff49475ba55








Runtime output



I :  1
F :    4.00000E+00







Also, we can convert between fixed-point types and floating-point or integer
types:


fixed_point_defs.ads

 1package Fixed_Point_Defs is
 2   S     : constant := 32;
 3   Exp   : constant := 15;
 4   D     : constant := 2.0 ** (-S + Exp + 1);
 5
 6   type TQ15_31 is delta D
 7     range -1.0 * 2.0 ** Exp ..
 8            1.0 * 2.0 ** Exp - D;
 9
10   pragma Assert (TQ15_31'Size = S);
11end Fixed_Point_Defs;








show_conversion.adb

 1with Fixed_Point_Defs; use Fixed_Point_Defs;
 2with Ada.Text_IO;      use Ada.Text_IO;
 3
 4procedure Show_Conversion is
 5   F  : Float;
 6   FP : TQ15_31;
 7   I  : Integer;
 8begin
 9   FP := TQ15_31 (10.25);
10   I  := Integer (FP);
11
12   Put_Line ("FP : "
13             & FP'Image);
14   Put_Line ("I : "
15             & I'Image);
16
17   I  := 128;
18   FP := TQ15_31 (I);
19   F  := Float (FP);
20
21   Put_Line ("FP : "
22             & FP'Image);
23   Put_Line ("F :   "
24             & F'Image);
25end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Numeric_Type_Conversion
MD5: 70714ba396b03469397b982e00299561








Runtime output



FP :  10.25000
I :  10
FP :  128.00000
F :    1.28000E+02







As we can see in the examples above, converting between different numeric types
works in all directions. (Of course, rounding is applied when converting from
floating-point to integer types, but this is expected.)



Enumeration conversion

We can also convert between an enumeration type and a type derived from it:


custom_enumerations.ads

1package Custom_Enumerations is
2
3   type Priority is (Low, Mid, High);
4
5   type Important_Priority is new
6     Priority range Mid .. High;
7
8end Custom_Enumerations;








show_conversion.adb

 1with Ada.Text_IO;         use Ada.Text_IO;
 2with Custom_Enumerations; use Custom_Enumerations;
 3
 4procedure Show_Conversion is
 5   P  : Priority           := Low;
 6   IP : Important_Priority := High;
 7begin
 8   P := Priority (IP);
 9
10   Put_Line ("P:  "
11             & P'Image);
12
13   P  := Mid;
14   IP := Important_Priority (P);
15
16   Put_Line ("IP: "
17             & IP'Image);
18end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Enumeration_Type_Conversion
MD5: b1e42cbd8b57291d3b3a9968c41efdd7








Runtime output



P:  HIGH
IP: MID







In this example, we have the Priority type and the derived type
Important_Priority. As expected, the conversion works fine when the
converted value is in the range of the target type. If not, an exception is
raised:


show_conversion.adb

 1with Ada.Text_IO;         use Ada.Text_IO;
 2with Custom_Enumerations; use Custom_Enumerations;
 3
 4procedure Show_Conversion is
 5   P  : Priority;
 6   IP : Important_Priority;
 7begin
 8   P  := Low;
 9   IP := Important_Priority (P);
10
11   Put_Line ("IP: "
12             & IP'Image);
13end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Enumeration_Type_Conversion
MD5: 6bbc777d4b44023bf572ca5dc6c2b4f8








Build output



show_conversion.adb:9:10: warning: value not in range of type "Important_Priority" defined at custom_enumerations.ads:5 [enabled by default]
show_conversion.adb:9:10: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_conversion.adb:9 range check failed







In this example, an exception is raised because Low is not in the Important_Priority type's range.



Array conversion

Similarly, we can convert between array types. For example, if we have the
array type Integer_Array and its derived type
Derived_Integer_Array, we can convert between those array types:


custom_arrays.ads

1package Custom_Arrays is
2
3   type Integer_Array is
4     array (Positive range <>) of Integer;
5
6   type Derived_Integer_Array is new
7     Integer_Array;
8
9end Custom_Arrays;








show_conversion.adb

 1with Ada.Text_IO;   use Ada.Text_IO;
 2with Custom_Arrays; use Custom_Arrays;
 3
 4procedure Show_Conversion is
 5   subtype Common_Range is Positive range 1 .. 3;
 6
 7   AI : Integer_Array (Common_Range);
 8   AI_D : Derived_Integer_Array (Common_Range);
 9begin
10   AI_D := [1, 2, 3];
11   AI := Integer_Array (AI_D);
12
13   Put_Line ("AI: "
14             & AI'Image);
15
16   AI   := [4, 5, 6];
17   AI_D := Derived_Integer_Array (AI);
18
19   Put_Line ("AI_D: "
20             & AI_D'Image);
21end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Array_Type_Conversion
MD5: 72cdf4850bec78893b6985b0c7ef02b9








Runtime output



AI: 
[ 1,  2,  3]
AI_D: 
[ 4,  5,  6]







Note that both arrays must have the same number of components in order for the
conversion to be successful. (Sliding is fine, though.) In this example, both
arrays have the same range: Common_Range.

We can also convert between array types that aren't derived one from the
other. As long as the components and the index subtypes are of the same type,
the conversion between those types is possible. To be more precise, these are
the requirements for the array conversion to be accepted:


	The component types must be the same type.


	The index types (or subtypes) must be the same or, at least, convertible.


	The dimensionality of the arrays must be the same.


	The bounds must be compatible (but not necessarily equal).




Converting between different array types can be very handy, especially when
we're dealing with array types that were not declared in the same package. For
example:


custom_arrays_1.ads

1package Custom_Arrays_1 is
2
3   type Integer_Array_1 is
4     array (Positive range <>) of Integer;
5
6   type Float_Array_1 is
7     array (Positive range <>) of Float;
8
9end Custom_Arrays_1;








custom_arrays_2.ads

1package Custom_Arrays_2 is
2
3   type Integer_Array_2 is
4     array (Positive range <>) of Integer;
5
6   type Float_Array_2 is
7     array (Positive range <>) of Float;
8
9end Custom_Arrays_2;








show_conversion.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2with Custom_Arrays_1; use Custom_Arrays_1;
 3with Custom_Arrays_2; use Custom_Arrays_2;
 4
 5procedure Show_Conversion is
 6   subtype Common_Range is Positive range 1 .. 3;
 7
 8   AI_1 : Integer_Array_1 (Common_Range);
 9   AI_2 : Integer_Array_2 (Common_Range);
10   AF_1 : Float_Array_1 (Common_Range);
11   AF_2 : Float_Array_2 (Common_Range);
12begin
13   AI_2 := [1, 2, 3];
14   AI_1 := Integer_Array_1 (AI_2);
15
16   Put_Line ("AI_1: "
17             & AI_1'Image);
18
19   AI_1 := [4, 5, 6];
20   AI_2 := Integer_Array_2 (AI_1);
21
22   Put_Line ("AI_2: "
23             & AI_2'Image);
24
25   --  ERROR: Cannot convert arrays whose
26   --         components have different types:
27   --
28   --  AF_1 := Float_Array_1 (AI_1);
29   --
30   --  Instead, use array aggregate where each
31   --  component is converted from integer to
32   --  float:
33   --
34   AF_1 := [for I in AF_1'Range =>
35              Float (AI_1 (I))];
36
37   Put_Line ("AF_1: "
38             & AF_1'Image);
39
40   AF_2 := Float_Array_2 (AF_1);
41
42   Put_Line ("AF_2: "
43             & AF_2'Image);
44end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Array_Type_Conversion
MD5: 42b89fa5fe1f20af26b5da4586cea8e8








Runtime output



AI_1: 
[ 1,  2,  3]
AI_2: 
[ 4,  5,  6]
AF_1: 
[ 4.00000E+00,  5.00000E+00,  6.00000E+00]
AF_2: 
[ 4.00000E+00,  5.00000E+00,  6.00000E+00]







As we can see in this example, the fact that Integer_Array_1 and
Integer_Array_2 have the same component type (Integer) allows us
to convert between them. The same applies to the Float_Array_1 and
Float_Array_2 types.

A conversion is not possible when the component types don't match. Even though
we can convert between integer and floating-point types, we cannot convert an
array of integers to an array of floating-point directly. Therefore, we cannot
write a statement such as AF_1 := Float_Array_1 (AI_1);.

However, when the components don't match, we can of course implement the array
conversion by converting the individual components. For the example above, we
used an iterated component association in an array aggregate:
[for I in AF_1'Range => Float (AI_1 (I))];. (We discuss this topic later
in another chapter.)

We may also encounter array types originating from the instantiation of generic
packages. In this case as well, we can use array conversions. Consider the
following generic package:


custom_arrays.ads

1generic
2   type T is private;
3package Custom_Arrays is
4   type T_Array is
5     array (Positive range <>) of T;
6end Custom_Arrays;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Generic_Array_Type_Conversion
MD5: 8b3a963a1292a90d99d83c6d81ce3995







We could instantiate this generic package and reuse parts of the previous code
example:


show_conversion.adb

 1with Ada.Text_IO;   use Ada.Text_IO;
 2with Custom_Arrays;
 3
 4procedure Show_Conversion is
 5   package CA_Int_1 is
 6     new Custom_Arrays (T => Integer);
 7   package CA_Int_2 is
 8     new Custom_Arrays (T => Integer);
 9
10   subtype Common_Range is Positive range 1 .. 3;
11
12   AI_1 : CA_Int_1.T_Array (Common_Range);
13   AI_2 : CA_Int_2.T_Array (Common_Range);
14begin
15   AI_2 := [1, 2, 3];
16   AI_1 := CA_Int_1.T_Array (AI_2);
17
18   Put_Line ("AI_1: "
19             & AI_1'Image);
20
21   AI_1 := [4, 5, 6];
22   AI_2 := CA_Int_2.T_Array (AI_1);
23
24   Put_Line ("AI_2: "
25             & AI_2'Image);
26end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Generic_Array_Type_Conversion
MD5: f5348b3bed5cbd93dab44394358e1ce6








Runtime output



AI_1: 
[ 1,  2,  3]
AI_2: 
[ 4,  5,  6]







As we can see in this example, each of the instantiated CA_Int_1 and
CA_Int_2 packages has a T_Array type. Even though these
T_Array types have the same name, they're actually completely unrelated
types. However, we can still convert between them in the same way as we did in
the previous code examples.




View conversion

As mentioned before, view conversions just allow names to be converted. Thus,
we cannot use expressions in this case.

Note that a view conversion never changes the value during the conversion. We
could say that a view conversion is simply making us view an object from a
different angle. The object itself is still the same for both the original and
the target types.

For example, consider this package:


some_tagged_types.ads

 1package Some_Tagged_Types is
 2
 3   type T is tagged record
 4      A : Integer;
 5   end record;
 6
 7   type T_Derived is new T with record
 8      B : Float;
 9   end record;
10
11   Obj : T_Derived;
12
13end Some_Tagged_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Tagged_Types_View
MD5: 2e18ba972682f1ae1d38e38842fde48e







Here, Obj is an object of type T_Derived. When we view this
object, we notice that it has two components: A and B. However,
we could view this object as being of type T. From that perspective,
this object only has one component: A. (Note that changing the
perspective doesn't change the object itself.) Therefore, a view conversion
from T_Derived to T just makes us view the object Obj
from a different angle.

In this sense, a view conversion changes the view of a given object to the
target type's view, both in terms of components that exist and operations that
are available. It doesn't really change anything at all in the value itself.

There are basically two kinds of view conversions: the ones using tagged types
and the ones using untagged types. We discuss these kinds of conversion in this
section.


View conversion of tagged types

A conversion between tagged types is a view conversion. Let's consider a
typical code example that declares one, two and three-dimensional points:


points.ads

 1package Points is
 2
 3   type Point_1D is tagged record
 4      X : Float;
 5   end record;
 6
 7   procedure Display (P : Point_1D);
 8
 9   type Point_2D is new Point_1D with record
10      Y : Float;
11   end record;
12
13   procedure Display (P : Point_2D);
14
15   type Point_3D is new Point_2D with record
16      Z : Float;
17   end record;
18
19   procedure Display (P : Point_3D);
20
21end Points;








points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5   procedure Display (P : Point_1D) is
 6   begin
 7      Put_Line ("(X => " & P.X'Image & ")");
 8   end Display;
 9
10   procedure Display (P : Point_2D) is
11   begin
12      Put_Line ("(X => " & P.X'Image
13                & ", Y => " & P.Y'Image & ")");
14   end Display;
15
16   procedure Display (P : Point_3D) is
17   begin
18      Put_Line ("(X => " & P.X'Image
19                & ", Y => " & P.Y'Image
20                & ", Z => " & P.Z'Image & ")");
21   end Display;
22
23end Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Tagged_Type_Conversion
MD5: 0acc05ae2310ab4ba038dfdb6bae0495







We can use the types from the Points package and convert between each
other:


show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Points;      use Points;
 3
 4procedure Show_Conversion is
 5   P_1D : Point_1D;
 6   P_3D : Point_3D;
 7begin
 8   P_3D := (X => 0.1, Y => 0.5, Z => 0.3);
 9   P_1D := Point_1D (P_3D);
10
11   Put ("P_3D : ");
12   Display (P_3D);
13
14   Put ("P_1D : ");
15   Display (P_1D);
16end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Tagged_Type_Conversion
MD5: fb8e07c8f2399cfae935179d8f413150








Runtime output



P_3D : (X =>  1.00000E-01, Y =>  5.00000E-01, Z =>  3.00000E-01)
P_1D : (X =>  1.00000E-01)







In this example, as expected, we're able to convert from the Point_3D
type (which has three components) to the Point_1D type, which has only
one component.



View conversion of untagged types

For untagged types, a view conversion is the one that happens when we have an
object of an untagged type as an actual parameter for a formal in out
or out parameter.

Let's see a code example. Consider the following simple procedure:


double.ads

1procedure Double (X : in out Float);








double.adb

1procedure Double (X : in out Float) is
2begin
3   X := X * 2.0;
4end Double;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Untagged_Type_View_Conversion
MD5: 31f4409d9faeaf213c5940de65eeb014







The Double procedure has an in out parameter of Float
type. We can call this procedure using an integer variable I as the
actual parameter. For example:


show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Double;
 3
 4procedure Show_Conversion is
 5   I : Integer;
 6begin
 7   I := 2;
 8   Put_Line ("I : "
 9             & I'Image);
10
11   --  Calling Double with
12   --  Integer parameter:
13   Double (Float (I));
14   Put_Line ("I : "
15             & I'Image);
16end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Untagged_Type_View_Conversion
MD5: 2256d3c120d569789dcd4c9959ed9d0f








Runtime output



I :  2
I :  4







In this case, the Float (I) conversion in the call to Double
creates a temporary floating-point variable. This is the same as if we had
written the following code:


show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Double;
 3
 4procedure Show_Conversion is
 5   I : Integer;
 6begin
 7   I := 2;
 8   Put_Line ("I : "
 9             & I'Image);
10
11   declare
12      F : Float := Float (I);
13   begin
14      Double (F);
15      I := Integer (F);
16   end;
17   Put_Line ("I : "
18             & I'Image);
19end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Untagged_Type_View_Conversion
MD5: 3b90caf789952710ece42141a7b60968








Runtime output



I :  2
I :  4







In this sense, the view conversion that happens in Double (Float (I))
can be considered syntactic sugar, as it allows us to elegantly write two
conversions in a single statement.




Implicit conversions

Implicit conversions are only possible when we have a type T and a
subtype S related to the T type. For example:


custom_integers.ads

 1package Custom_Integers is
 2
 3   type Int is new Integer
 4     with Dynamic_Predicate => Int /= 0;
 5
 6   subtype Sub_Int_1 is Integer
 7     with Dynamic_Predicate => Sub_Int_1 /= 0;
 8
 9   subtype Sub_Int_2 is Sub_Int_1
10     with Dynamic_Predicate => Sub_Int_2 /= 1;
11
12end Custom_Integers;








show_conversion.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2with Custom_Integers; use Custom_Integers;
 3
 4procedure Show_Conversion is
 5   Int_Var       : Int;
 6   Sub_Int_1_Var : Sub_Int_1;
 7   Sub_Int_2_Var : Sub_Int_2;
 8   Integer_Var   : Integer;
 9begin
10   Integer_Var := 5;
11   Int_Var     := Int (Integer_Var);
12
13   Put_Line ("Int_Var :       "
14             & Int_Var'Image);
15
16   --  Implicit conversions:
17   --  no explicit conversion required!
18   Sub_Int_1_Var := Integer_Var;
19   Sub_Int_2_Var := Integer_Var;
20
21   Put_Line ("Sub_Int_1_Var : "
22             & Sub_Int_1_Var'Image);
23   Put_Line ("Sub_Int_2_Var : "
24             & Sub_Int_2_Var'Image);
25end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Implicit_Subtype_Conversion
MD5: dbbe498fa66701ca94f48119b1bc1a91








Runtime output



Int_Var :        5
Sub_Int_1_Var :  5
Sub_Int_2_Var :  5







In this example, we declare the Int type and the Sub_Int_1 and
Sub_Int_2 subtypes:


	the Int type is derived from the Integer type,


	Sub_Int_1 is a subtype of the Integer type, and


	Sub_Int_2 is a subtype of the Sub_Int_1 subtype.




We need an explicit conversion when converting between the Integer and
Int types. However, as the conversion is implicit for subtypes, we can
simply write Sub_Int_1_Var := Integer_Var;. (Of course, writing the
explicit conversion Sub_Int_1 (Integer_Var) in the assignment is
possible as well.) Also, the same applies to the Sub_Int_2 subtype: we
can write an implicit conversion in the Sub_Int_2_Var := Integer_Var;
statement.



Conversion of other types

For other kinds of types, such as records, a direct conversion as we've seen so
far isn't possible. In this case, we have to write a conversion function
ourselves. A common convention in Ada is to name this function
To_Typename. For example, if we want to convert from any type to
Integer or Float, we implement the To_Integer and
To_Float functions, respectively. (Obviously, because Ada supports
subprogram overloading, we can have multiple To_Typename functions for
different operand types.)

Let's see a code example:


custom_rec.ads

 1package Custom_Rec is
 2
 3   type Rec is record
 4      X : Integer;
 5   end record;
 6
 7   function To_Integer (R : Rec)
 8                        return Integer is
 9     (R.X);
10
11end Custom_Rec;








show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Custom_Rec;  use Custom_Rec;
 3
 4procedure Show_Conversion is
 5   R : Rec;
 6   I : Integer;
 7begin
 8   R := (X => 2);
 9   I := To_Integer (R);
10
11   Put_Line ("I : " & I'Image);
12end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Other_Type_Conversions
MD5: d52a4fde48243a7dd6942f0b2b91ce62








Runtime output



I :  2







In this example, we have the To_Integer function that converts from the
Rec type to the Integer type.


In other languages

In C++, you can define conversion operators to cast between objects of
different classes. Also, you can overload the = operator.
Consider this example:

#include <iostream>

class T1 {
public:
    T1 (float x) :
      x(x) {}

    // If class T3 is declared before class
    // T1, we can overload the "=" operator.
    //
    // void operator=(T3 v) {
    //     x = static_cast<float>(v);
    // }

    void display();
private:
   float x;
};

class T3 {
public:
    T3 (float x, float y, float z) :
      x(x), y(y), z(z) {}

    // implicit conversion
    operator float() const {
        return (x + y + z) / 3.0;
    }

    // implicit conversion
    //
    // operator T1() const {
    //     return T1((x + y + z) / 3.0);
    // }

    // explicit conversion (C++11)
    explicit operator T1() const {
        return T1(float(*this));
    }

    void display();

private:
    float x, y, z;
};

void T1::display()
{
    std::cout << "(x => " << x
              << ")" << std::endl;
}

void T3::display()
{
    std::cout << "(x => " << x
              << "y => "  << y
              << "z => "  << z
              << ")" << std::endl;
}

int main ()
{
    const T3 t_3 (0.5, 0.4, 0.6);
    T1 t_1 (0.0);
    float f;

    // Implicit conversion
    f = t_3;

    std::cout << "f : " << f
              << std::endl;

    // Explicit conversion
    f = static_cast<float>(t_3);

    // f = (float)t_3;

    std::cout << "f : " << f
              << std::endl;

    // Explicit conversion
    t_1 = static_cast<T1>(t_3);

    // t_1 = (T1)t_3;

    std::cout << "t_1 : ";
    t_1.display();
    std::cout << std::endl;
}





Here, we're using operator float() and operator T1() to
cast from an object of class T3 to a floating-point value and an
object of class T1, respectively. (If we switch the order and
declare the T3 class before the T1 class, we could overload
the = operator, as you can see in the commented-out lines.)

In Ada, this kind of conversions isn't available. Instead, we have to
implement conversion functions such as the To_Integer function from
the previous code example. This is the corresponding implementation:


custom_defs.ads

 1package Custom_Defs is
 2
 3   type T1 is private;
 4
 5   function Init (X : Float)
 6                  return T1;
 7
 8   procedure Display (Obj : T1);
 9
10   type T3 is private;
11
12   function Init (X, Y, Z : Float)
13                  return T3;
14
15   function To_Float (Obj : T3)
16                      return Float;
17
18   function To_T1 (Obj : T3)
19                   return T1;
20
21   procedure Display (Obj : T3);
22
23private
24   type T1 is record
25      X : Float;
26   end record;
27
28   function Init (X : Float)
29                  return T1 is
30     (X => X);
31
32   type T3 is record
33      X, Y, Z : Float;
34   end record;
35
36   function Init (X, Y, Z : Float)
37                  return T3 is
38     (X => X, Y => Y, Z => Z);
39
40end Custom_Defs;








custom_defs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Defs is
 4
 5   procedure Display (Obj : T1) is
 6   begin
 7      Put_Line ("(X => "
 8                & Obj.X'Image & ")");
 9   end Display;
10
11   function To_Float (Obj : T3)
12                      return Float is
13     ((Obj.X + Obj.Y + Obj.Z) / 3.0);
14
15   function To_T1 (Obj : T3)
16                   return T1 is
17     (Init (To_Float (Obj)));
18
19   procedure Display (Obj : T3) is
20   begin
21      Put_Line ("(X => "    & Obj.X'Image
22                & ", Y => " & Obj.Y'Image
23                & ", Z => " & Obj.Z'Image
24                & ")");
25   end Display;
26
27end Custom_Defs;








show_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Custom_Defs; use Custom_Defs;
 3
 4procedure Show_Conversion is
 5   T_3 : constant T3 := Init (0.5, 0.4, 0.6);
 6   T_1 :          T1 := Init (0.0);
 7   F   : Float;
 8begin
 9   --  Explicit conversion from
10   --  T3 to Float type
11   F := To_Float (T_3);
12
13   Put_Line ("F : " & F'Image);
14
15   --  Explicit conversion from
16   --  T3 to T1 type
17   T_1 := To_T1 (T_3);
18
19   Put ("T_1 : ");
20   Display (T_1);
21end Show_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Type_Conversion.Explicit_Rec_Conversion
MD5: b3e7be5488fb8026b4386063ba16aaeb








Runtime output



F :  5.00000E-01
T_1 : (X =>  5.00000E-01)







In this example, we translate the casting operators from the C++ version
by implementing the To_Float and To_T1 functions.
(In addition to that, we replace the C++ constructors by Init
functions.)






Qualified Expressions

We already saw qualified expressions in the
Introduction to Ada[#36] course. As
mentioned there, a qualified expression specifies the exact type or subtype
that the target expression will be resolved to, and it can be either any
expression in parentheses, or an aggregate:


simple_integers.ads

1package Simple_Integers is
2
3   type Int is new Integer;
4
5   subtype Int_Not_Zero is Int
6     with Dynamic_Predicate => Int_Not_Zero /= 0;
7
8end Simple_Integers;








show_qualified_expressions.adb

1with Simple_Integers; use Simple_Integers;
2
3procedure Show_Qualified_Expressions is
4   I : Int;
5begin
6   --  Using qualified expression Int'(N)
7   I := Int'(0);
8end Show_Qualified_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Qualified_Expressions.Example
MD5: 0a83e10b51c72827e322984bd5c8009d







Here, the qualified expression Int'(0) indicates that the value zero is
of Int type.


In the Ada Reference Manual


	4.7 Qualified Expressions[#37]







Verifying subtypes


Note

This feature was introduced in Ada 2022.



We can use qualified expressions to verify a subtype's predicate:


show_qualified_expressions.adb

1with Simple_Integers; use Simple_Integers;
2
3procedure Show_Qualified_Expressions is
4   I : Int;
5begin
6   I := Int_Not_Zero'(0);
7end Show_Qualified_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Qualified_Expressions.Example
MD5: 3c4ab8ad7bf75ae029047f673aa15d70








Build output



show_qualified_expressions.adb:6:23: warning: expression fails predicate check on "Int_Not_Zero" [enabled by default]
show_qualified_expressions.adb:6:23: warning: check will fail at run time [-gnatw.a]








Runtime output




raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_qualified_expressions.adb:6







Here, the qualified expression Int_Not_Zero'(0) checks the dynamic
predicate of the subtype. (This predicate check fails at runtime.)




Default initial values

In the
Introduction to Ada course[#38],
we've seen that record components can have default values. For example:


defaults.ads

1package Defaults is
2
3   type R is record
4     X : Positive := 1;
5     Y : Positive := 10;
6   end record;
7
8end Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_1
MD5: e230be602cbb24a854e71c8176c7148c







In this section, we'll extend the concept of default values to other kinds of
type declarations, such as scalar types and arrays.

To assign a default value for a scalar type declaration — such as an
enumeration and a new integer —, we use the Default_Value aspect:


defaults.ads

1package Defaults is
2
3   type E is (E1, E2, E3)
4     with Default_Value => E1;
5
6   type T is new Integer
7     with Default_Value => -1;
8
9end Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_2
MD5: e6cd8261b099278ceeb5fda91d318f6e







Note that we cannot specify a default value for a subtype:


defaults.ads

1package Defaults is
2
3   subtype T is Integer
4     with Default_Value => -1;
5   --  ERROR!!
6
7end Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_3
MD5: beef68e4a7a3714cfa3e547bdcda9a0c








Build output



defaults.ads:4:11: error: aspect "Default_Value" cannot apply to subtype
gprbuild: *** compilation phase failed







For array types, we use the Default_Component_Value aspect:


defaults.ads

1package Defaults is
2
3   type Arr is
4     array (Positive range <>) of Integer
5       with Default_Component_Value => -1;
6
7end Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults_4
MD5: 2c390e3900e4af42498381025a37955e







This is a package containing the declarations we've just seen:


defaults.ads

 1package Defaults is
 2
 3   type E is (E1, E2, E3)
 4     with Default_Value => E1;
 5
 6   type T is new Integer
 7     with Default_Value => -1;
 8
 9   --  We cannot specify default
10   --  values for subtypes:
11   --
12   --  subtype T is Integer
13   --    with Default_Value => -1;
14
15   type R is record
16     X : Positive := 1;
17     Y : Positive := 10;
18   end record;
19
20   type Arr is
21     array (Positive range <>) of Integer
22       with Default_Component_Value => -1;
23
24end Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults
MD5: e9263ff5b96523c129a3d2d9bbb5a4dd







In the example below, we declare variables of the types from the
Defaults package:


use_defaults.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Defaults; use Defaults;
 3
 4procedure Use_Defaults is
 5   E1 : E;
 6   T1 : T;
 7   R1 : R;
 8   A1 : Arr (1 .. 5);
 9begin
10   Put_Line ("Enumeration:  "
11             & E'Image (E1));
12   Put_Line ("Integer type: "
13             & T'Image (T1));
14   Put_Line ("Record type:  "
15             & Positive'Image (R1.X)
16             & ", "
17             & Positive'Image (R1.Y));
18
19   Put ("Array type:   ");
20   for V of A1 loop
21      Put (Integer'Image (V) & " ");
22   end loop;
23   New_Line;
24end Use_Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Default_Initial_Values.Defaults
MD5: f8e55d31cbda2447fe14eb07eaad1975








Runtime output



Enumeration:  E1
Integer type: -1
Record type:   1,  10
Array type:   -1 -1 -1 -1 -1 







As we see in the Use_Defaults procedure, all variables still have their
default values, since we haven't assigned any value to them.


In the Ada Reference Manual


	3.5 Scalar Types[#39]


	3.6 Array Types[#40]








Deferred Constants

Deferred constants are declarations where the value of the constant is not
specified immediately, but rather deferred to a later point. In that sense,
if a constant declaration is deferred, it is actually declared twice:


	in the deferred constant declaration, and


	in the full constant declaration.




The simplest form of deferred constant is the one that has a full constant
declaration in the private part of the package specification. For example:


deferred_constants.ads

 1package Deferred_Constants is
 2
 3   type Speed is new Long_Float;
 4
 5   Light : constant Speed;
 6   --      ^ deferred constant declaration
 7
 8private
 9
10   Light : constant Speed := 299_792_458.0;
11   --      ^ full constant declaration
12
13end Deferred_Constants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_Constant_Private
MD5: f76e42326889f70fa7e1e216576f9771







Another form of deferred constant is the one that imports a constant from an
external implementation — using the Import keyword. We can use
this to import a constant declaration from an implementation in C. For example,
we can declare the light constant in a C file:


constants.c

1double light = 299792458.0;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_Constant_C
MD5: 71194a329dc5adaac3e01aff143a9943







Then, we can import this constant in the Deferred_Constants package:


deferred_constants.ads

 1package Deferred_Constants is
 2
 3   type Speed is new Long_Float;
 4
 5   Light : constant Speed with
 6     Import, Convention => C;
 7   --  ^^^^ deferred constant
 8   --       declaration; imported
 9   --       from C file
10
11end Deferred_Constants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_Constant_C
MD5: 9355d194e973c6c6540485178b2259c9







In this case, we don't have a full declaration in the Deferred_Constants
package, as the Light constant is imported from the constants.c
file.

As a rule, the deferred and the full declarations should match — except,
of course, for the actual value that is missing in the deferred declaration.
For instance, we're not allowed to use different types in both declarations.
However, we may use a subtype in the full declaration — as long as it's
compatible with the type that was used in the deferred declaration. For
example:


deferred_constants.ads

 1package Deferred_Constants is
 2
 3   type Speed is new Long_Float;
 4
 5   subtype Positive_Speed is
 6     Speed range 0.0 .. Speed'Last;
 7
 8   Light : constant Speed;
 9   --      ^ deferred constant declaration
10
11private
12
13   Light : constant Positive_Speed :=
14             299_792_458.0;
15   --      ^ full constant declaration
16   --        using a subtype
17
18end Deferred_Constants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_Constant_Subtype
MD5: ad6e13e30bacb6d97ccfa6c7345ffb67







Here, we're using the Speed type in the deferred declaration of the
Light constant, but we're using the Positive_Speed subtype in
the full declaration.

A useful application of deferred constants is when the value of the constant is
calculated using entities not meant to be compile-time visible to clients.
As such, these other entities are only visible in the private part of the
package, so that's where the value of the deferred constant must be computed.
For example, the full constant declaration may be computed by a call to an
expression function:


deferred_constants.ads

 1package Deferred_Constants is
 2
 3   type Speed is new Long_Float;
 4
 5   Light : constant Speed;
 6   --      ^ deferred constant declaration
 7
 8private
 9
10   function Calculate_Light return Speed is
11     (299_792_458.0);
12
13   Light : constant Speed := Calculate_Light;
14   --      ^ full constant declaration
15   --        calling a private function
16
17end Deferred_Constants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Deferred_Constants.Deferred_Constant_Function
MD5: f0b1a9521af31a4b48bbd54891f1c32b







Here, we call the Calculate_Light function — declared in the
private part of the Deferred_Constants package — for the full
declaration of the Light constant.
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	7.4 Deferred Constants[#41]








User-defined literals


Note

This feature was introduced in Ada 2022.



Any type definition has a kind of literal associated with it. For example,
integer types are associated with integer literals. Therefore, we can
initialize an object of integer type with an integer literal:


simple_integer_literal.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Simple_Integer_Literal is
4   V : Integer;
5begin
6   V := 10;
7
8   Put_Line (Integer'Image (V));
9end Simple_Integer_Literal;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.User_Defined_Literals.Simple_Integer_Literal
MD5: 9f65e7c319be2b292dc1fdf02dd7cfb4








Runtime output



 10







Here, 10 is the integer literal that we use to initialize the integer
variable V. Other examples of literals are real literals and string
literals, as we'll see later.

When we declare an enumeration type, we limit the set of literals that we can
use to initialize objects of that type:


simple_enumeration.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Simple_Enumeration is
 4   type Activation_State is (Unknown, Off, On);
 5
 6   S : Activation_State;
 7begin
 8   S := On;
 9   Put_Line (Activation_State'Image (S));
10end Simple_Enumeration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.User_Defined_Literals.Simple_Enumeration
MD5: 075df146fcb567817dadfdb245659773








Runtime output



ON







For objects of Activation_State type, such as S, the only
possible literals that we can use are Unknown, Off and On.
In this sense, types have a constrained set of literals that can be used for
objects of that type.

User-defined literals allow us to extend this set of literals. We could, for
example, extend the type declaration of Activation_State and allow the
use of integer literals for objects of that type. In this case, we need to use
the Integer_Literal aspect and specify a function that implements the
conversion from literals to the type we're declaring. For this conversion from
integer literals to the Activation_State type, we could specify that 0
corresponds to Off, 1 corresponds to On and other values
correspond to Unknown. We'll see the corresponding implementation later.

These are the three kinds of literals and their corresponding aspect:



	Literal

	Example

	Aspect





	Integer

	1

	Integer_Literal



	Real

	1.0

	Real_Literal



	String

	"On"

	String_Literal






For our previous Activation_States type, we could declare a function
Integer_To_Activation_State that converts integer literals to one of the
enumeration literals that we've specified for the Activation_States
type:


activation_states.ads

 1package Activation_States is
 2
 3   type Activation_State is (Unknown, Off, On)
 4     with Integer_Literal =>
 5            Integer_To_Activation_State;
 6
 7   function Integer_To_Activation_State
 8     (S : String)
 9      return Activation_State;
10
11end Activation_States;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.User_Defined_Literals.User_Defined_Literals
MD5: 37c497105ea3a5ad67f72955911eb31a







Based on this specification, we can now use an integer literal to initialize an
object S of Activation_State type:

S : Activation_State := 1;





Note that we have a string parameter in the declaration of the
Integer_To_Activation_State function, even though the function itself is
only used to convert integer literals (but not string literals) to the
Activation_State type. It's our job to process that string parameter in
the implementation of the Integer_To_Activation_State function and
convert it to an integer value — using Integer'Value, for example:


activation_states.adb

 1package body Activation_States is
 2
 3   function Integer_To_Activation_State
 4     (S : String)
 5      return Activation_State is
 6   begin
 7      case Integer'Value (S) is
 8         when 0      => return Off;
 9         when 1      => return On;
10         when others => return Unknown;
11      end case;
12   end Integer_To_Activation_State;
13
14end Activation_States;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.User_Defined_Literals.User_Defined_Literals
MD5: c130c42ee2b91e4306c0b49bd6d5d322







Let's look at a complete example that makes use of all three kinds of literals:


activation_states.ads

 1package Activation_States is
 2
 3   type Activation_State is (Unknown, Off, On)
 4     with String_Literal  =>
 5            To_Activation_State,
 6          Integer_Literal =>
 7            Integer_To_Activation_State,
 8          Real_Literal    =>
 9            Real_To_Activation_State;
10
11   function To_Activation_State
12     (S : Wide_Wide_String)
13      return Activation_State;
14
15   function Integer_To_Activation_State
16     (S : String)
17      return Activation_State;
18
19   function Real_To_Activation_State
20     (S : String)
21      return Activation_State;
22
23end Activation_States;








activation_states.adb

 1package body Activation_States is
 2
 3   function To_Activation_State
 4     (S : Wide_Wide_String)
 5      return Activation_State
 6   is
 7   begin
 8      if S = "Off" then
 9         return Off;
10      elsif S = "On" then
11         return On;
12      else
13         return Unknown;
14      end if;
15   end To_Activation_State;
16
17   function Integer_To_Activation_State
18     (S : String)
19      return Activation_State
20   is
21   begin
22      case Integer'Value (S) is
23         when 0      => return Off;
24         when 1      => return On;
25         when others => return Unknown;
26      end case;
27   end Integer_To_Activation_State;
28
29   function Real_To_Activation_State
30     (S : String)
31      return Activation_State
32   is
33      V : constant Float := Float'Value (S);
34   begin
35      if V < 0.0 then
36         return Unknown;
37      elsif V < 1.0 then
38         return Off;
39      else
40         return On;
41      end if;
42   end Real_To_Activation_State;
43
44end Activation_States;








activation_examples.adb

 1with Ada.Text_IO;       use Ada.Text_IO;
 2with Activation_States; use Activation_States;
 3
 4procedure Activation_Examples is
 5   S : Activation_State;
 6begin
 7   S := "Off";
 8   Put_Line ("String: Off  => "
 9             & Activation_State'Image (S));
10
11   S := 1;
12   Put_Line ("Integer: 1   => "
13             & Activation_State'Image (S));
14
15   S := 1.5;
16   Put_Line ("Real:    1.5 => "
17             & Activation_State'Image (S));
18end Activation_Examples;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.User_Defined_Literals.Activation_States
MD5: 8b34393e9b624cb5620ca77d5502ec8e








Runtime output



String: Off  => OFF
Integer: 1   => ON
Real:    1.5 => ON







In this example, we're extending the declaration of the Activation_State
type to include string and real literals. For string literals, we use the
To_Activation_State function, which converts:



	the "Off" string to Off,


	the "On" string to On, and


	any other string to Unknown.







For real literals, we use the Real_To_Activation_State function, which
converts:



	any negative number to Unknown,


	a value in the interval [0, 1) to Off, and


	a value equal or above 1.0 to On.







Note that the string parameter of To_Activation_State function —
which converts string literals — is of Wide_Wide_String type, and
not of String type, as it's the case for the other conversion functions.

In the Activation_Examples procedure, we show how we can initialize an
object of Activation_State type with all kinds of literals (string,
integer and real literals).

With the definition of the Activation_State type that we've seen in the
complete example, we can initialize an object of this type with an enumeration
literal or a string, as both forms are defined in the type specification:


using_string_literal.adb

 1with Ada.Text_IO;       use Ada.Text_IO;
 2with Activation_States; use Activation_States;
 3
 4procedure Using_String_Literal is
 5   S1 : constant Activation_State := On;
 6   S2 : constant Activation_State := "On";
 7begin
 8   Put_Line (Activation_State'Image (S1));
 9   Put_Line (Activation_State'Image (S2));
10end Using_String_Literal;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.User_Defined_Literals.Activation_States
MD5: 975a3c56e7a938a89a617dc59c5302a7








Runtime output



ON
ON







Note we need to be very careful when designing conversion functions. For
example, the use of string literals may limit the kind of checks that we can
do. Consider the following misspelling of the Off literal:


misspelling_example.adb

 1with Ada.Text_IO;       use Ada.Text_IO;
 2with Activation_States; use Activation_States;
 3
 4procedure Misspelling_Example is
 5   S : constant Activation_State :=
 6         Offf;
 7   --    ^ Error: Off is misspelled.
 8begin
 9   Put_Line (Activation_State'Image (S));
10end Misspelling_Example;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.User_Defined_Literals.Activation_States
MD5: 81a8ff17e0fb8c7dce18780d8c11a6ad








Build output



misspelling_example.adb:6:10: error: "Offf" is undefined
misspelling_example.adb:6:10: error: possible misspelling of "Off"
gprbuild: *** compilation phase failed







As expected, the compiler detects this error. However, this error is accepted
when using the corresponding string literal:


misspelling_example.adb

 1with Ada.Text_IO;       use Ada.Text_IO;
 2with Activation_States; use Activation_States;
 3
 4procedure Misspelling_Example is
 5   S : constant Activation_State :=
 6         "Offf";
 7   --     ^ Error: Off is misspelled.
 8begin
 9   Put_Line (Activation_State'Image (S));
10end Misspelling_Example;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.User_Defined_Literals.Activation_States
MD5: 23b708a133ce1e24c0e9f7f72fa2eb29








Runtime output



UNKNOWN







Here, our implementation of To_Activation_State simply returns
Unknown. In some cases, this might be exactly the behavior that we want.
However, let's assume that we'd prefer better error handling instead. In this
case, we could change the implementation of To_Activation_State to check
all literals that we want to allow, and indicate an error otherwise — by
raising an exception, for example. Alternatively, we could specify this in the
preconditions of the conversion function:

function To_Activation_State
  (S : Wide_Wide_String)
   return Activation_State
     with Pre => S = "Off"  or
                 S = "On"   or
                 S = "Unknown";





In this case, the precondition explicitly indicates which string literals are
allowed for the To_Activation_State type.

User-defined literals can also be used for more complex types, such as records.
For example:


silly_records.ads

 1package Silly_Records is
 2
 3   type Silly is record
 4      X : Integer;
 5      Y : Float;
 6   end record
 7     with String_Literal => To_Silly;
 8
 9   function To_Silly (S : Wide_Wide_String)
10                      return Silly;
11end Silly_Records;








silly_records.adb

 1package body Silly_Records is
 2
 3   function To_Silly (S : Wide_Wide_String)
 4                      return Silly
 5   is
 6   begin
 7      if S = "Magic" then
 8         return (X => 42, Y => 42.0);
 9      else
10         return (X => 0, Y => 0.0);
11      end if;
12   end To_Silly;
13
14end Silly_Records;








silly_magic.adb

1with Ada.Text_IO;   use Ada.Text_IO;
2with Silly_Records; use Silly_Records;
3
4procedure Silly_Magic is
5   R1 : Silly;
6begin
7   R1 := "Magic";
8   Put_Line (R1.X'Image & ", " & R1.Y'Image);
9end Silly_Magic;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.User_Defined_Literals.Record_Literals
MD5: 7395145a41de38dbbee117e27aec8c64








Runtime output



 42,  4.20000E+01







In this example, when we initialize an object of Silly type with a
string, its components are:


	set to 42 when using the "Magic" string; or


	simply set to zero when using any other string.




Obviously, this example isn't particularly useful. However, the goal is to
show that this approach is useful for more complex types where a string literal
(or a numeric literal) might simplify handling those types. Used-defined
literals let you design types in ways that, otherwise, would only be possible
when using a preprocessor or a domain-specific language.
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	4.2.1 User-Defined Literals[#42]
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Types and Representation


Enumeration Representation Clauses

We have talked about the internal code of an enumeration
in another section.
We may change this internal code by using a representation clause, which has
the following format:

for Primary_Color is (Red   =>    1,
                      Green =>    5,
                      Blue  => 1000);





The value of each code in a representation clause must be distinct. However, as
you can see above, we don't need to use sequential values — the values
must, however, increase for each enumeration.

We can rewrite the previous example using a representation clause:


days.ads

 1package Days is
 2
 3   type Day is (Mon, Tue, Wed,
 4                Thu, Fri,
 5                Sat, Sun);
 6
 7   for Day use (Mon => 2#00000001#,
 8                Tue => 2#00000010#,
 9                Wed => 2#00000100#,
10                Thu => 2#00001000#,
11                Fri => 2#00010000#,
12                Sat => 2#00100000#,
13                Sun => 2#01000000#);
14
15end Days;








show_days.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Days;        use Days;
 3
 4procedure Show_Days is
 5begin
 6   for D in Day loop
 7      Put_Line (Day'Image (D)
 8                & " position      = "
 9                & Integer'Image (Day'Pos (D)));
10      Put_Line (Day'Image (D)
11                & " internal code = "
12                & Integer'Image
13                    (Day'Enum_Rep (D)));
14   end loop;
15end Show_Days;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Enumeration_Representation_Clauses.Enumeration_Values
MD5: a70c3f8a967c355a4bf8f2d669f9c541








Runtime output



MON position      =  0
MON internal code =  1
TUE position      =  1
TUE internal code =  2
WED position      =  2
WED internal code =  4
THU position      =  3
THU internal code =  8
FRI position      =  4
FRI internal code =  16
SAT position      =  5
SAT internal code =  32
SUN position      =  6
SUN internal code =  64







Now, the value of the internal code is the one that we've specified in the
representation clause instead of being equivalent to the value of the
enumeration position.

In the example above, we're using binary values for each enumeration —
basically viewing the integer value as a bit-field and assigning one bit for
each enumeration. As long as we maintain an increasing order, we can use
totally arbitrary values as well. For example:


days.ads

 1package Days is
 2
 3   type Day is (Mon, Tue, Wed,
 4                Thu, Fri,
 5                Sat, Sun);
 6
 7   for Day use (Mon =>  5,
 8                Tue =>  9,
 9                Wed => 42,
10                Thu => 49,
11                Fri => 50,
12                Sat => 66,
13                Sun => 99);
14
15end Days;









Data Representation

The following sections provide a glimpse on attributes and aspects used for data
representation. They are usually used for embedded applications because of
strict requirements that are often found there. Therefore, unless you have
very specific requirements for your application, in most cases, you won't need
them. However, you should at least have a rudimentary understanding of them.
To read a thorough overview on this topic, please refer to the
Introduction to Embedded Systems Programming[#1]
course.
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	13.2 Packed Types[#2]


	13.3 Operational and Representation Attributes[#3]


	13.5.3 Bit Ordering[#4]








Sizes

Ada offers multiple attributes to retrieve the size of a type or an object:



	Attribute

	Description





	Size

	Size of the representation of a subtype or an
object (in bits).



	Object_Size

	Size of a component or an aliased object (in bits).



	Component_Size

	Size of a component of an array (in bits).



	Storage_Size

	Number of storage elements reserved for an access
type or a task object.






For the first three attributes, the size is measured in bits. In the case of
Storage_Size, the size is measured in storage elements. Note that the
size information depends your target architecture. We'll discuss some examples
to better understand the differences among those attributes.


Important

A storage element is the smallest element we can use to store data in
memory. As we'll see soon, a storage element corresponds to a byte in
many architectures.

The size of a storage element is represented by the
System.Storage_Unit constant. In other words, the storage unit
corresponds to the number of bits used for a single storage element.

In typical architectures, System.Storage_Unit is 8 bits. In this
specific case, a storage element is equal to a byte in memory. Note,
however, that System.Storage_Unit might have a value different than
eight in certain architectures.




Size attribute and aspect

Let's start with a code example using the Size attribute:


custom_types.ads

1package Custom_Types is
2
3   type UInt_7 is range 0 .. 127;
4
5   type UInt_7_S32 is range 0 .. 127
6     with Size => 32;
7
8end Custom_Types;








show_sizes.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2
 3with Custom_Types; use Custom_Types;
 4
 5procedure Show_Sizes is
 6   V1 : UInt_7;
 7   V2 : UInt_7_S32;
 8begin
 9   Put_Line ("UInt_7'Size:            "
10             & UInt_7'Size'Image);
11   Put_Line ("UInt_7'Object_Size:     "
12             & UInt_7'Object_Size'Image);
13   Put_Line ("V1'Size:                "
14             & V1'Size'Image);
15   New_Line;
16
17   Put_Line ("UInt_7_S32'Size:        "
18             & UInt_7_S32'Size'Image);
19   Put_Line ("UInt_7_S32'Object_Size: "
20             & UInt_7_S32'Object_Size'Image);
21   Put_Line ("V2'Size:                "
22             & V2'Size'Image);
23end Show_Sizes;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Sizes
MD5: e0da7cd23dc6989bea3d2902221f033e








Build output



show_sizes.adb:6:04: warning: variable "V1" is read but never assigned [-gnatwv]
show_sizes.adb:7:04: warning: variable "V2" is read but never assigned [-gnatwv]








Runtime output



UInt_7'Size:             7
UInt_7'Object_Size:      8
V1'Size:                 8

UInt_7_S32'Size:         32
UInt_7_S32'Object_Size:  32
V2'Size:                 32







Depending on your target architecture, you may see this output:

UInt_7'Size:             7
UInt_7'Object_Size:      8
V1'Size:                 8

UInt_7_S32'Size:         32
UInt_7_S32'Object_Size:  32
V2'Size:                 32





When we use the Size attribute for a type T, we're retrieving the
minimum number of bits necessary to represent objects of that type. Note that
this is not the same as the actual size of an object of type T because
the compiler will select an object size that is appropriate for the target
architecture.

In the example above, the size of the UInt_7 is 7 bits, while the most
appropriate size to store objects of this type in the memory of our target
architecture is 8 bits. To be more specific, the range of UInt_7
(0 .. 127) can be perfectly represented in 7 bits. However, most target
architectures don't offer 7-bit registers or 7-bit memory storage, so 8 bits is
the most appropriate size in this case.

We can retrieve the size of an object of type T by using the
Object_Size. Alternatively, we can use the Size attribute
directly on objects of type T to retrieve their actual size — in
our example, we write V1'Size to retrieve the size of V1.

In the example above, we've used both the Size attribute (for example,
UInt_7'Size) and the Size aspect (with Size => 32).
While the size attribute is a function that returns the size, the size aspect
is a request to the compiler to verify that the expected size can be used on
the target platform. You can think of this attribute as a dialog between the
developer and the compiler:


(Developer) "I think that UInt_7_S32 should be stored using at
least 32 bits. Do you agree?"

(Ada compiler) "For the target platform that you selected, I can confirm
that this is indeed the case."




Depending on the target platform, however, the conversation might play out like
this:


(Developer) "I think that UInt_7_S32 should be stored using at
least 32 bits. Do you agree?"

(Ada compiler) "For the target platform that you selected, I cannot
possibly do it! COMPILATION ERROR!"






Component size

Let's continue our discussion on sizes with an example that makes use of the
Component_Size attribute:


custom_types.ads

 1package Custom_Types is
 2
 3   type UInt_7 is range 0 .. 127;
 4
 5   type UInt_7_Array is
 6     array (Positive range <>) of UInt_7;
 7
 8   type UInt_7_Array_Comp_32 is
 9     array (Positive range <>) of UInt_7
10       with Component_Size => 32;
11
12end Custom_Types;








show_sizes.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2
 3with Custom_Types; use Custom_Types;
 4
 5procedure Show_Sizes is
 6   Arr_1 : UInt_7_Array (1 .. 20);
 7   Arr_2 : UInt_7_Array_Comp_32 (1 .. 20);
 8begin
 9   Put_Line
10     ("UInt_7_Array'Size:                   "
11      & UInt_7_Array'Size'Image);
12   Put_Line
13     ("UInt_7_Array'Object_Size:            "
14      & UInt_7_Array'Object_Size'Image);
15   Put_Line
16     ("UInt_7_Array'Component_Size:         "
17      & UInt_7_Array'Component_Size'Image);
18   Put_Line
19     ("Arr_1'Component_Size:                "
20      & Arr_1'Component_Size'Image);
21   Put_Line
22     ("Arr_1'Size:                          "
23      & Arr_1'Size'Image);
24   New_Line;
25
26   Put_Line
27     ("UInt_7_Array_Comp_32'Object_Size:    "
28      & UInt_7_Array_Comp_32'Size'Image);
29   Put_Line
30     ("UInt_7_Array_Comp_32'Object_Size:    "
31      & UInt_7_Array_Comp_32'Object_Size'Image);
32   Put_Line
33     ("UInt_7_Array_Comp_32'Component_Size: "
34      &
35      UInt_7_Array_Comp_32'Component_Size'Image);
36   Put_Line
37     ("Arr_2'Component_Size:                "
38      & Arr_2'Component_Size'Image);
39   Put_Line
40     ("Arr_2'Size:                          "
41      & Arr_2'Size'Image);
42   New_Line;
43end Show_Sizes;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Sizes
MD5: e316bcb827e014075dfbf044935827ae








Build output



show_sizes.adb:6:04: warning: variable "Arr_1" is read but never assigned [-gnatwv]
show_sizes.adb:7:04: warning: variable "Arr_2" is read but never assigned [-gnatwv]








Runtime output



UInt_7_Array'Size:                    17179869176
UInt_7_Array'Object_Size:             17179869176
UInt_7_Array'Component_Size:          8
Arr_1'Component_Size:                 8
Arr_1'Size:                           160

UInt_7_Array_Comp_32'Object_Size:     68719476704
UInt_7_Array_Comp_32'Object_Size:     68719476704
UInt_7_Array_Comp_32'Component_Size:  32
Arr_2'Component_Size:                 32
Arr_2'Size:                           640








Depending on your target architecture, you may see this output:

UInt_7_Array'Size:                    17179869176
UInt_7_Array'Object_Size:             17179869176
UInt_7_Array'Component_Size:          8
Arr_1'Component_Size:                 8
Arr_1'Size:                           160

UInt_7_Array_Comp_32'Size:            68719476704
UInt_7_Array_Comp_32'Object_Size:     68719476704
UInt_7_Array_Comp_32'Component_Size:  32
Arr_2'Component_Size:                 32
Arr_2'Size:                           640





Here, the value we get for Component_Size of the UInt_7_Array
type is 8 bits, which matches the UInt_7'Object_Size — as we've
seen in the previous subsection. In general, we expect the component size to
match the object size of the underlying type.

However, we might have component sizes that aren't equal to the object size of
the component's type. For example, in the declaration of the
UInt_7_Array_Comp_32 type, we're using the Component_Size aspect
to query whether the size of each component can be 32 bits:

type UInt_7_Array_Comp_32 is
  array (Positive range <>) of UInt_7
    with Component_Size => 32;





If the code compiles, we see this value when we use the Component_Size
attribute. In this case, even though UInt_7'Object_Size is 8 bits, the
component size of the array type (UInt_7_Array_Comp_32'Component_Size)
is 32 bits.

Note that we can use the Component_Size attribute with data types, as
well as with actual objects of that data type. Therefore, we can write
UInt_7_Array'Component_Size and Arr_1'Component_Size, for
example.

This big number (17179869176 bits) for UInt_7_Array'Size and
UInt_7_Array'Object_Size might be surprising for you. This is due to the
fact that Ada is reporting the size of the UInt_7_Array type for the
case when the complete range is used. Considering that we specified a positive
range in the declaration of the UInt_7_Array type, the maximum length
on this machine is 231 - 1. The object size of an array type is
calculated by multiplying the maximum length by the component size. Therefore,
the object size of the UInt_7_Array type corresponds to the
multiplication of 231 - 1 components (maximum length) by 8 bits
(component size).



Storage size

To complete our discussion on sizes, let's look at this example of storage
sizes:


custom_types.ads

1package Custom_Types is
2
3   type UInt_7 is range 0 .. 127;
4
5   type UInt_7_Access is access UInt_7;
6
7end Custom_Types;








show_sizes.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2with System;
 3
 4with Custom_Types; use Custom_Types;
 5
 6procedure Show_Sizes is
 7   AV1, AV2 : UInt_7_Access;
 8begin
 9   Put_Line
10     ("UInt_7_Access'Storage_Size:          "
11      & UInt_7_Access'Storage_Size'Image);
12   Put_Line
13     ("UInt_7_Access'Storage_Size (bits):   "
14      & Integer'Image (UInt_7_Access'Storage_Size
15                       * System.Storage_Unit));
16
17   Put_Line
18     ("UInt_7'Size:               "
19      & UInt_7'Size'Image);
20   Put_Line
21     ("UInt_7_Access'Size:        "
22      & UInt_7_Access'Size'Image);
23   Put_Line
24     ("UInt_7_Access'Object_Size: "
25      & UInt_7_Access'Object_Size'Image);
26   Put_Line
27     ("AV1'Size:                  "
28      & AV1'Size'Image);
29   New_Line;
30
31   Put_Line ("Allocating AV1...");
32   AV1 := new UInt_7;
33   Put_Line ("Allocating AV2...");
34   AV2 := new UInt_7;
35   New_Line;
36
37   Put_Line
38     ("AV1.all'Size:              "
39      & AV1.all'Size'Image);
40   New_Line;
41end Show_Sizes;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Sizes
MD5: 5e652ee25b8550ac331f3ce98e24f7ba








Runtime output



UInt_7_Access'Storage_Size:           0
UInt_7_Access'Storage_Size (bits):    0
UInt_7'Size:                7
UInt_7_Access'Size:         64
UInt_7_Access'Object_Size:  64
AV1'Size:                   64

Allocating AV1...
Allocating AV2...

AV1.all'Size:               8








Depending on your target architecture, you may see this output:

UInt_7_Access'Storage_Size:           0
UInt_7_Access'Storage_Size (bits):    0

UInt_7'Size:                7
UInt_7_Access'Size:         64
UInt_7_Access'Object_Size:  64
AV1'Size:                   64

Allocating AV1...
Allocating AV2...

AV1.all'Size:               8





As we've mentioned earlier on, Storage_Size corresponds to the number of
storage elements reserved for an access type or a task object. In this case,
we see that the storage size of the UInt_7_Access type is zero. This is
because we haven't indicated that memory should be reserved for this data type.
Thus, the compiler doesn't reserve memory and simply sets the size to zero.

Because Storage_Size gives us the number of storage elements, we have
to multiply this value by System.Storage_Unit to get the total
storage size in bits. (In this particular example, however, the multiplication
doesn't make any difference, as the number of storage elements is zero.)

Note that the size of our original data type UInt_7 is 7 bits, while the
size of its corresponding access type UInt_7_Access (and the access
object AV1) is 64 bits. This is due to the fact that the access type
doesn't contain an object, but rather memory information about an object. You
can retrieve the size of an object allocated via new by first
dereferencing it — in our example, we do this by writing
AV1.all'Size.

Now, let's use the Storage_Size aspect to actually reserve memory for
this data type:


custom_types.ads

1package Custom_Types is
2
3   type UInt_7 is range 0 .. 127;
4
5   type UInt_7_Reserved_Access is access UInt_7
6     with Storage_Size => 8;
7
8end Custom_Types;








show_sizes.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2with System;
 3
 4with Custom_Types; use Custom_Types;
 5
 6procedure Show_Sizes is
 7   RAV1, RAV2 : UInt_7_Reserved_Access;
 8begin
 9   Put_Line
10   ("UInt_7_Reserved_Access'Storage_Size:        "
11    & UInt_7_Reserved_Access'Storage_Size'Image);
12
13   Put_Line
14   ("UInt_7_Reserved_Access'Storage_Size (bits): "
15    & Integer'Image
16        (UInt_7_Reserved_Access'Storage_Size
17         * System.Storage_Unit));
18
19   Put_Line
20     ("UInt_7_Reserved_Access'Size:        "
21      & UInt_7_Reserved_Access'Size'Image);
22   Put_Line
23     ("UInt_7_Reserved_Access'Object_Size: "
24      & UInt_7_Reserved_Access'Object_Size'Image);
25   Put_Line
26     ("RAV1'Size:                          "
27      & RAV1'Size'Image);
28   New_Line;
29
30   Put_Line ("Allocating RAV1...");
31   RAV1 := new UInt_7;
32   Put_Line ("Allocating RAV2...");
33   RAV2 := new UInt_7;
34   New_Line;
35end Show_Sizes;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Sizes
MD5: 6ac085d8467a61ba4f9cd138c024442d








Runtime output



UInt_7_Reserved_Access'Storage_Size:         8
UInt_7_Reserved_Access'Storage_Size (bits):  64
UInt_7_Reserved_Access'Size:         64
UInt_7_Reserved_Access'Object_Size:  64
RAV1'Size:                           64

Allocating RAV1...
Allocating RAV2...

raised STORAGE_ERROR : s-poosiz.adb:108 explicit raise







Depending on your target architecture, you may see this output:

UInt_7_Reserved_Access'Storage_Size:         8
UInt_7_Reserved_Access'Storage_Size (bits):  64

UInt_7_Reserved_Access'Size:         64
UInt_7_Reserved_Access'Object_Size:  64
RAV1'Size:                           64

Allocating RAV1...
Allocating RAV2...

raised STORAGE_ERROR : s-poosiz.adb:108 explicit raise





In this case, we're reserving 8 storage elements in the declaration of
UInt_7_Reserved_Access.

type UInt_7_Reserved_Access is access UInt_7
  with Storage_Size => 8;





Since each storage element corresponds to one byte (8 bits) in this
architecture, we're reserving a maximum of 64 bits (or 8 bytes) for the
UInt_7_Reserved_Access type.

This example raises an exception at runtime — a storage error, to be more
specific. This is because the maximum reserved size is 64 bits, and the size of
a single access object is 64 bits as well. Therefore, after the first
allocation, the reserved storage space is already consumed, so we cannot
allocate a second access object.

This behavior might be quite limiting in many cases. However, for certain
applications where memory is very constrained, this might be exactly what we
want to see. For example, having an exception being raised when the allocated
memory for this data type has reached its limit might allow the application to
have enough memory to at least handle the exception gracefully.




Alignment

For many algorithms, it's important to ensure that we're using the appropriate
alignment. This can be done by using the Alignment attribute and the
Alignment aspect. Let's look at this example:


custom_types.ads

1package Custom_Types is
2
3   type UInt_7 is range 0 .. 127;
4
5   type Aligned_UInt_7 is new UInt_7
6     with Alignment => 4;
7
8end Custom_Types;








show_alignment.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2
 3with Custom_Types; use Custom_Types;
 4
 5procedure Show_Alignment is
 6   V         : constant UInt_7         := 0;
 7   Aligned_V : constant Aligned_UInt_7 := 0;
 8begin
 9   Put_Line
10     ("UInt_7'Alignment:           "
11      & UInt_7'Alignment'Image);
12   Put_Line
13     ("UInt_7'Size:                "
14      & UInt_7'Size'Image);
15   Put_Line
16     ("UInt_7'Object_Size:         "
17      & UInt_7'Object_Size'Image);
18   Put_Line
19     ("V'Alignment:                "
20      & V'Alignment'Image);
21   Put_Line
22     ("V'Size:                     "
23      & V'Size'Image);
24   New_Line;
25
26   Put_Line
27     ("Aligned_UInt_7'Alignment:   "
28      & Aligned_UInt_7'Alignment'Image);
29   Put_Line
30     ("Aligned_UInt_7'Size:        "
31      & Aligned_UInt_7'Size'Image);
32   Put_Line
33     ("Aligned_UInt_7'Object_Size: "
34      & Aligned_UInt_7'Object_Size'Image);
35   Put_Line
36     ("Aligned_V'Alignment:        "
37      & Aligned_V'Alignment'Image);
38   Put_Line
39     ("Aligned_V'Size:             "
40      & Aligned_V'Size'Image);
41   New_Line;
42end Show_Alignment;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Alignment
MD5: a2fea340559193c293ccaee226de2558








Runtime output



UInt_7'Alignment:            1
UInt_7'Size:                 7
UInt_7'Object_Size:          8
V'Alignment:                 1
V'Size:                      8

Aligned_UInt_7'Alignment:    4
Aligned_UInt_7'Size:         7
Aligned_UInt_7'Object_Size:  32
Aligned_V'Alignment:         4
Aligned_V'Size:              32








Depending on your target architecture, you may see this output:

UInt_7'Alignment:            1
UInt_7'Size:                 7
UInt_7'Object_Size:          8
V'Alignment:                 1
V'Size:                      8

Aligned_UInt_7'Alignment:    4
Aligned_UInt_7'Size:         7
Aligned_UInt_7'Object_Size:  32
Aligned_V'Alignment:         4
Aligned_V'Size:              32





In this example, we're reusing the UInt_7 type that we've already been
using in previous examples. Because we haven't specified any alignment for the
UInt_7 type, it has an alignment of 1 storage unit (or 8 bits). However,
in the declaration of the Aligned_UInt_7 type, we're using the
Alignment aspect to request an alignment of 4 storage units (or 32
bits):

type Aligned_UInt_7 is new UInt_7
  with Alignment => 4;





When using the Alignment attribute for the Aligned_UInt_7 type,
we can confirm that its alignment is indeed 4 storage units (bytes).

Note that we can use the Alignment attribute for both data types and
objects — in the code above, we're using UInt_7'Alignment and
V'Alignment, for example.

Because of the alignment we're specifying for the Aligned_UInt_7 type,
its size — indicated by the Object_Size attribute — is 32
bits instead of 8 bits as for the UInt_7 type.

Note that you can also retrieve the alignment associated with a class using
S'Class'Alignment. For example:


show_class_alignment.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Class_Alignment is
 4
 5   type Point_1D is tagged record
 6      X : Integer;
 7   end record;
 8
 9   type Point_2D is new Point_1D with record
10      Y : Integer;
11   end record
12     with Alignment => 16;
13
14   type Point_3D is new Point_2D with record
15      Z : Integer;
16   end record;
17
18begin
19   Put_Line ("1D_Point'Alignment:       "
20             & Point_1D'Alignment'Image);
21   Put_Line ("1D_Point'Class'Alignment: "
22             & Point_1D'Class'Alignment'Image);
23   Put_Line ("2D_Point'Alignment:       "
24             & Point_2D'Alignment'Image);
25   Put_Line ("2D_Point'Class'Alignment: "
26             & Point_2D'Class'Alignment'Image);
27   Put_Line ("3D_Point'Alignment:       "
28             & Point_3D'Alignment'Image);
29   Put_Line ("3D_Point'Class'Alignment: "
30             & Point_3D'Class'Alignment'Image);
31end Show_Class_Alignment;









Overlapping Storage

Algorithms can be designed to perform in-place or out-of-place processing. In
other words, they can take advantage of the fact that input and output arrays
share the same storage space or not.

We can use the Has_Same_Storage and the Overlaps_Storage
attributes to retrieve more information about how the storage space of two
objects related to each other:


	the Has_Same_Storage attribute indicates whether two objects have the
exact same storage.


	A typical example is when both objects are exactly the same, so they
obviously share the same storage. For example, for array A,
A'Has_Same_Storage (A) is always True.






	the Overlaps_Storage attribute indicates whether two objects have at
least one bit in common.


	Note that, if two objects have the same storage, this implies that their
storage also overlaps. In other words, A'Has_Same_Storage (B) = True
implies that A'Overlaps_Storage (B) = True.








Let's look at this example:


int_array_processing.ads

 1package Int_Array_Processing is
 2
 3   type Int_Array is
 4     array (Positive range <>) of Integer;
 5
 6   procedure Show_Storage (X : Int_Array;
 7                           Y : Int_Array);
 8
 9   procedure Process (X :     Int_Array;
10                      Y : out Int_Array);
11
12end Int_Array_Processing;








int_array_processing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Int_Array_Processing is
 4
 5   procedure Show_Storage (X : Int_Array;
 6                           Y : Int_Array) is
 7   begin
 8      if X'Has_Same_Storage (Y) then
 9         Put_Line
10         ("Info: X and Y have the same storage.");
11      else
12         Put_Line
13           ("Info: X and Y don't have"
14            & "the same storage.");
15      end if;
16      if X'Overlaps_Storage (Y) then
17         Put_Line
18           ("Info: X and Y overlap.");
19      else
20         Put_Line
21           ("Info: X and Y don't overlap.");
22      end if;
23   end Show_Storage;
24
25   procedure Process (X :     Int_Array;
26                      Y : out Int_Array) is
27   begin
28      Put_Line ("==== PROCESS ====");
29      Show_Storage (X, Y);
30
31      if X'Has_Same_Storage (Y) then
32         Put_Line ("In-place processing...");
33      else
34         if not X'Overlaps_Storage (Y) then
35            Put_Line
36              ("Out-of-place processing...");
37         else
38            Put_Line
39              ("Cannot process "
40               & "overlapping arrays...");
41         end if;
42      end if;
43      New_Line;
44   end Process;
45
46end Int_Array_Processing;








main.adb

 1with Int_Array_Processing;
 2use  Int_Array_Processing;
 3
 4procedure Main is
 5   A : Int_Array (1 .. 20) := (others => 3);
 6   B : Int_Array (1 .. 20) := (others => 4);
 7begin
 8   Process (A, A);
 9   --  In-place processing:
10   --  sharing the exact same storage
11
12   Process (A (1 .. 10), A (10 .. 20));
13   --  Overlapping one component: A (10)
14
15   Process (A (1 .. 10), A (11 .. 20));
16   --  Out-of-place processing:
17   --  same array, but not sharing any storage
18
19   Process (A, B);
20   --  Out-of-place processing:
21   --  two different arrays
22end Main;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Overlapping_Storage
MD5: 0f599163c6f24c3ef46ec6577b501c21








Build output



int_array_processing.adb:29:24: warning: "Y" may be referenced before it has a value [enabled by default]








Runtime output



==== PROCESS ====
Info: X and Y have the same storage.
Info: X and Y overlap.
In-place processing...

==== PROCESS ====
Info: X and Y don't havethe same storage.
Info: X and Y overlap.
Cannot process overlapping arrays...

==== PROCESS ====
Info: X and Y don't havethe same storage.
Info: X and Y don't overlap.
Out-of-place processing...

==== PROCESS ====
Info: X and Y don't havethe same storage.
Info: X and Y don't overlap.
Out-of-place processing...








In this code example, we implement two procedures:


	Show_Storage, which shows storage information about two arrays by
using the Has_Same_Storage and Overlaps_Storage attributes.


	Process, which are supposed to process an input array X and
store the processed data in the output array Y.



	Note that the implementation of this procedure is actually just a
mock-up, so that no processing is actually taking place.











We have four different instances of how we can call the Process
procedure:


	in the Process (A, A) call, we're using the same array for the input
and output arrays. This is a perfect example of in-place processing. Because
the input and the output arrays arguments are actually the same object, they
obviously share the exact same storage.


	in the Process (A (1 .. 10), A (10 .. 20)) call, we're using two
slices of the A array as input and output arguments. In this case, a
single component of the A array is shared: A (10). Because the
storage space is overlapping, but not exactly the same, neither in-place nor
out-of-place processing can usually be used in this case.


	in the Process (A (1 .. 10), A (11 .. 20)) call, even though we're
using the same array A for the input and output arguments, we're using
slices that are completely independent from each other, so that the input and
output arrays are not sharing any storage in this case. Therefore, we can use
out-of-place processing.


	in the Process (A, B) call, we have two different arrays — which
obviously don't share any storage space —, so we can use out-of-place
processing.






Packed Representation

As we've seen previously, the minimum number of bits required to represent a
data type might be less than the actual number of bits used to store an object
of that same type. We've seen an example where UInt_7'Size was 7 bits,
while UInt_7'Object_Size was 8 bits. The most extreme case is the one
for the Boolean type: in this case, Boolean'Size is 1 bit, while
Boolean'Object_Size might be 8 bits (or even more on certain
architectures). In such cases, we have 7 (or more) unused bits in memory for
each object of Boolean type. In other words, we're wasting memory. On
the other hand, we're gaining speed of access because we can directly access
each element without having to first change its internal representation back
and forth. We'll come back to this point later.

The situation is even worse when implementing bit-fields, which can be
declared as an array of Boolean components. For example:


flag_definitions.ads

1package Flag_Definitions is
2
3   type Flags is
4     array (Positive range <>) of Boolean;
5
6end Flag_Definitions;








show_flags.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2with Flag_Definitions; use Flag_Definitions;
 3
 4procedure Show_Flags is
 5   Flags_1 : Flags (1 .. 8);
 6begin
 7   Put_Line ("Boolean'Size:           "
 8             & Boolean'Size'Image);
 9   Put_Line ("Boolean'Object_Size:    "
10             & Boolean'Object_Size'Image);
11   Put_Line ("Flags_1'Size:           "
12             & Flags_1'Size'Image);
13   Put_Line ("Flags_1'Component_Size: "
14             & Flags_1'Component_Size'Image);
15end Show_Flags;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Non_Packed_Flags
MD5: 6fd7a913e3c6717e846c2e822c1cbad7








Build output



show_flags.adb:5:04: warning: variable "Flags_1" is read but never assigned [-gnatwv]








Runtime output



Boolean'Size:            1
Boolean'Object_Size:     8
Flags_1'Size:            64
Flags_1'Component_Size:  8







Depending on your target architecture, you may see this output:

Boolean'Size:            1
Boolean'Object_Size:     8
Flags_1'Size:            64
Flags_1'Component_Size:  8





In this example, we're declaring the Flags type as an array of
Boolean components. As we can see in this case, although the size of the
Boolean type is just 1 bit, an object of this type has a size of 8 bits.
Consequently, each component of the Flags type has a size of 8 bits.
Moreover, an array with 8 components of Boolean type — such as
the Flags_1 array — has a size of 64 bits.

Therefore, having a way to compact the representation — so that we can
store multiple objects without wasting storage space — may help us
improving memory usage. This is actually possible by using the Pack
aspect. For example, we could extend the previous example and declare a
Packed_Flags type that makes use of this aspect:


flag_definitions.ads

 1package Flag_Definitions is
 2
 3   type Flags is
 4     array (Positive range <>) of Boolean;
 5
 6   type Packed_Flags is
 7     array (Positive range <>) of Boolean
 8       with Pack;
 9
10end Flag_Definitions;








show_packed_flags.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2with Flag_Definitions; use Flag_Definitions;
 3
 4procedure Show_Packed_Flags is
 5   Flags_1 : Flags (1 .. 8);
 6   Flags_2 : Packed_Flags (1 .. 8);
 7begin
 8   Put_Line ("Boolean'Size:           "
 9             & Boolean'Size'Image);
10   Put_Line ("Boolean'Object_Size:    "
11             & Boolean'Object_Size'Image);
12   Put_Line ("Flags_1'Size:           "
13             & Flags_1'Size'Image);
14   Put_Line ("Flags_1'Component_Size: "
15             & Flags_1'Component_Size'Image);
16   Put_Line ("Flags_2'Size:           "
17             & Flags_2'Size'Image);
18   Put_Line ("Flags_2'Component_Size: "
19             & Flags_2'Component_Size'Image);
20end Show_Packed_Flags;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Packed_Flags
MD5: c71cf68dc8bc41d0df2a5e3eb61b51fd








Build output



show_packed_flags.adb:5:04: warning: variable "Flags_1" is read but never assigned [-gnatwv]
show_packed_flags.adb:6:04: warning: variable "Flags_2" is read but never assigned [-gnatwv]








Runtime output



Boolean'Size:            1
Boolean'Object_Size:     8
Flags_1'Size:            64
Flags_1'Component_Size:  8
Flags_2'Size:            8
Flags_2'Component_Size:  1







Depending on your target architecture, you may see this output:

Boolean'Size:            1
Boolean'Object_Size:     8
Flags_1'Size:            64
Flags_1'Component_Size:  8
Flags_2'Size:            8
Flags_2'Component_Size:  1





In this example, we're declaring the Flags_2 array of
Packed_Flags type. Its size is 8 bits — instead of the 64 bits
required for the Flags_1 array. Because the array type
Packed_Flags is packed, we can now effectively use this type to store an
object of Boolean type using just 1 bit of the memory, as indicated by
the Flags_2'Component_Size attribute.

In many cases, we need to convert between a normal representation (such as
the one used for the Flags_1 array above) to a packed representation
(such as the one for the Flags_2 array). In many programming languages,
this conversion may require writing custom code with manual bit-shifting and
bit-masking to get the proper target representation. In Ada, however, we just
need to indicate the actual type conversion, and the compiler takes care of
generating code containing bit-shifting and bit-masking to performs the type
conversion.

Let's modify the previous example and introduce this type conversion:


flag_definitions.ads

 1package Flag_Definitions is
 2
 3   type Flags is
 4     array (Positive range <>) of Boolean;
 5
 6   type Packed_Flags is
 7     array (Positive range <>) of Boolean
 8       with Pack;
 9
10   Default_Flags : constant Flags :=
11     (True, True, False, True,
12      False, False, True, True);
13
14end Flag_Definitions;








show_flag_conversion.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2with Flag_Definitions; use Flag_Definitions;
 3
 4procedure Show_Flag_Conversion is
 5   Flags_1 : Flags (1 .. 8);
 6   Flags_2 : Packed_Flags (1 .. 8);
 7begin
 8   Flags_1 := Default_Flags;
 9   Flags_2 := Packed_Flags (Flags_1);
10
11   for I in Flags_2'Range loop
12      Put_Line (I'Image & ": "
13                & Flags_1 (I)'Image & ", "
14                & Flags_2 (I)'Image);
15   end loop;
16end Show_Flag_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Data_Representation.Flag_Conversion
MD5: faff2079f6779097b6e0f7cd6cd48612








Runtime output



 1: TRUE, TRUE
 2: TRUE, TRUE
 3: FALSE, FALSE
 4: TRUE, TRUE
 5: FALSE, FALSE
 6: FALSE, FALSE
 7: TRUE, TRUE
 8: TRUE, TRUE







In this extended example, we're now declaring Default_Flags as an array
of constant flags, which we use to initialize Flags_1.

The actual conversion happens with Flags_2 := Packed_Flags (Flags_1).
Here, the type conversion Packed_Flags() indicates that we're converting
from the normal representation (used for the Flags type) to the packed
representation (used for Packed_Flags type). We don't need to write more
code than that to perform the correct type conversion.

Also, by using the same strategy, we could read information from a packed
representation. For example:

Flags_1 := Flags (Flags_2);





In this case, we use Flags() to convert from a packed representation to
the normal representation.

We elaborate on the topic of converting between data representations in the
section on changing data representation.


Trade-offs

As indicated previously, when we're using a packed representation (vs. using a
standard unpacked representation), we're trading off speed of access for less
memory consumption. The following table summarizes this:



	Representation

	More speed of access

	Less memory consumption





	Unpacked

	X

	


	Packed

	
	X






On one hand, we have better memory usage when we apply packed representations
because we may save many bits for each object. On the other hand, there's a
cost associated with accessing those packed objects because they need to be
unpacked before we can actually access them. In fact, the compiler generates
code — using bit-shifting and bit-masking — that converts a packed
representation into an unpacked representation, which we can then access. Also,
when storing a packed object, the compiler generates code that converts the
unpacked representation of the object into the packed representation.

This packing and unpacking mechanism has a performance cost associated with it,
which results in less speed of access for packed objects. As usual in those
circumstances, before using packed representation, we should assess whether
memory constraints are more important than speed in our target architecture.




Record Representation and storage clauses

In this section, we discuss how to use record representation clauses to specify
how a record is represented in memory. Our goal is to provide a brief
introduction into the topic. If you're interested in more details, you can find
a thorough discussion about record representation clauses in the
Introduction to Embedded Systems Programming[#5]
course.

Let's start with the simple approach of declaring a record type without
providing further information. In this case, we're basically asking the
compiler to select a reasonable representation for that record in the memory of
our target architecture.

Let's see a simple example:


p.ads

1package P is
2
3   type R is record
4      A : Integer;
5      B : Integer;
6   end record;
7
8end P;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_1
MD5: 88171257118810bb7e02cea60ffb1ad9







Considering a typical 64-bit PC architecture with 8-bit storage units, and
Integer defined as a 32-bit type, we get this memory representation:

[image: digraph foo {      "Record_R" [          label = "{ position | component } | { { 0 | 1 | 2 | 3 } | A } | { { 4 | 5 | 6 | 7 } | B }"          shape = "record"      ]; }]

Each storage unit is a position in memory. In the graph above, the numbers on
the top (0, 1, 2, ...) represent those positions for record R.

In addition, we can show the bits that are used for components A and
B:

[image: digraph foo {      "Record_R" [          label = "{ position | bits | component } |  { { { 0 | #0 .. 7 } | { 1 | #8 .. #15 } | { 2 | #16 .. #23 } | { 3 | #24 .. #31 } } | A } | { { { 4 | #0 .. 7 } | { 5 | #8 .. #15 } | { 6 | #16 .. #23 } | { 7 | #24 .. #31 } } | B }"          shape = "record"      ]; }]

The memory representation we see in the graph above can be described in Ada
using representation clauses, as you can see in the code starting at the
for R use record line in the code example below — we'll discuss
the syntax and further details right after this example.


p.ads

 1package P is
 2
 3   type R is record
 4      A : Integer;
 5      B : Integer;
 6   end record;
 7
 8   --  Representation clause for record R:
 9   for R use record
10      A at 0 range 0 .. 31;
11      --   ^ starting memory position
12      B at 4 range 0 .. 31;
13      --           ^ first bit .. last bit
14   end record;
15
16end P;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_2
MD5: b6be86ae7e1a5c2e7d981fe37bad49ed







Here, we're specifying that the A component is stored in the bits #0 up
to #31 starting at position #0. Note that the position itself doesn't represent
an absolute address in the device's memory; instead, it's relative to the
memory space reserved for that record. The B component has the same
32-bit range, but starts at position #4.

This is a generalized view of the syntax:

for Record_Type use record
   Component_Name at Start_Position
                  range First_Bit .. Last_Bit;
end record;





These are the elements we see above:


	Component_Name: name of the component (from the record type
declaration);


	Start_Position: start position — in storage units — of the
memory space reserved for that component;


	First_Bit: first bit (in the start position) of the component;


	Last_Bit: last bit of the component.




Note that the last bit of a component might be in a different storage unit.
Since the Integer type has a larger width (32 bits) than the storage
unit (8 bits), components of that type span over multiple storage units.
Therefore, in our example, the first bit of component A is at position
#0, while the last bit is at position #3.

Also note that the last eight bits of component A are bits #24 .. #31.
If we think in terms of storage units, this corresponds to bits #0 .. #7 of
position #3. However, when specifying the last bit in Ada, we always use the
First_Bit value as a reference, not the position where those bits might
end up. Therefore, we write range 0 .. 31, well knowing that those 32
bits span over four storage units (positions #0 .. #3).


In the Ada Reference Manual


	13.5.1 Record Representation Clauses[#6]







Storage Place Attributes

We can retrieve information about the start position, and the first and last
bits of a component by using the storage place attributes:


	Position, which retrieves the start position of a component;


	First_Bit, which retrieves the first bit of a component;


	Last_Bit, which retrieves the last bit of a component.




Note, however, that these attributes can only be used with actual records, and
not with record types.

We can revisit the previous example and verify how the compiler represents the
R type in memory:


p.ads

1package P is
2
3   type R is record
4      A : Integer;
5      B : Integer;
6   end record;
7
8end P;








show_storage.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System;
 3
 4with P;           use P;
 5
 6procedure Show_Storage is
 7   R1 : R;
 8begin
 9   Put_Line ("R'Size:              "
10             & R'Size'Image);
11   Put_Line ("R'Object_Size:       "
12             & R'Object_Size'Image);
13   New_Line;
14
15   Put_Line ("System.Storage_Unit: "
16             & System.Storage_Unit'Image);
17   New_Line;
18
19   Put_Line ("R1.A'Position  : "
20             & R1.A'Position'Image);
21   Put_Line ("R1.A'First_Bit : "
22             & R1.A'First_Bit'Image);
23   Put_Line ("R1.A'Last_Bit  : "
24             & R1.A'Last_Bit'Image);
25   New_Line;
26
27   Put_Line ("R1.B'Position  : "
28             & R1.B'Position'Image);
29   Put_Line ("R1.B'First_Bit : "
30             & R1.B'First_Bit'Image);
31   Put_Line ("R1.B'Last_Bit  : "
32             & R1.B'Last_Bit'Image);
33end Show_Storage;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Storage_Place_Attributes
MD5: 05a402585ce71eb47cf972e68c02835e








Build output



show_storage.adb:7:04: warning: variable "R1" is read but never assigned [-gnatwv]








Runtime output



R'Size:               64
R'Object_Size:        64

System.Storage_Unit:  8

R1.A'Position  :  0
R1.A'First_Bit :  0
R1.A'Last_Bit  :  31

R1.B'Position  :  4
R1.B'First_Bit :  0
R1.B'Last_Bit  :  31







First of all, we see that the size of the R type is 64 bits, which can
be explained by those two 32-bit integer components. Then, we see that
components A and B start at positions #0 and #4, and each one
makes use of bits in the range from #0 to #31. This matches the graph we've
seen above.


In the Ada Reference Manual


	13.5.2 Storage Place Attributes[#7]








Using Representation Clauses

We can use representation clauses to change the way the compiler handles
memory for a record type. For example, let's say we want to have an empty
storage unit between components A and B. We can use a
representation clause where we specify that component B starts at
position #5 instead of #4, leaving an empty byte after component A and
before component B:

[image: digraph foo {      "Record_R" [          label = "{ position | bits | component } |  { { { 0 | #0 .. 7 } | { 1 | #8 .. #15 } | { 2 | #16 .. #23 } | { 3 | #24 .. #31 } } | A } | { 4 |  |  } | { { { 5 | #0 .. 7 } | { 6 | #8 .. #15 } | { 7 | #16 .. #23 } | { 8 | #24 .. #31 } } | B }"          shape = "record"      ]; }]

This is the code that implements that:


p.ads

 1package P is
 2
 3   type R is record
 4      A : Integer;
 5      B : Integer;
 6   end record;
 7
 8   for R use record
 9      A at 0 range 0 .. 31;
10      B at 5 range 0 .. 31;
11   end record;
12
13end P;








show_empty_byte.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P;           use P;
 4
 5procedure Show_Empty_Byte is
 6begin
 7   Put_Line ("R'Size:        "
 8             & R'Size'Image);
 9   Put_Line ("R'Object_Size: "
10             & R'Object_Size'Image);
11end Show_Empty_Byte;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_Empty_Byte
MD5: c616e534e95a06f2e8b3052a3e8a9aab








Runtime output



R'Size:         72
R'Object_Size:  96







When running the application above, we see that, due to the extra byte in the
record representation, the sizes increase. On a typical 64-bit PC,
R'Size is now 76 bits, which reflects the additional eight bits that we
introduced between components A and B. Depending on the target
architecture, you may also see that R'Object_Size is now 96 bits, which
is the size the compiler selects as the most appropriate for this record type.
As we've mentioned in the previous section, we can use aspects to request a
specific size to the compiler. In this case, we could use the
Object_Size aspect:


p.ads

 1package P is
 2
 3   type R is record
 4      A : Integer;
 5      B : Integer;
 6   end record
 7     with Object_Size => 72;
 8
 9   for R use record
10      A at 0 range 0 .. 31;
11      B at 5 range 0 .. 31;
12   end record;
13
14end P;








show_empty_byte.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P;           use P;
 4
 5procedure Show_Empty_Byte is
 6begin
 7   Put_Line ("R'Size:        "
 8             & R'Size'Image);
 9   Put_Line ("R'Object_Size: "
10             & R'Object_Size'Image);
11end Show_Empty_Byte;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_Empty_Byte
MD5: 9d7bae2b2aabeda4bc03752544cee9b9








Runtime output



R'Size:         72
R'Object_Size:  72







If the code compiles, R'Size and R'Object_Size should now have
the same value.



Derived Types And Representation Clauses

In some cases, you might want to modify the memory representation of a record
without impacting existing code. For example, you might want to use a record
type that was declared in a package that you're not allowed to change. Also,
you would like to modify its memory representation in your application. A nice
strategy is to derive a type and use a representation clause for the derived
type.

We can apply this strategy on our previous example. Let's say we would like to
use record type R from package P in our application, but we're
not allowed to modify package P — or the record type, for that
matter. In this case, we could simply derive R as R_New and use a
representation clause for R_New. This is exactly what we do in the
specification of the child package P.Rep:


p.ads

1package P is
2
3   type R is record
4      A : Integer;
5      B : Integer;
6   end record;
7
8end P;








p-rep.ads

 1package P.Rep is
 2
 3   type R_New is new R
 4     with Object_Size => 72;
 5
 6   for R_New use record
 7      A at 0 range 0 .. 31;
 8      B at 5 range 0 .. 31;
 9   end record;
10
11end P.Rep;








show_empty_byte.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P;           use P;
 4with P.Rep;       use P.Rep;
 5
 6procedure Show_Empty_Byte is
 7begin
 8   Put_Line ("R'Size:        "
 9             & R'Size'Image);
10   Put_Line ("R'Object_Size: "
11             & R'Object_Size'Image);
12
13   Put_Line ("R_New'Size:        "
14             & R_New'Size'Image);
15   Put_Line ("R_New'Object_Size: "
16             & R_New'Object_Size'Image);
17end Show_Empty_Byte;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Derived_Rep_Clauses_Empty_Byte
MD5: 3a1e0837f8bd8250f20fc7b274b869d5








Runtime output



R'Size:         64
R'Object_Size:  64
R_New'Size:         72
R_New'Object_Size:  72







When running this example, we see that the R type retains the memory
representation selected by the compiler for the target architecture, while the
R_New has the memory representation that we specified.



Representation on Bit Level

A very common application of representation clauses is to specify individual
bits of a record. This is particularly useful, for example, when mapping
registers or implementing protocols.

Let's consider the following fictitious register as an example:

[image: digraph foo {      "Record_R" [          label = "{ bit | component } | { { 0 | 1 }  | S } | { { 2 | 3 } | (reserved) } | { 4 | Error } | { { 5 | 6 | 7 } | V1 }"          shape = "record"      ]; }]

Here, S is the current status, Error is a flag, and V1
contains a value. Due to the fact that we can use representation clauses to
describe individual bits of a register as records, the implementation becomes
as simple as this:


p.ads

 1package P is
 2
 3  type Status is (Ready, Waiting,
 4                  Processing, Done);
 5  type UInt_3 is range 0 .. 2 ** 3 - 1;
 6
 7   type Simple_Reg is record
 8      S     : Status;
 9      Error : Boolean;
10      V1    : UInt_3;
11   end record;
12
13   for Simple_Reg use record
14      S     at 0 range 0 .. 1;
15      --  Bit #2 and 3: reserved!
16      Error at 0 range 4 .. 4;
17      V1    at 0 range 5 .. 7;
18   end record;
19
20end P;








show_simple_reg.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P;           use P;
 4
 5procedure Show_Simple_Reg is
 6begin
 7   Put_Line ("Simple_Reg'Size:        "
 8             & Simple_Reg'Size'Image);
 9   Put_Line ("Simple_Reg'Object_Size: "
10             & Simple_Reg'Object_Size'Image);
11end Show_Simple_Reg;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_Simple_Reg
MD5: cbac444336572460062f922767c226a5








Runtime output



Simple_Reg'Size:         8
Simple_Reg'Object_Size:  8







As we can see in the declaration of the Simple_Reg type, each component
represents a field from our register, and it has a fixed location (which
matches the register representation we see in the graph above). Any operation
on the register is as simple as accessing the record component. For example:


show_simple_reg.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with P;           use P;
 4
 5procedure Show_Simple_Reg is
 6   Default : constant Simple_Reg :=
 7               (S     => Ready,
 8                Error => False,
 9                V1    => 0);
10
11   R : Simple_Reg := Default;
12begin
13   Put_Line ("R.S:  " & R.S'Image);
14
15   R.V1 := 4;
16
17   Put_Line ("R.V1: " & R.V1'Image);
18end Show_Simple_Reg;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Record_Representation_Storage_Clauses.Rep_Clauses_Simple_Reg
MD5: e442396e43d6609c1c837165bbc21641








Runtime output



R.S:  READY
R.V1:  4







As we can see in the example, to retrieve the current status of the register,
we just have to write R.S. To update the V1 field of the register with
the value 4, we just have to write R.V1 := 4. No extra code —
such as bit-masking or bit-shifting — is needed here.


In other languages

Some programming languages require that developers use complicated,
error-prone approaches — which may include manually bit-shifting and
bit-masking variables — to retrieve information from or store
information to individual bits or registers. In Ada, however, this is
efficiently handled by the compiler, so that developers only need to
correctly describe the register mapping using representation clauses.






Changing Data Representation


Note

This section was originally written by Robert Dewar and published as
Gem #27: Changing Data Representation[#8]
and Gem #28[#9].



A powerful feature of Ada is the ability to specify the exact data layout. This
is particularly important when you have an external device or program that
requires a very specific format. Some examples are:


communication.ads

 1package Communication is
 2
 3   type Com_Packet is record
 4      Key : Boolean;
 5      Id  : Character;
 6      Val : Integer range 100 .. 227;
 7   end record;
 8
 9   for Com_Packet use record
10      Key at 0 range 0 .. 0;
11      Id  at 0 range 1 .. 8;
12      Val at 0 range 9 .. 15;
13   end record;
14
15end Communication;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Com_Packet
MD5: cbd7f5547c5b0458853ac21d03aa41f8








Build output



communication.ads:12:11: warning: component clause forces biased representation for "Val" [-gnatw.b]







which lays out the fields of a record, and in the case of Val, forces a
biased representation in which all zero bits represents 100. Another example
is:


array_representation.ads

1package Array_Representation is
2
3   type Val is (A, B, C, D, E, F, G, H);
4
5   type Arr is array (1 .. 16) of Val
6     with Component_Size => 3;
7
8end Array_Representation;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Array_Rep
MD5: 7eb17fc2cd415acb7c53a363fa336807







which forces the components to take only 3 bits, crossing byte boundaries as
needed. A final example is:


enumeration_representation.ads

1package Enumeration_Representation is
2
3   type Status is (Off, On, Unknown);
4   for Status use (Off     => 2#001#,
5                   On      => 2#010#,
6                   Unknown => 2#100#);
7
8end Enumeration_Representation;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Enum_Rep
MD5: 3c3e9f4ae11e9bb2482588d27ba43c30







which allows specified values for an enumeration type, instead of the efficient
default values of 0, 1, 2.

In all these cases, we might use these representation clauses to match external
specifications, which can be very useful. The disadvantage of such layouts is
that they are inefficient, and accessing individual components, or, in the case
of the enumeration type, looping through the values can increase space and
time requirements for the program code.

One approach that is often effective is to read or write the data in question
in this specified form, but internally in the program represent the data in the
normal default layout, allowing efficient access, and do all internal
computations with this more efficient form.

To follow this approach, you will need to convert between the efficient format
and the specified format. Ada provides a very convenient method for doing this,
as described in RM 13.6 "Change of Representation"[#10].

The idea is to use type derivation, where one type has the specified format and
the other has the normal default format. For instance for the array case above,
we would write:


array_representation.ads

1package Array_Representation is
2
3   type Val is (A, B, C, D, E, F, G, H);
4   type Arr is array (1 .. 16) of Val;
5
6   type External_Arr is new Arr
7     with Component_Size => 3;
8
9end Array_Representation;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Array_Rep
MD5: d4e90f6ef8ff81771980771356eab235







Now we read and write the data using the External_Arr type. When we want
to convert to the efficient form, Arr, we simply use a type conversion.


using_array_for_io.adb

 1with Array_Representation;
 2use  Array_Representation;
 3
 4procedure Using_Array_For_IO is
 5   Input_Data  : External_Arr;
 6   Work_Data   : Arr;
 7   Output_Data : External_Arr;
 8begin
 9   --  (read data into Input_Data)
10
11   --  Now convert to internal form
12   Work_Data := Arr (Input_Data);
13
14   --  (computations using efficient
15   --   Work_Data form)
16
17   --  Convert back to external form
18   Output_Data := External_Arr (Work_Data);
19
20end Using_Array_For_IO;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Array_Rep
MD5: 88efe4b8a7f07e0c32f11131d6eafbc1








Build output



using_array_for_io.adb:5:04: warning: variable "Input_Data" is read but never assigned [-gnatwv]







Using this approach, the quite complex task of copying all the data of the
array from one form to another, with all the necessary masking and shift
operations, is completely automatic.

Similar code can be used in the record and enumeration type cases. It is even
possible to specify two different representations for the two types, and
convert from one form to the other, as in:


enumeration_representation.ads

 1package Enumeration_Representation is
 2
 3   type Status_In is (Off, On, Unknown);
 4   type Status_Out is new Status_In;
 5
 6   for Status_In use (Off     => 2#001#,
 7                      On      => 2#010#,
 8                      Unknown => 2#100#);
 9   for Status_Out use (Off     => 103,
10                       On      => 1045,
11                       Unknown => 7700);
12
13end Enumeration_Representation;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Enum_Rep
MD5: f78c3718280f9265ff54270c5834b458







There are two restrictions that must be kept in mind when using this feature.
First, you have to use a derived type. You can't put representation clauses on
subtypes, which means that the conversion must always be explicit. Second,
there is a rule RM 13.1[#11] (10) that restricts the placement of
interesting representation clauses:


10 For an untagged derived type, no type-related representation items are
allowed if the parent type is a by-reference type, or has any user-defined
primitive subprograms.




All the representation clauses that are interesting from the point of view of
change of representation are "type related", so for example, the following
sequence would be illegal:


array_representation.ads

 1package Array_Representation is
 2
 3   type Val is (A, B, C, D, E, F, G, H);
 4   type Arr is array (1 .. 16) of Val;
 5
 6   procedure Rearrange (Arg : in out Arr);
 7
 8   type External_Arr is new Arr
 9     with Component_Size => 3;
10
11end Array_Representation;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.Array_Rep_2
MD5: 70201932d40e3fb356bc1d8ab188f2df








Build output



array_representation.ads:9:11: error: representation item not permitted before Ada 2022
array_representation.ads:9:11: error: parent type "Arr" has primitive operations
gprbuild: *** compilation phase failed







Why these restrictions? Well, the answer is a little complex, and has to do
with efficiency considerations, which we will address below.


Restrictions

In the previous subsection, we discussed the use of derived types and
representation clauses to achieve automatic change of representation. More
accurately, this feature is not completely automatic, since it requires you to
write an explicit conversion. In fact there is a principle behind the design
here which says that a change of representation should never occur implicitly
behind the back of the programmer without such an explicit request by means of
a type conversion.

The reason for that is that the change of representation operation can be very
expensive, since in general it can require component by component copying,
changing the representation on each component.

Let's have a look at the -gnatG expanded code to see what is hidden under
the covers here. For example, the conversion Arr (Input_Data) from the
previous example generates the following expanded code:

B26b : declare
   [subtype p__TarrD1 is integer range 1 .. 16]
   R25b : p__TarrD1 := 1;
begin
   for L24b in 1 .. 16 loop
      [subtype p__arr___XP3 is
        system__unsigned_types__long_long_unsigned range 0 ..
        16#FFFF_FFFF_FFFF#]
      work_data := p__arr___XP3!((work_data and not shift_left!(
        16#7#, 3 * (integer(L24b - 1)))) or shift_left!(p__arr___XP3!
        (input_data (R25b)), 3 * (integer(L24b - 1))));
      R25b := p__TarrD1'succ(R25b);
   end loop;
end B26b;





That's pretty horrible! In fact, we could have simplified it for this section,
but we have left it in its original form, so that you can see why it is nice to
let the compiler generate all this stuff so you don't have to worry about it
yourself.

Given that the conversion can be pretty inefficient, you don't want to convert
backwards and forwards more than you have to, and the whole approach is only
worthwhile if we'll be doing extensive computations involving the value.

The expense of the conversion explains two aspects of this feature that are not
obvious. First, why do we require derived types instead of just allowing
subtypes to have different representations, avoiding the need for an explicit
conversion?

The answer is precisely that the conversions are expensive, and you don't want
them happening behind your back. So if you write the explicit conversion, you
get all the gobbledygook listed above, but you can be sure that this never
happens unless you explicitly ask for it.

This also explains the restriction we mentioned in previous subsection from
RM 13.1[#12] (10):


10 For an untagged derived type, no type-related representation items are
allowed if the parent type is a by-reference type, or has any user-defined
primitive subprograms.




It turns out this restriction is all about avoiding implicit changes of
representation. Let's have a look at how type derivation works when there are
primitive subprograms defined at the point of derivation. Consider this
example:


my_ints.ads

 1package My_Ints is
 2
 3   type My_Int_1 is range 1 .. 10;
 4
 5   function Odd (Arg : My_Int_1)
 6                 return Boolean;
 7
 8   type My_Int_2 is new My_Int_1;
 9
10end My_Ints;








my_ints.adb

1package body My_Ints is
2
3   function Odd (Arg : My_Int_1)
4                return Boolean is
5     (True);
6   --  Dummy implementation!
7
8end My_Ints;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.My_Int
MD5: a29401698307998288f02b349d04d1d2







Now when we do the type derivation, we inherit the function Odd for
My_Int_2. But where does this function come from? We haven't
written it explicitly, so the compiler somehow materializes this new implicit
function. How does it do that?

We might think that a complete new function is created including a body in
which My_Int_2 replaces My_Int_1, but that would be impractical
and expensive. The actual mechanism avoids the need to do this by use of
implicit type conversions. Suppose after the above declarations, we write:


using_my_int.adb

 1with My_Ints; use My_Ints;
 2
 3procedure Using_My_Int is
 4   Var : My_Int_2;
 5begin
 6
 7   if Odd (Var) then
 8      --   ^ Calling Odd function
 9      --     for My_Int_2 type.
10      null;
11   end if;
12
13end Using_My_Int;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.My_Int
MD5: f68272d55e68687b7102885313c7831b








Build output



using_my_int.adb:4:04: warning: variable "Var" is read but never assigned [-gnatwv]







The compiler translates this as:


using_my_int.adb

 1with My_Ints; use My_Ints;
 2
 3procedure Using_My_Int is
 4   Var : My_Int_2;
 5begin
 6
 7   if Odd (My_Int_1 (Var)) then
 8      --   ^ Converting My_Int_2 to
 9      --     My_Int_1 type before
10      --     calling Odd function.
11      null;
12   end if;
13
14end Using_My_Int;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Changing_Data_Representation.My_Int
MD5: b3d0053c61412a2b985cd580b645e048








Build output



using_my_int.adb:4:04: warning: variable "Var" is read but never assigned [-gnatwv]







This implicit conversion is a nice trick, it means that we can get the effect
of inheriting a new operation without actually having to create it.
Furthermore, in a case like this, the type conversion generates no code,
since My_Int_1 and My_Int_2 have the same representation.

But the whole point is that they might not have the same representation if one
of them had a representation clause that made the representations different,
and in this case the implicit conversion inserted by the compiler could be
expensive, perhaps generating the junk we quoted above for the Arr case.
Since we never want that to happen implicitly, there is a rule to prevent it.

The business of forbidding by-reference types (which includes all tagged
types) is also driven by this consideration. If the representations are the
same, it is fine to pass by reference, even in the presence of the conversion,
but if there was a change of representation, it would force a copy, which would
violate the by-reference requirement.

So to summarize this section, on the one hand Ada gives you a very convenient
way to trigger these complex conversions between different representations. On
the other hand, Ada guarantees that you never get these potentially expensive
conversions happening unless you explicitly ask for them.




Valid Attribute

When receiving data from external sources, we're subjected to problems such as
transmission errors. If not handled properly, erroneous data can lead to major
issues in an application.

One of those issues originates from the fact that transmission errors might
lead to invalid information stored in memory. When proper checks are active,
using invalid information is detected at runtime and an exception is raised at
this point, which might then be handled by the application.

Instead of relying on exception handling, however, we could instead ensure that
the information we're about to use is valid. We can do this by using the
Valid attribute. For example, if we have a variable Var, we can
verify that the value stored in Var is valid by writing
Var'Valid, which returns a Boolean value. Therefore, if the value
of Var isn't valid, Var'Valid returns False, so we can
have code that handles this situation before we actually make use of
Var. In other words, instead of handling a potential exception in other
parts of the application, we can proactively verify that input information is
correct and avoid that an exception is raised.

In the next example, we show an application that


	generates a file containing mock-up data, and then


	reads information from this file as state values.




The mock-up data includes valid and invalid states.


create_test_file.ads

1procedure Create_Test_File (File_Name : String);








create_test_file.adb

 1with Ada.Sequential_IO;
 2
 3procedure Create_Test_File (File_Name : String)
 4is
 5   package Integer_Sequential_IO is new
 6     Ada.Sequential_IO (Integer);
 7   use Integer_Sequential_IO;
 8
 9   F : File_Type;
10begin
11   Create (F, Out_File, File_Name);
12   Write (F,  1);
13   Write (F,  2);
14   Write (F,  4);
15   Write (F,  3);
16   Write (F,  2);
17   Write (F,  10);
18   Close (F);
19end Create_Test_File;








states.ads

 1with Ada.Sequential_IO;
 2
 3package States is
 4
 5   type State is (Off, On, Waiting)
 6     with Size => Integer'Size;
 7
 8   for State use (Off     => 1,
 9                  On      => 2,
10                  Waiting => 4);
11
12   package State_Sequential_IO is new
13     Ada.Sequential_IO (State);
14
15   procedure Read_Display_States
16     (File_Name : String);
17
18end States;








states.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body States is
 4
 5   procedure Read_Display_States
 6     (File_Name : String)
 7   is
 8      use State_Sequential_IO;
 9
10      F : State_Sequential_IO.File_Type;
11      S : State;
12
13      procedure Display_State (S : State) is
14      begin
15         --  Before displaying the value,
16         --  check whether it's valid or not.
17         if S'Valid then
18            Put_Line (S'Image);
19         else
20            Put_Line ("Invalid value detected!");
21         end if;
22      end Display_State;
23
24   begin
25      Open (F, In_File, File_Name);
26
27      while not End_Of_File (F) loop
28         Read (F, S);
29         Display_State (S);
30      end loop;
31
32      Close (F);
33   end Read_Display_States;
34
35end States;








show_states_from_file.adb

1with States;           use States;
2with Create_Test_File;
3
4procedure Show_States_From_File is
5   File_Name : constant String := "data.bin";
6begin
7   Create_Test_File (File_Name);
8   Read_Display_States (File_Name);
9end Show_States_From_File;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Valid_Attribute.Valid_States
MD5: f7af2946ebe663932494448a0d3d3020








Runtime output



OFF
ON
WAITING
Invalid value detected!
ON
Invalid value detected!







Let's start our discussion on this example with the States package,
which contains the declaration of the State type. This type is a simple
enumeration containing three states: Off, On and Waiting.
We're assigning specific integer values for this type by declaring an
enumeration representation clause. Note that we're using the Size aspect
to request that objects of this type have the same size as the Integer
type. This becomes important later on when parsing data from the file.

In the Create_Test_File procedure, we create a file containing integer
values, which is parsed later by the Read_Display_States procedure. The
Create_Test_File procedure doesn't contain any reference to the
State type, so we're not constrained to just writing information that is
valid for this type. On the contrary, this procedure makes use of the
Integer type, so we can write any integer value to the file. We use this
strategy to write both valid and invalid values of State to the file.
This allows us to simulate an environment where transmission errors occur.

We call the Read_Display_States procedure to read information from the
file and display each state stored in the file. In the main loop of this
procedure, we call Read to read a state from the file and store it in
the S variable. We then call the nested Display_State procedure
to display the actual state stored in S. The most important line of code
in the Display_State procedure is the one that uses the Valid
attribute:

if S'Valid then





In this line, we're verifying that the S variable contains a valid state
before displaying the actual information from S. If the value stored in
S isn't valid, we can handle the issue accordingly. In this case, we're
simply displaying a message indicating that an invalid value was detected. If
we didn't have this check, the Constraint_Error exception would be
raised when trying to use invalid data stored in S — this would
happen, for example, after reading the integer value 3 from the input file.

In summary, using the Valid attribute is a good strategy we can employ
when we know that information stored in memory might be corrupted.
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	13.9.2 The Valid Attribute[#13]








Unchecked Union

We've introduced variant records back in the
Introduction to Ada course[#14].
In simple terms, a variant record is a record with discriminants that allows
for changing its structure. Basically, it's a record containing a case.
(We talk again about variant records in
another chapter.)

The State_Or_Integer declaration in the States package below is
an example of a variant record:


states.ads

 1package States is
 2
 3   type State is (Off, On, Waiting)
 4     with Size => Integer'Size;
 5
 6   for State use (Off     => 1,
 7                  On      => 2,
 8                  Waiting => 4);
 9
10   type State_Or_Integer (Use_Enum : Boolean) is
11   record
12      case Use_Enum is
13         when False => I : Integer;
14         when True  => S : State;
15      end case;
16   end record;
17
18   procedure Display_State_Value
19     (V : State_Or_Integer);
20
21end States;








states.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body States is
 4
 5   procedure Display_State_Value
 6     (V : State_Or_Integer)
 7   is
 8   begin
 9      Put_Line ("State: " & V.S'Image);
10      Put_Line ("Value: " & V.I'Image);
11   end Display_State_Value;
12
13end States;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.State_Or_Integer
MD5: fa72f52a4396a2e66931ff6932c567fc







As mentioned in the previous course, if you try to access a component that is
not valid for your record, a Constraint_Error exception is raised. For
example, in the implementation of the Display_State_Value procedure,
we're trying to retrieve the value of the integer component (I) of the
V record. When calling this procedure, the Constraint_Error
exception is raised as expected because Use_Enum is set to True,
so that the I component is invalid — only the S component
is valid in this case.


show_variant_rec_error.adb

1with States; use States;
2
3procedure Show_Variant_Rec_Error is
4   V : State_Or_Integer (Use_Enum => True);
5begin
6   V.S := On;
7   Display_State_Value (V);
8end Show_Variant_Rec_Error;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.State_Or_Integer
MD5: b8cf215dd55bfdec6950df35c7bc19b9








Runtime output



State: ON

raised CONSTRAINT_ERROR : states.adb:10 discriminant check failed







In addition to not being able to read the value of a component that isn't
valid, assigning a value to a component that isn't valid also raises an
exception at runtime. In this example, we cannot assign to V.I:


show_variant_rec_error.adb

1with States; use States;
2
3procedure Show_Variant_Rec_Error is
4   V : State_Or_Integer (Use_Enum => True);
5begin
6   V.I := 4;
7   --  Error: V.I cannot be accessed because
8   --         Use_Enum is set to True.
9end Show_Variant_Rec_Error;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.State_Or_Integer
MD5: 985a84faccc3d590ac767e914bea0c1d








Build output



show_variant_rec_error.adb:6:05: warning: component not present in subtype of "State_Or_Integer" defined at line 4 [enabled by default]
show_variant_rec_error.adb:6:05: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_variant_rec_error.adb:6 discriminant check failed







We may circumvent this limitation by using the Unchecked_Union aspect.
For example, we can derive a new type from State_Or_Integer and use
this aspect in its declaration. We do this in the declaration of the
Unchecked_State_Or_Integer type below.


states.ads

 1package States is
 2
 3   type State is (Off, On, Waiting)
 4     with Size => Integer'Size;
 5
 6   for State use (Off     => 1,
 7                  On      => 2,
 8                  Waiting => 4);
 9
10   type State_Or_Integer (Use_Enum : Boolean) is
11   record
12      case Use_Enum is
13         when False => I : Integer;
14         when True  => S : State;
15      end case;
16   end record;
17
18   type Unchecked_State_Or_Integer
19     (Use_Enum : Boolean) is new
20       State_Or_Integer (Use_Enum)
21         with Unchecked_Union;
22
23   procedure Display_State_Value
24     (V : Unchecked_State_Or_Integer);
25
26end States;








states.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body States is
 4
 5   procedure Display_State_Value
 6     (V : Unchecked_State_Or_Integer)
 7   is
 8   begin
 9      Put_Line ("State: " & V.S'Image);
10      Put_Line ("Value: " & V.I'Image);
11   end Display_State_Value;
12
13end States;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.Unchecked_State_Or_Integer
MD5: e97271a24aab23d2db450308401667ac







Because we now use the Unchecked_State_Or_Integer type for the input
parameter of the Display_State_Value procedure, no exception is raised
at runtime, as both components are now accessible. For example:


show_unchecked_union.adb

1with States; use States;
2
3procedure Show_Unchecked_Union is
4   V : State_Or_Integer (Use_Enum => True);
5begin
6   V.S := On;
7   Display_State_Value
8     (Unchecked_State_Or_Integer (V));
9end Show_Unchecked_Union;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.Unchecked_State_Or_Integer
MD5: 331cc1ab6709ab7e0062d64c55a75a6c








Runtime output



State: ON
Value:  2







Note that, in the call to the Display_State_Value procedure, we first
need to convert the V argument from the State_Or_Integer to the
Unchecked_State_Or_Integer type.

Also, we can assign to any of the components of a record that has the
Unchecked_Union aspect. In our example, we can now assign to both the
S and the I components of the V record:


show_unchecked_union.adb

 1with States; use States;
 2
 3procedure Show_Unchecked_Union is
 4   V : Unchecked_State_Or_Integer
 5         (Use_Enum => True);
 6begin
 7   V := (Use_Enum => True, S => On);
 8   Display_State_Value (V);
 9
10   V := (Use_Enum => False, I => 4);
11   Display_State_Value (V);
12end Show_Unchecked_Union;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.Unchecked_State_Or_Integer
MD5: bb472e91c5e7b7e63d6246dbcf5226a0








Runtime output



State: ON
Value:  2
State: WAITING
Value:  4







In the example above, we're use an aggregate in the assignments to V. By
doing so, we avoid that Use_Enum is set to the wrong component. For
example:


show_unchecked_union.adb

 1with States; use States;
 2
 3procedure Show_Unchecked_Union is
 4   V : Unchecked_State_Or_Integer
 5         (Use_Enum => True);
 6begin
 7   V.S := On;
 8   Display_State_Value (V);
 9
10   V.I := 4;
11   --  Error: cannot directly assign to V.I,
12   --         as Use_Enum is set to True.
13
14   Display_State_Value (V);
15end Show_Unchecked_Union;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.Unchecked_State_Or_Integer
MD5: 74ac11a3effdafd3959fface295a86da








Build output



show_unchecked_union.adb:10:05: warning: component not present in subtype of "Unchecked_State_Or_Integer" defined at line 4 [enabled by default]
show_unchecked_union.adb:10:05: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output



State: ON
Value:  2

raised CONSTRAINT_ERROR : show_unchecked_union.adb:10 discriminant check failed







Here, even though the record has the Unchecked_Union attribute, we
cannot directly assign to the I component because Use_Enum is set
to True, so only the S is accessible. We can, however, read its
value, as we do in the Display_State_Value procedure.

Be aware that, due to the fact the union is not checked, we might write invalid
data to the record. In the example below, we initialize the I component
with 3, which is a valid integer value, but results in an invalid value for
the S component, as the value 3 cannot be mapped to the representation
of the State type.


show_unchecked_union.adb

1with States; use States;
2
3procedure Show_Unchecked_Union is
4   V : Unchecked_State_Or_Integer
5         (Use_Enum => True);
6begin
7   V := (Use_Enum => False, I => 3);
8   Display_State_Value (V);
9end Show_Unchecked_Union;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Unchecked_Union.Unchecked_State_Or_Integer
MD5: f63e64df137cfc3c29e41f784306f0e4








Runtime output




raised CONSTRAINT_ERROR : states.adb:9 invalid data







To mitigate this problem, we could use the Valid attribute —
discussed in the previous section — for the S component before
trying to use its value in the implementation of the Display_State_Value
procedure:


states.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body States is
 4
 5   procedure Display_State_Value
 6     (V : Unchecked_State_Or_Integer)
 7   is
 8   begin
 9      if V.S'Valid then
10         Put_Line ("State: " & V.S'Image);
11      else
12         Put_Line ("State: <invalid>");
13      end if;
14      Put_Line ("Value: " & V.I'Image);
15   end Display_State_Value;
16
17end States;








show_unchecked_union.adb

1with States; use States;
2
3procedure Show_Unchecked_Union is
4   V : Unchecked_State_Or_Integer
5         (Use_Enum => True);
6begin
7   V := (Use_Enum => False, I => 3);
8   Display_State_Value (V);
9end Show_Unchecked_Union;







However, in general, you should avoid using the Unchecked_Union aspect
due to the potential issues you might introduce into your application. In the
majority of the cases, you don't need it at all — except for special
cases such as when interfacing with C code that makes use of union types or
solving very specific problems when doing low-level programming.
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	B.3.3 Unchecked Union Types[#15]








Addresses

In other languages, such as C, the concept of pointers and addresses plays
a prominent role. (In fact, in C, many optimizations rely on the usage of
pointer arithmetic.) The concept of addresses does exist in Ada, but it's
mainly reserved for very specific applications, mostly related to low-level
programming. In general, other approaches — such as using access types
— are more than sufficient. (We discuss
access types in another chapter.
Also, later on in that chapter, we discuss the
relation between access types and addresses.)
In this section, we discuss some details about using addresses in Ada.

We make use of the Address type, which is defined in the System
package, to handle addresses. In contrast to other programming languages (such
as C or C++), an address in Ada isn't an integer value: its definition depends
on the compiler implementation, and it's actually driven directly by the
hardware. For now, let's consider it to usually be a private type — this
can be seen as an attempt to achieve application code portability, given the
variations in hardware that result in different definitions of what an address
actually is.

The Address type has support for
address comparison and
address arithmetic (also
known as pointer arithmetic in C). We discuss these topics later in this
section. First, let's talk about the Address attribute and the
Address aspect.
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	13.7 The Package System[#16]







Address attribute

The Address attribute allows us to get the address of an object.
For example:


use_address.adb

1with System; use System;
2
3procedure Use_Address is
4   I : aliased Integer := 5;
5   A : Address;
6begin
7   A := I'Address;
8end Use_Address;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Address_Attribute
MD5: 1ee71b7cd3ed278647eb72f383da877f







Here, we're assigning the address of the I object to the A address.


In the GNAT toolchain

GNAT offers a very useful extension to the System package to
retrieve a string for an address: System.Address_Image. This is the
function profile:

function System.Address_Image
  (A : System.Address) return String;





We can use this function to display the address in an user message, for
example:


show_address_attribute.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with System.Address_Image;
3
4procedure Show_Address_Attribute is
5   I  : aliased Integer := 5;
6begin
7   Put_Line ("Address : "
8             & System.Address_Image (I'Address));
9end Show_Address_Attribute;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Show_Address_Attribute
MD5: 72efddedc57701665594de5ee1939d3d








Runtime output



Address : 00007FFCC0BEA884
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	13.3 Operational and Representation Attributes[#17]


	13.7 The Package System[#18]








Address aspect

Usually, we let the compiler select the address of an object in memory, or let
it use a register to store that object. However, we can specify the address of
an object with the Address aspect. In this case, the compiler won't
select an address automatically, but use the address that we're specifying. For
example:


show_address.adb

 1with System; use System;
 2with System.Address_Image;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Address is
 7
 8   I_Main   : aliased Integer;
 9   I_Mapped : Integer
10                with Address => I_Main'Address;
11begin
12   Put_Line ("I_Main'Address   : "
13              & System.Address_Image
14                  (I_Main'Address));
15   Put_Line ("I_Mapped'Address : "
16              & System.Address_Image
17                  (I_Mapped'Address));
18end Show_Address;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Address_Aspect
MD5: 6339c743b1ca2b1adf58c977540b43d5








Runtime output



I_Main'Address   : 00007FFF413746A4
I_Mapped'Address : 00007FFF413746A4







This approach allows us to create an overlay. For example:


simple_overlay.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Simple_Overlay is
 4   type State is (Off, State_1, State_2)
 5     with Size => Integer'Size;
 6
 7   for State use (Off     => 0,
 8                  State_1 => 32,
 9                  State_2 => 64);
10
11   S : State;
12   I : Integer
13     with Address => S'Address, Import, Volatile;
14begin
15   S := State_2;
16   Put_Line ("I = " & Integer'Image (I));
17end Simple_Overlay;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Simple_Overlay
MD5: a65057882518824d3ea173d193a7ae67








Runtime output



I =  64







Here, I is an overlay of S, as it uses S'Address. With
this approach, we can either use the enumeration directly (by using the
S object of State type) or its integer representation (by using
the I variable).


In the GNAT toolchain

We could call the GNAT-specific System'To_Address attribute when using
the Address aspect:


shared_var_types.ads

 1with System;
 2
 3package Shared_Var_Types is
 4
 5private
 6   R : Integer
 7         with Atomic,
 8              Address =>
 9                System'To_Address (16#FFFF00A0#);
10
11end Shared_Var_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Show_Access_Address
MD5: 5c2d8e0a9615084c2a15f896c61adaa6







In this case, R will refer to the address in memory that we're
specifying (16#FFFF00A0# in this case).

As explained in the
GNAT Reference Manual[#19],
the System'To_Address attribute denotes a function identical to
To_Address (from the System.Storage_Elements package) except
that it is a static attribute. (We talk about the
To_Address function function later on.)

Note that we're using the Atomic aspect here, which we discuss
in another chapter.
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Address comparison

We can compare addresses using the common comparison operators. For example:


show_address.adb

 1with System; use System;
 2with System.Address_Image;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Address is
 7
 8   I, J : Integer;
 9begin
10   Put_Line ("I'Address   : "
11              & System.Address_Image
12                  (I'Address));
13   Put_Line ("J'Address   : "
14              & System.Address_Image
15                  (J'Address));
16
17   if I'Address = J'Address then
18      Put_Line ("I'Address = J'Address");
19   elsif I'Address < J'Address then
20      Put_Line ("I'Address < J'Address");
21   else
22      Put_Line ("I'Address > J'Address");
23   end if;
24end Show_Address;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Address_Aspect
MD5: 24ddb7d05159f26ef3b2ff6bcc2691e8








Runtime output



I'Address   : 00007FFDC2764DEC
J'Address   : 00007FFDC2764DE8
I'Address > J'Address







In this example, we compare the address of the I object with the address
of the J object using the =, < and > operators.
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	13.7 The Package System[#23]








Address to integer conversion

The System.Storage_Elements package offers an integer representation of
an address via the Integer_Address type, which is an integer type
unrelated to common integer types such as Integer and
Long_Integer. (The actual definition of Integer_Address is
compiler-dependent, and it can be a signed or modular integer subtype.)

We can convert between the Address and Integer_Address types by
using the To_Address and To_Integer functions. Let's see an
example:


show_address.adb

 1with System;      use System;
 2
 3with System.Storage_Elements;
 4use  System.Storage_Elements;
 5
 6with System.Address_Image;
 7
 8with Ada.Text_IO; use Ada.Text_IO;
 9
10procedure Show_Address is
11   I      : Integer;
12   A1, A2 : Address;
13   IA     : Integer_Address;
14begin
15   A1 := I'Address;
16   IA := To_Integer (A1);
17   A2 := To_Address (IA);
18
19   Put_Line ("A1 : "
20              & System.Address_Image (A1));
21   Put_Line ("IA : "
22              & Integer_Address'Image (IA));
23   Put_Line ("A2 : "
24              & System.Address_Image (A2));
25end Show_Address;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Pointer_Arith_Ada
MD5: 69e053886fb8e8571d6c94247dc9f30f








Runtime output



A1 : 00007FFD482C4224
IA :  140725814313508
A2 : 00007FFD482C4224







Here, we retrieve the address of the I object and store it in the
A1 address. Then, we convert A1 to an integer address by calling
To_Integer (and store it in IA). Finally, we convert this
integer address back to an actual address by calling To_Address.
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	13.7.1 The Package System.Storage_Elements[#24]








Address arithmetic

Although Ada supports address arithmetic, which we discuss in this section, it
should be reserved for very specific applications such as low-level
programming. However, even in situations that require close access to the
underlying hardware, using address arithmetic might not be the approach you
should consider — make sure to evaluate other options first!

Ada supports address arithmetic via the System.Storage_Elements package,
which includes operators such as + and - for addresses. Let's see
a code example where we iterate over an array by incrementing an address that
points to each component in memory:


show_address.adb

 1with System;      use System;
 2
 3with System.Storage_Elements;
 4use  System.Storage_Elements;
 5
 6with System.Address_Image;
 7
 8with Ada.Text_IO; use Ada.Text_IO;
 9
10procedure Show_Address is
11
12   Arr : array (1 .. 10) of Integer;
13   A   : Address := Arr'Address;
14   --               ^^^^^^^^^^^
15   --   Initializing address object with
16   --   address of the first component of Arr.
17   --
18   --   We could write this as well:
19   --   ___ := Arr (1)'Address
20
21begin
22   for I in Arr'Range loop
23      declare
24         Curr : Integer
25                  with Address => A;
26      begin
27         Curr := I;
28         Put_Line ("Curr'Address : "
29                   & System.Address_Image
30                       (Curr'Address));
31      end;
32
33      --
34      --  Address arithmetic
35      --
36      A := A + Storage_Offset (Integer'Size)
37                 / Storage_Unit;
38      --     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
39      --       Moving to next component
40   end loop;
41
42   for I in Arr'Range loop
43     Put_Line ("Arr ("
44               & Integer'Image (I)
45               & ") :"
46               & Integer'Image (Arr (I)));
47   end loop;
48end Show_Address;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Pointer_Arith_Ada
MD5: 2c1cdd6874036fb9a527baae63a312d9








Runtime output



Curr'Address : 00007FFF49BF84D0
Curr'Address : 00007FFF49BF84D4
Curr'Address : 00007FFF49BF84D8
Curr'Address : 00007FFF49BF84DC
Curr'Address : 00007FFF49BF84E0
Curr'Address : 00007FFF49BF84E4
Curr'Address : 00007FFF49BF84E8
Curr'Address : 00007FFF49BF84EC
Curr'Address : 00007FFF49BF84F0
Curr'Address : 00007FFF49BF84F4
Arr ( 1) : 1
Arr ( 2) : 2
Arr ( 3) : 3
Arr ( 4) : 4
Arr ( 5) : 5
Arr ( 6) : 6
Arr ( 7) : 7
Arr ( 8) : 8
Arr ( 9) : 9
Arr ( 10) : 10







In this example, we initialize the address A by retrieving the address
of the first component of the array Arr. (Note that we could have
written Arr(1)'Address instead of Arr'Address. In any
case, the language guarantees that Arr'Address gives us the address of
the first component, i.e. Arr'Address = Arr(1)'Address.)

Then, in the loop, we declare
an overlay Curr using the current value of the A address. We can
then operate on this overlay — here, we assign I to Curr.
Finally, in the loop, we increment address A and make it point to the
next component in the Arr array — to do so, we calculate the size
of an Integer component in storage units. (For details on storage units,
see the section on
storage size attribute.)


In other languages

The code example above corresponds (more or less) to the following C code:


main.c

 1#include <stdio.h>
 2
 3int main(int argc, const char * argv[])
 4{
 5    int i;
 6    int arr[10];
 7
 8    int *a = arr;
 9    /* int *a = &arr[0]; */
10
11    for (i = 0; i < 10; i++)
12    {
13        *a++ = i;
14        printf("curr address: %p\n", a);
15    }
16
17    for (i = 0; i < 10; i++)
18    {
19        printf("arr[%d]: %d\n", i, arr[i]);
20    }
21
22    return 0;
23}








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Addresses.Pointer_Arith_C
MD5: 7aa709a4d7ed6ce2346dbabc853e28c0








Runtime output



curr address: 0x7ffe55bdf634
curr address: 0x7ffe55bdf638
curr address: 0x7ffe55bdf63c
curr address: 0x7ffe55bdf640
curr address: 0x7ffe55bdf644
curr address: 0x7ffe55bdf648
curr address: 0x7ffe55bdf64c
curr address: 0x7ffe55bdf650
curr address: 0x7ffe55bdf654
curr address: 0x7ffe55bdf658
arr[0]: 0
arr[1]: 1
arr[2]: 2
arr[3]: 3
arr[4]: 4
arr[5]: 5
arr[6]: 6
arr[7]: 7
arr[8]: 8
arr[9]: 9







While pointer arithmetic is very common in C, using address arithmetic in
Ada is far from common, and it should be only used when it's really
necessary to do so.
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	13.3 Operational and Representation Attributes[#25]


	13.7.1 The Package System.Storage_Elements[#26]









Discarding names

As we know, we can use the Image attribute of a type to get a string
associated with this type. This is useful for example when we want to display a
user message for an enumeration type:


show_enumeration_image.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Enumeration_Image is
 4
 5   type Months is
 6     (January, February, March, April,
 7      May, June, July, August, September,
 8      October, November, December);
 9
10   M : constant Months := January;
11begin
12   Put_Line ("Month: "
13             & Months'Image (M));
14end Show_Enumeration_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Discarding_Names.Enumeration_Image
MD5: 3863c5e06641d96b59edb9e76daa7560








Runtime output



Month: JANUARY







This is similar to having this code:


show_enumeration_image.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Enumeration_Image is
 4
 5   type Months is
 6     (January, February, March, April,
 7      May, June, July, August, September,
 8      October, November, December);
 9
10   M : constant Months := January;
11
12   function Months_Image (M : Months)
13                          return String is
14   begin
15      case M is
16         when January   => return "JANUARY";
17         when February  => return "FEBRUARY";
18         when March     => return "MARCH";
19         when April     => return "APRIL";
20         when May       => return "MAY";
21         when June      => return "JUNE";
22         when July      => return "JULY";
23         when August    => return "AUGUST";
24         when September => return "SEPTEMBER";
25         when October   => return "OCTOBER";
26         when November  => return "NOVEMBER";
27         when December  => return "DECEMBER";
28      end case;
29   end Months_Image;
30
31begin
32   Put_Line ("Month: "
33             & Months_Image (M));
34end Show_Enumeration_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Discarding_Names.Enumeration_Image
MD5: 2db86044d2045bd9d4c3998cca36d51c








Runtime output



Month: JANUARY







Here, the Months_Image function associates a string with each month of
the Months enumeration. As expected, the compiler needs to store the
strings used in the Months_Image function when compiling this code.
Similarly, the compiler needs to store strings for the Months
enumeration for the Image attribute.

Sometimes, we don't need to call the Image attribute for a type. In
this case, we could save some storage by eliminating the strings associated
with the type. Here, we can use the Discard_Names aspect to request the
compiler to reduce — as much as possible — the amount of storage
used for storing names for this type. Let's see an example:


show_discard_names.adb

 1procedure Show_Discard_Names is
 2   pragma Warnings (Off, "is not referenced");
 3
 4   type Months is
 5     (January, February, March, April,
 6      May, June, July, August, September,
 7      October, November, December)
 8     with Discard_Names;
 9
10   M : constant Months := January;
11begin
12   null;
13end Show_Discard_Names;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Discarding_Names.Discard_Names
MD5: 7891caac459a4be2096d443ca3190036







In this example, the compiler attempts to not store strings associated with
the Months type duration compilation.

Note that the Discard_Names aspect is available for enumerations,
exceptions, and tagged types.


In the GNAT toolchain

If we add this statement to the Show_Discard_Names procedure above:

Put_Line ("Month: "
          & Months'Image (M));





we see that the application displays "0" instead of "JANUARY". This is
because GNAT doesn't store the strings associated with the Months
type when we use the Discard_Names aspect for the Months
type. (Therefore, the Months'Image attribute doesn't have that
information.) Instead, the compiler uses the integer value of the
enumeration, so that Months'Image returns the corresponding string
for this integer value.
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	Aspect Discard_Names[#27]
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Shared variable control

Ada has built-in support for handling both volatile and atomic data. Let's
start by discussing volatile objects.
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	C.6 Shared Variable Control[#1]







Volatile

A volatile[#2]
object can be described as an object in memory whose value may change between
two consecutive memory accesses of a process A — even if process A itself
hasn't changed the value. This situation may arise when an object in memory is
being shared by multiple threads. For example, a thread B may modify the
value of that object between two read accesses of a thread A. Another typical
example is the one of
memory-mapped I/O[#3], where
the hardware might be constantly changing the value of an object in memory.

Because the value of a volatile object may be constantly changing, a compiler
cannot generate code to store the value of that object in a register and then
use the value from the register in subsequent operations. Storing into a
register is avoided because, if the value is stored there, it would be outdated
if another process had changed the volatile object in the meantime. Instead,
the compiler generates code in such a way that the process must read the value
of the volatile object from memory for each access.

Let's look at a simple example:


show_volatile_object.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Volatile_Object is
 4   Val : Long_Float with Volatile;
 5begin
 6   Val := 0.0;
 7   for I in 0 .. 999 loop
 8      Val := Val + 2.0 * Long_Float (I);
 9   end loop;
10
11   Put_Line ("Val: " & Long_Float'Image (Val));
12end Show_Volatile_Object;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Volatile.Object_Ada
MD5: aa1e276e64e69813bfc3e3ef39f3dd47








Runtime output



Val:  9.99000000000000E+05







In this example, Val has the Volatile aspect, which makes the
object volatile. We can also use the Volatile aspect in type
declarations. For example:


shared_var_types.ads

1package Shared_Var_Types is
2
3   type Volatile_Long_Float is new
4     Long_Float with Volatile;
5
6end Shared_Var_Types;








show_volatile_type.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2with Shared_Var_Types; use Shared_Var_Types;
 3
 4procedure Show_Volatile_Type is
 5   Val : Volatile_Long_Float;
 6begin
 7   Val := 0.0;
 8   for I in 0 .. 999 loop
 9      Val := Val + 2.0 * Volatile_Long_Float (I);
10   end loop;
11
12   Put_Line ("Val: "
13             & Volatile_Long_Float'Image (Val));
14end Show_Volatile_Type;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Volatile.Type
MD5: 0d31156d47b2edcfb94debd016c8bb87








Runtime output



Val:  9.99000000000000E+05







Here, we're declaring a new type Volatile_Long_Float in the
Shared_Var_Types package. This type is based on the Long_Float
type and uses the Volatile aspect. Any object of this type is
automatically volatile.

In addition to that, we can declare components of an array to be volatile. In
this case, we can use the Volatile_Components aspect in the array
declaration. For example:


show_volatile_array_components.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Volatile_Array_Components is
 4   Arr : array (1 .. 2) of Long_Float
 5           with Volatile_Components;
 6begin
 7   Arr := (others => 0.0);
 8
 9   for I in 0 .. 999 loop
10      Arr (1) := Arr (1) +  2.0 * Long_Float (I);
11      Arr (2) := Arr (2) + 10.0 * Long_Float (I);
12   end loop;
13
14   Put_Line ("Arr (1): "
15             & Long_Float'Image (Arr (1)));
16   Put_Line ("Arr (2): "
17             & Long_Float'Image (Arr (2)));
18end Show_Volatile_Array_Components;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Volatile.Array_Components
MD5: 05b3ee20f08c5a85f5872727a61c148d








Runtime output



Arr (1):  9.99000000000000E+05
Arr (2):  4.99500000000000E+06







Note that it's possible to use the Volatile aspect for the array
declaration as well:


shared_var_types.ads

1package Shared_Var_Types is
2
3private
4   Arr : array (1 .. 2) of Long_Float
5           with Volatile;
6
7end Shared_Var_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Volatile.Array
MD5: c9b7b9f94f1fac295753c7e7b9426fb2







Note that, if the Volatile aspect is specified for an object, then the
Volatile_Components aspect is also specified automatically — if it
makes sense in the context, of course. In the example above, even though
Volatile_Components isn't specified in the declaration of the Arr
array , it's automatically set as well.



Independent

When you write code to access a single object in memory, you might actually be
accessing multiple objects at once. For example, when you declare types that
make use of representation clauses — as we've seen in previous sections
—, you might be accessing multiple objects that are grouped together in
a single storage unit. For example, if you have components A and
B stored in the same storage unit, you cannot update A without
actually writing (the same value) to B. Those objects aren't
independently addressable because, in order to access one of them, we have to
actually address multiple objects at once.

When an object is independently addressable, we call it an independent object.
In this case, we make sure that, when accessing that object, we won't be
simultaneously accessing another object. As a consequence, this feature limits
the way objects can be represented in memory, as we'll see next.

To indicate that an object is independent, we use the Independent
aspect:


shared_var_types.ads

1package Shared_Var_Types is
2
3   I : Integer with Independent;
4
5end Shared_Var_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Independent.Object
MD5: d90fef37584ca8802b8a3e3858c0095b







Similarly, we can use this aspect when declaring types:


shared_var_types.ads

 1package Shared_Var_Types is
 2
 3   type Independent_Boolean is new Boolean
 4     with Independent;
 5
 6   type Flags is record
 7      F1 : Independent_Boolean;
 8      F2 : Independent_Boolean;
 9   end record;
10
11end Shared_Var_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Independent.Type
MD5: 7bcbee5b73067149b14c4b1b061f803c







In this example, we're declaring the Independent_Boolean type and using
it in the declaration of the Flag record type. Let's now derive the
Flags type and use a representation clause for the derived type:


shared_var_types-representation.ads

 1package Shared_Var_Types.Representation is
 2
 3   type Rep_Flags is new Flags;
 4
 5   for Rep_Flags use record
 6      F1 at 0 range 0 .. 0;
 7      F2 at 0 range 1 .. 1;
 8      --            ^  ERROR: start position of
 9      --                      F2 is wrong!
10      --    ^          ERROR: F1 and F2 share the
11      --                      same storage unit!
12   end record;
13
14end Shared_Var_Types.Representation;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Independent.Type
MD5: bb9d5badf33401660e7e20a7cd612dab








Build output



shared_var_types-representation.ads:6:26: error: size for independent "F1" must be multiple of Storage_Unit
shared_var_types-representation.ads:7:21: error: position for independent "F2" must be multiple of Storage_Unit
shared_var_types-representation.ads:7:26: error: size for independent "F2" must be multiple of Storage_Unit
gprbuild: *** compilation phase failed







As you can see when trying to compile this example, the representation clause
that we used for Rep_Flags isn't following these limitations:


	The size of each independent component must be a multiple of a storage unit.


	The start position of each independent component must be a multiple of a
storage unit.




For example, for architectures that have a storage unit of one byte —
such as standard desktop computers —, this means that the size and the
position of independent components must be a multiple of a byte. Let's correct
the issues in the code above by:


	setting the size of each independent component to correspond to
Storage_Unit — using a range between 0 and
Storage_Unit - 1 —, and


	setting the start position to zero.




This is the corrected version:


shared_var_types-representation.ads

 1with System;
 2
 3package Shared_Var_Types.Representation is
 4
 5   type Rep_Flags is new Flags;
 6
 7   for Rep_Flags use record
 8      F1 at 0 range 0 .. System.Storage_Unit - 1;
 9      F2 at 1 range 0 .. System.Storage_Unit - 1;
10   end record;
11
12end Shared_Var_Types.Representation;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Independent.Type
MD5: ed57e57cd746698909a4f7ce40a29dfc







Note that the representation that we're now using for Rep_Flags is most
likely the representation that the compiler would have chosen for this data
type. We could, however, have added an empty storage unit between F1 and
F2 — by simply writing F2 at 2 ...:


shared_var_types-representation.ads

 1with System;
 2
 3package Shared_Var_Types.Representation is
 4
 5   type Rep_Flags is new Flags;
 6
 7   for Rep_Flags use record
 8      F1 at 0 range 0 .. System.Storage_Unit - 1;
 9      F2 at 2 range 0 .. System.Storage_Unit - 1;
10   end record;
11
12end Shared_Var_Types.Representation;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Independent.Type
MD5: 71fedf8aac7c19bca1ba3b487efa9b17







As long as we follow the rules for independent objects, we're still allowed to
use representation clauses that don't correspond to the one that the compiler
might select.

For arrays, we can use the Independent_Components aspect:


shared_var_types.ads

1package Shared_Var_Types is
2
3   Flags : array (1 .. 8) of Boolean
4             with Independent_Components;
5
6end Shared_Var_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Independent.Components
MD5: b331d0a13adf45624b664839fe4ba42c







We've just seen in a previous example that some representation clauses might
not work with objects and types that have the Independent aspect. The
same restrictions apply when we use the Independent_Components aspect.
For example, this aspect prevents that array components are packed when the
Pack aspect is used. Let's discuss the following erroneous code example:


shared_var_types.ads

1package Shared_Var_Types is
2
3   type Flags is
4     array (Positive range <>) of Boolean
5       with Independent_Components, Pack;
6
7   F : Flags (1 .. 8) with Size => 8;
8
9end Shared_Var_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Independent.Packed_Independent_Components
MD5: dbaff4f2559ef8a449dad251f42cddc0








Build output



shared_var_types.ads:5:37: warning: cannot pack independent components (RM 13.2(7))
shared_var_types.ads:7:36: error: size for "F" too small, minimum allowed is 64
gprbuild: *** compilation phase failed







As expected, this code doesn't compile. Here, we can have either independent
components, or packed components. We cannot have both at the same time because
packed components aren't independently addressable. The compiler warns us that
the Pack aspect won't have any effect on independent components. When we
use the Size aspect in the declaration of F, we confirm this
limitation. If we remove the Size aspect, however, the code is compiled
successfully because the compiler ignores the Pack aspect and allocates
a larger size for F:


shared_var_types.ads

1package Shared_Var_Types is
2
3   type Flags is
4     array (Positive range <>) of Boolean
5       with Independent_Components, Pack;
6
7end Shared_Var_Types;








show_flags_size.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System;
 3
 4with Shared_Var_Types; use Shared_Var_Types;
 5
 6procedure Show_Flags_Size is
 7   F : Flags (1 .. 8);
 8begin
 9   Put_Line ("Flags'Size:      "
10             & F'Size'Image & " bits");
11   Put_Line ("Flags (1)'Size:  "
12             & F (1)'Size'Image & " bits");
13   Put_Line ("# storage units: "
14             & Integer'Image
15                 (F'Size /
16                  System.Storage_Unit));
17end Show_Flags_Size;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Independent.Packed_Independent_Components
MD5: b96f921b08b1d8207749517f833fc121








Build output



show_flags_size.adb:7:04: warning: variable "F" is read but never assigned [-gnatwv]
shared_var_types.ads:5:37: warning: cannot pack independent components (RM 13.2(7))








Runtime output



Flags'Size:       64 bits
Flags (1)'Size:   8 bits
# storage units:  8







As you can see in the output of the application, even though we specify the
Pack aspect for the Flags type, the compiler allocates eight
storage units, one per each component of the F array.



Atomic

An atomic object is an object that only accepts atomic reads and updates. The
Ada standard specifies that "for an atomic object (including an atomic
component), all reads and updates of the object as a whole are indivisible."
In this case, the compiler must generate Assembly code in such a way that reads
and updates of an atomic object must be done in a single instruction, so that
no other instruction could execute on that same object before the read or
update completes.


In other contexts

Generally, we can say that operations are said to be atomic when they can
be completed without interruptions. This is an important requirement when
we're performing operations on objects in memory that are shared between
multiple processes.

This definition of atomicity above is used, for example, when implementing
databases. However, for this section, we're using the term "atomic"
differently. Here, it really means that reads and updates must be performed
with a single Assembly instruction.

For example, if we have a 32-bit object composed of four 8-bit bytes, the
compiler cannot generate code to read or update the object using four 8-bit
store / load instructions, or even two 16-bit store / load instructions.
In this case, in order to maintain atomicity, the compiler must generate
code using one 32-bit store / load instruction.

Because of this strict definition, we might have objects for which the
Atomic aspect cannot be specified. Lots of machines support integer
types that are larger than the native word-sized integer. For example, a
16-bit machine probably supports both 16-bit and 32-bit integers, but only
16-bit integer objects can be marked as atomic — or, more generally,
only objects that fit into at most 16 bits.



Atomicity may be important, for example, when dealing with shared hardware
registers. In fact, for certain architectures, the hardware may require that
memory-mapped registers are handled atomically. In Ada, we can use the
Atomic aspect to indicate that an object is atomic. This is how we can
use the aspect to declare a shared hardware register:


shared_var_types.ads

 1with System;
 2
 3package Shared_Var_Types is
 4
 5private
 6   R : Integer
 7         with Atomic,
 8              Address =>
 9                System'To_Address (16#FFFF00A0#);
10
11end Shared_Var_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic.Object
MD5: 5c2d8e0a9615084c2a15f896c61adaa6







Note that the Address aspect allows for assigning a variable to a
specific location in the memory. In this example, we're using this aspect to
specify the address of the memory-mapped register.

Later on, we talk again about the
Address aspect and the GNAT-specific
System'To_Address attribute.

In addition to atomic objects, we can declare atomic types — similar to
what we've seen before for volatile types. For example:


shared_var_types.ads

 1with System;
 2
 3package Shared_Var_Types is
 4
 5   type Atomic_Integer is new Integer
 6     with Atomic;
 7
 8private
 9   R : Atomic_Integer
10         with Address =>
11                System'To_Address (16#FFFF00A0#);
12
13end Shared_Var_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic.Types
MD5: 009632ba0155d70def8281ba590f3d12







In this example, we're declaring the Atomic_Integer type, which is an
atomic type. Objects of this type — such as R in this example
— are automatically atomic.

We can also declare atomic array components:


shared_var_types.ads

1package Shared_Var_Types is
2
3private
4   Arr : array (1 .. 2) of Integer
5           with Atomic_Components;
6
7end Shared_Var_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic.Array_Components
MD5: 7501bdf618621a822d451da8d731ef75







This example shows the declaration of the Arr array, which has atomic
components — the atomicity of its components is indicated by the
Atomic_Components aspect.

Note that if an object is atomic, it is also volatile and independent. In other
words, these type declarations are equivalent:


shared_var_types.ads

 1package Shared_Var_Types is
 2
 3   type Atomic_Integer_1 is new Integer
 4     with Atomic;
 5
 6   type Atomic_Integer_2 is new Integer
 7     with Atomic,
 8          Volatile,
 9          Independent;
10
11end Shared_Var_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic.Volatile_Independent
MD5: 3034c7a07698491f961d9b4fb74f03d8







A simular rule applies to components of an array. When we use the
Atomic_Components, the following aspects are implied: Volatile,
Volatile_Components and Independent_Components. For example,
these array declarations are equivalent:


shared_var_types.ads

 1package Shared_Var_Types is
 2
 3   Arr_1 : array (1 .. 2) of Integer
 4             with Atomic_Components;
 5
 6   Arr_2 : array (1 .. 2) of Integer
 7             with Atomic_Components,
 8                  Volatile,
 9                  Volatile_Components,
10                  Independent_Components;
11
12end Shared_Var_Types;









Full-access only


Note

This feature was introduced in Ada 2022.



A full-access object is an object that requires that read or write operations
on this object are performed by reading or writing all bits of the object (i.e.
the full object) at once. Accordingly, a full-access type is a type whose
objects follow this requirement. Note that a full-access type must be
simultaneously a
volatile type or an
atomic type. (In other words,
if a type is neither volatile nor atomic, it cannot be a full-access type.)


Important

Just as a reminder, any atomic type is automatically also
volatile and
independent.



Let's see some examples:


show_full_access_only_types.ads

 1package Show_Full_Access_Only_Types is
 2
 3   type Nonatomic_Full_Access_Type is
 4     new Long_Float
 5       with Volatile, Full_Access_Only;
 6
 7   type Atomic_Full_Access_Type is
 8     new Long_Float
 9       with Atomic, Full_Access_Only;
10
11end Show_Full_Access_Only_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Full_Access_Only_Types
MD5: 6e7d4ee2e89b943d25319de9d8cebdcd







Likewise, we can define nonatomic and atomic full-access objects:


show_full_access_only_objects.ads

1package Show_Full_Access_Only_Objects is
2
3   Nonatomic_Full_Access_Obj : Long_Float
4     with Volatile, Full_Access_Only;
5
6   Atomic_Full_Access_Obj : Long_Float
7     with Atomic, Full_Access_Only;
8
9end Show_Full_Access_Only_Objects;








Relevant topics


	9.10 Shared Variables[#4]


	C.6 Shared Variable Control[#5]







Nonatomic full-access

As we already know, the value of a volatile object may be constantly changing,
so the compiler generates code to read the
value of the volatile object from memory for each access. (In other words, the
value cannot be stored in a register for further processing.)

In the case of nonatomic full-access objects, the value of the object must not
only be read from memory or updated to memory every time, but those operations
must also be performed for the complete record object — not just parts of
it.

Consider the following example:


registers.ads

 1with System;
 2
 3package Registers is
 4
 5   type Boolean_Bit is new Boolean
 6     with Size => 1;
 7
 8   type UInt1 is mod 2**1
 9     with Size => 1;
10
11   type UInt2 is mod 2**2
12     with Size => 2;
13
14   type UInt14 is mod 2**14
15     with Size => 14;
16
17   type Window_Register is record
18      --  horizontal line count
19      Horizontal_Cnt : UInt14 := 16#0#;
20
21      --  unspecified
22      Reserved_14_15 : UInt2  := 16#0#;
23
24      --  vertical line count
25      Vertical_Cnt   : UInt14 := 16#0#;
26
27      --  refresh signalling
28      Refresh_Needed : Boolean_Bit := False;
29
30      --  unspecified
31      Reserved_30    : UInt1  := 16#0#;
32   end record
33     with Size      => 32,
34          Bit_Order => System.Low_Order_First,
35          Volatile,
36          Full_Access_Only;
37
38   for Window_Register use record
39      Horizontal_Cnt at 0 range 0 .. 13;
40      Reserved_14_15 at 0 range 14 .. 15;
41      Vertical_Cnt   at 0 range 16 .. 29;
42      Refresh_Needed at 0 range 30 .. 30;
43      Reserved_30    at 0 range 31 .. 31;
44   end record;
45
46   procedure Show (WR : Window_Register);
47
48end Registers;








registers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Registers is
 4
 5   procedure Show (WR : Window_Register) is
 6   begin
 7      Put_Line ("WR = (Horizontal_Cnt => "
 8                & WR.Horizontal_Cnt'Image
 9                & ",");
10      Put_Line ("      Vertical_Cnt   => "
11                & WR.Vertical_Cnt'Image
12                & ",");
13      Put_Line ("      Refresh_Needed => "
14                & WR.Refresh_Needed'Image
15                & ")");
16   end Show;
17
18end Registers;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Nonatomic_Full_Access_Register
MD5: b825ec2dbbc54201203bf71e4e32fb57







In this example, we have a 32-bit register (of Window_Register type)
that contains window information for a display:

[image: digraph foo {      "Record_R" [          label = "{ position | bits | component } |  { 0 | { { #0 .. 13 | Horizontal_Cnt } | { #14 .. #15 | Reserved_14_15 } | { #16 .. #29 | Vertical_Cnt } | { #30 .. #31 | Reserved_30_31 } } }"          shape = "record"      ]; }]

Let's use the Window_Register type from the Registers package in
a test application:


show_register.adb

 1with Registers;   use Registers;
 2
 3procedure Show_Register is
 4   WR : Window_Register;
 5begin
 6   --  Nonatomic full-access assignments
 7   WR.Horizontal_Cnt := 800;
 8   WR.Vertical_Cnt   := 600;
 9   WR.Refresh_Needed := True;
10
11   Show (WR);
12end Show_Register;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Nonatomic_Full_Access_Register
MD5: 7ff302d6cb282a6276747e8e17f26dfd








Runtime output



WR = (Horizontal_Cnt =>  800,
      Vertical_Cnt   =>  600,
      Refresh_Needed => TRUE)







The example contains assignments such as WR.Horizontal_Cnt := 800 and
WR.Vertical_Cnt:= 600. Because Window_Register is a full-access
type, these assignments are performed for the complete 32-bit register, even
though we're updating just a single component of the record object.

Note that if Window_Register wasn't a full-access object, an
assignment such as WR.Horizontal_Cnt := 800 could be performed with a
16-bit operation. In fact, this is what a compiler would most probably select
for this assignment, because that is more efficient than manipulating the
entire object. Therefore, using a full-access object prevents the compiler
from generating operations that could lead to unexpected results.

Whenever possible, this full-access assignment is performed in a single
machine operation. However, if it's not possible to generate a single machine
operation on the target machine, the compiler may generate multiple operations
for the update of the record components.

Note that we could combine these two assignments into a single one using an
aggregate:


show_register.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Registers;   use Registers;
 4
 5procedure Show_Register is
 6   WR : Window_Register;
 7begin
 8   --  Nonatomic full-access assignment
 9   --  using an aggregate:
10   WR := (Horizontal_Cnt => 800,
11          Vertical_Cnt   => 600,
12          Refresh_Needed => True,
13          others         => <>);
14
15   Show (WR);
16end Show_Register;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Nonatomic_Full_Access_Register
MD5: 9caf39e4a01ee1ec62f0b24747640c01








Runtime output



WR = (Horizontal_Cnt =>  800,
      Vertical_Cnt   =>  600,
      Refresh_Needed => TRUE)







Again, this assignment is performed for the complete 32-bit register —
ideally, using a single 32-bit machine operation — by reading the value
from the memory.

Let's add another statement to the code example:


show_register.adb

 1with Registers;   use Registers;
 2
 3procedure Show_Register is
 4   WR : Window_Register :=
 5          (Horizontal_Cnt => 800,
 6           Vertical_Cnt   => 600,
 7           Refresh_Needed => True,
 8           others         => <>);
 9begin
10   WR := (Horizontal_Cnt =>
11            WR.Horizontal_Cnt * 2,
12          Vertical_Cnt   =>
13            Wr.Vertical_Cnt   * 2,
14          others         => <>);
15
16   Show (WR);
17end Show_Register;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Nonatomic_Full_Access_Register
MD5: cc4e218aef11af34e6d3262084a5c9ce








Runtime output



WR = (Horizontal_Cnt =>  1600,
      Vertical_Cnt   =>  1200,
      Refresh_Needed => FALSE)







In this example, we have an initialization using the same aggregate as in the
previous code example. We also have an assignment, in which we read the value
of WR and use it in the calculation.


Delta aggregates

If we want to just change two components, but leave the information of other
components untouched, we can use a
delta aggregate.
(Note that we haven't discussed the topic of delta aggregates yet: we'll do
that later on in this course. However, in
simple terms, we can use them to modify specific components of a record without
changing the remaining components of the record.)

For example, we might want to update just the vertical count and indicate that
update via the Refresh_Needed flag, but keep the same horizontal count:


show_registers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Registers;   use Registers;
 4
 5procedure Show_Registers is
 6   WR : Window_Register :=
 7          (Horizontal_Cnt => 800,
 8           Vertical_Cnt   => 600,
 9           others         => <>);
10begin
11   --  Delta assignment
12   WR := (WR with delta
13               Vertical_Cnt   => 800,
14               Refresh_Needed => True);
15
16   Show (WR);
17end Show_Registers;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Nonatomic_Full_Access_Register
MD5: 29df44d4fb13539cbd6070c37c217f8a








Runtime output



WR = (Horizontal_Cnt =>  800,
      Vertical_Cnt   =>  800,
      Refresh_Needed => TRUE)







A delta assignment using an aggregate such as (WR with delta ...)
includes reading the value of the complete 32-bit WR object from memory,
changing the components specified after with delta, and writing the
complete 32-bit WR object back to memory. The reason is that we need to
retrieve the information that is supposed to remain intact — the
Horizontal_Cnt and the reserved components — in order to write
them back as a full-access operation.




Atomic full-access

As we already know,
atomic objects only accept
atomic reads and updates, which — as a whole — are indivisible,
i.e. they must be done in a single instruction, so that no other instruction
could execute on that same object before the read or update completes. (Again,
if an object is atomic, this implies it is also volatile.)

In the case of atomic full-access objects, the complete object must be read and
updated. Ideally, this operation corresponds to a single atomic
operation on the target machine, but it can also translate to multiple atomic
operations.

Let's adapt the previous example to illustrate this. First, we adapt the type
in the package:


registers.ads

 1with System;
 2
 3package Registers is
 4
 5   type Boolean_Bit is new Boolean
 6     with Size => 1;
 7
 8   type UInt1 is mod 2**1
 9     with Size => 1;
10
11   type UInt2 is mod 2**2
12     with Size => 2;
13
14   type UInt14 is mod 2**14
15     with Size => 14;
16
17   type Window_Register is record
18      --  horizontal line count
19      Horizontal_Cnt : UInt14 := 16#0#;
20
21      --  unspecified
22      Reserved_14_15 : UInt2  := 16#0#;
23
24      --  vertical line count
25      Vertical_Cnt   : UInt14 := 16#0#;
26
27      --  refresh signalling
28      Refresh_Needed : Boolean_Bit := False;
29
30      --  unspecified
31      Reserved_30    : UInt1  := 16#0#;
32   end record
33     with Size      => 32,
34          Bit_Order => System.Low_Order_First,
35          Atomic,
36          Full_Access_Only;
37
38   for Window_Register use record
39      Horizontal_Cnt at 0 range 0 .. 13;
40      Reserved_14_15 at 0 range 14 .. 15;
41      Vertical_Cnt   at 0 range 16 .. 29;
42      Refresh_Needed at 0 range 30 .. 30;
43      Reserved_30    at 0 range 31 .. 31;
44   end record;
45
46   procedure Show (WR : Window_Register);
47
48end Registers;








registers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Registers is
 4
 5   procedure Show (WR : Window_Register) is
 6   begin
 7      Put_Line ("WR = (Horizontal_Cnt => "
 8                & WR.Horizontal_Cnt'Image
 9                & ",");
10      Put_Line ("      Vertical_Cnt   => "
11                & WR.Vertical_Cnt'Image
12                & ",");
13      Put_Line ("      Refresh_Needed => "
14                & WR.Refresh_Needed'Image
15                & ")");
16   end Show;
17
18end Registers;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Atomic_Full_Access_Register
MD5: dc088d1b0df1af5086a1ae8b46bb6d4d







We then use the package in our test application:


show_register.adb

 1with Registers;   use Registers;
 2
 3procedure Show_Register is
 4   WR : Window_Register :=
 5          (Horizontal_Cnt => 800,
 6           Vertical_Cnt   => 600,
 7           Refresh_Needed => True,
 8           others         => <>);
 9begin
10   WR := (Horizontal_Cnt =>
11            WR.Horizontal_Cnt * 2,
12          Vertical_Cnt   =>
13            Wr.Vertical_Cnt   * 2,
14          others         => <>);
15
16   Show (WR);
17end Show_Register;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Type_Representation.Shared_Variable_Control.Atomic_Full_Access_Register
MD5: cc4e218aef11af34e6d3262084a5c9ce







In this example, we first have an atomic initialization of WR using an
aggregate. Then, we have an atomic assignment to the atomic full-access object
WR. Because its type is an atomic full-access type, the operations are
atomic operations that always access the full object from and to memory.



Comparison: full-access and non-full-access types

An interesting exercise for the reader is to compare the Assembly code
generated for the code example above with a version of this code where the
Window_Register is not a full-access type.


Relevant topics

On a Linux platform, you can use objdump to retrieve the Assembly code
and diff to see the difference between both versions of the type.
For example:

objdump --target=elf64-x86-64 -d -S ./show_register > full_access.txt

#  [...]

diff --width=80 -t -y full_access.txt no_full_access.txt







By doing this kind of comparisons, you might gain more insights on the impact
of the Full_Access_Only aspect.


For further reading...

By running on a PC, we can compare the
Intel Assembly[#6] code for various
versions of the code. Let's start with the version using a nonatomic
full-access version of Window_Register vs. the nonatomic
(non-full-access) version of Window_Register:

type Window_Register is record
   --  [...]
end record
  with Size      => 32,
       Bit_Order => System.Low_Order_First,
       Volatile,
       Full_Access_Only;

type Window_Register is record
   --  [...]
end record
  with Size      => 32,
       Bit_Order => System.Low_Order_First,
       Volatile;





These are the manually-adapted differences between both versions:

--  Volatile, Full_Access_Only         |  --  Volatile

procedure Show_Register is                procedure Show_Register is
    push   %rbp                               push   %rbp
    mov    %rsp,%rbp                          mov    %rsp,%rbp
    sub    $0x20,%rsp                  |      sub    $0x10,%rsp
   WR : Window_Register :=                   WR : Window_Register :=
          (Horizontal_Cnt => 800,                   (Horizontal_Cnt => 800,
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0xffffc000,%eax                   and    $0xffffc000,%eax
    or     $0x320,%eax                        or     $0x320,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0x3f,%ah                          and    $0x3f,%ah
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0xc000ffff,%eax                   and    $0xc000ffff,%eax
    or     $0x2580000,%eax                    or     $0x2580000,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    or     $0x40000000,%eax                   or     $0x40000000,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0x7fffffff,%eax                   and    $0x7fffffff,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax             <
    mov    %eax,-0x14(%rbp)            <
    mov    -0x14(%rbp),%eax            <
    mov    %eax,-0x8(%rbp)             <
           Vertical_Cnt   => 600,                    Vertical_Cnt   => 600,
           Refresh_Needed => True,                   Refresh_Needed => True,
           others         => <>);                    others         => <>);
begin                                     begin
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
            WR.Horizontal_Cnt * 2,                    WR.Horizontal_Cnt * 2,
    mov    -0x8(%rbp),%eax             |      mov    -0x4(%rbp),%eax
    mov    %eax,%ecx                   <
    and    $0x3fff,%cx                 |      and    $0x3fff,%ax
                                       >      add    %eax,%eax
   WR := (Horizontal_Cnt =>            <
    mov    -0xc(%rbp),%eax             <
    mov    %eax,%edx                   <
            WR.Horizontal_Cnt * 2,     <
    lea    (%rcx,%rcx,1),%eax          <
    and    $0x3fff,%ax                        and    $0x3fff,%ax
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
    movzwl %ax,%eax                           movzwl %ax,%eax
    and    $0x3fff,%eax                       and    $0x3fff,%eax
    and    $0xffffc000,%edx            <
    or     %edx,%eax                   <
    mov    %eax,%edx                          mov    %eax,%edx
    mov    %edx,%eax                   |      mov    -0x8(%rbp),%eax
    mov    %eax,-0xc(%rbp)             |      and    $0xffffc000,%eax
    mov    -0xc(%rbp),%eax             |      or     %edx,%eax
                                       >      mov    %eax,-0x8(%rbp)
                                       >      mov    -0x8(%rbp),%eax
    and    $0x3f,%ah                          and    $0x3f,%ah
    mov    %eax,-0xc(%rbp)             |      mov    %eax,-0x8(%rbp)
          Vertical_Cnt   =>                         Vertical_Cnt   =>
            Wr.Vertical_Cnt   * 2,                    Wr.Vertical_Cnt   * 2,
    mov    -0x8(%rbp),%eax             |      mov    -0x4(%rbp),%eax
    shr    $0x10,%eax                         shr    $0x10,%eax
    mov    %eax,%ecx                   |      and    $0x3fff,%ax
    and    $0x3fff,%cx                 |      add    %eax,%eax
   WR := (Horizontal_Cnt =>            <
    mov    -0xc(%rbp),%eax             <
    mov    %eax,%edx                   <
            Wr.Vertical_Cnt   * 2,     <
    lea    (%rcx,%rcx,1),%eax          <
    and    $0x3fff,%ax                        and    $0x3fff,%ax
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
    movzwl %ax,%eax                           movzwl %ax,%eax
    and    $0x3fff,%eax                       and    $0x3fff,%eax
    shl    $0x10,%eax                         shl    $0x10,%eax
    and    $0xc000ffff,%edx            <
    or     %edx,%eax                   <
    mov    %eax,%edx                          mov    %eax,%edx
    mov    %edx,%eax                   |      mov    -0x8(%rbp),%eax
    mov    %eax,-0xc(%rbp)             |      and    $0xc000ffff,%eax
    mov    -0xc(%rbp),%eax             |      or     %edx,%eax
                                       >      mov    %eax,-0x8(%rbp)
                                       >      mov    -0x8(%rbp),%eax
    and    $0xbfffffff,%eax                   and    $0xbfffffff,%eax
    mov    %eax,-0xc(%rbp)             |      mov    %eax,-0x8(%rbp)
    mov    -0xc(%rbp),%eax             |      mov    -0x8(%rbp),%eax
    and    $0x7fffffff,%eax                   and    $0x7fffffff,%eax
    mov    %eax,-0xc(%rbp)             <
    mov    -0xc(%rbp),%eax             <
    mov    %eax,-0x8(%rbp)                    mov    %eax,-0x8(%rbp)
                                       >      mov    -0x8(%rbp),%eax
                                       >      mov    %eax,-0x4(%rbp)
          others         => <>);                    others         => <>);





As we can see, although parts of the Assembly code are the same or look
very similar, there are some differences between both versions. These
differences are mostly related to the fact that we have to operate on the
full object when reading it from memory.

Likewise, we can compare the Assembly code for the atomic full-access
version of Window_Register vs. the atomic (non-full-access) version
of Window_Register:

type Window_Register is record
   --  [...]
end record
  with Size      => 32,
       Bit_Order => System.Low_Order_First,
       Atomic,
       Full_Access_Only;

type Window_Register is record
   --  [...]
end record
  with Size      => 32,
       Bit_Order => System.Low_Order_First,
       Atomic;





These are the manually-adapted differences between both versions:

--  Atomic, Full_Access_Only           |  --  Atomic

procedure Show_Register is                procedure Show_Register is
    push   %rbp                               push   %rbp
    mov    %rsp,%rbp                          mov    %rsp,%rbp
    sub    $0x20,%rsp                  |      sub    $0x10,%rsp
   WR : Window_Register :=                   WR : Window_Register :=
          (Horizontal_Cnt => 800,                   (Horizontal_Cnt => 800,
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0xffffc000,%eax                   and    $0xffffc000,%eax
    or     $0x320,%eax                        or     $0x320,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0x3f,%ah                          and    $0x3f,%ah
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0xc000ffff,%eax                   and    $0xc000ffff,%eax
    or     $0x2580000,%eax                    or     $0x2580000,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    or     $0x40000000,%eax                   or     $0x40000000,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0x7fffffff,%eax                   and    $0x7fffffff,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
   WR : Window_Register :=                   WR : Window_Register :=
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    mov    %eax,-0x14(%rbp)            <
    mov    -0x14(%rbp),%eax            <
    mov    %eax,-0x8(%rbp)                    mov    %eax,-0x8(%rbp)
           Vertical_Cnt   => 600,                    Vertical_Cnt   => 600,
           Refresh_Needed => True,                   Refresh_Needed => True,
           others         => <>);                    others         => <>);
begin                                     begin
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
            WR.Horizontal_Cnt * 2,                    WR.Horizontal_Cnt * 2,
    mov    -0x8(%rbp),%eax                    mov    -0x8(%rbp),%eax
    mov    %eax,%ecx                   <
    and    $0x3fff,%cx                 |      and    $0x3fff,%ax
                                       |      add    %eax,%eax
   WR := (Horizontal_Cnt =>            <
    mov    -0xc(%rbp),%eax             <
    mov    %eax,%edx                   <
            WR.Horizontal_Cnt * 2,     <
    lea    (%rcx,%rcx,1),%eax          <
    and    $0x3fff,%ax                        and    $0x3fff,%ax
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
    movzwl %ax,%eax                           movzwl %ax,%eax
    and    $0x3fff,%eax                       and    $0x3fff,%eax
                                       >      mov    %eax,%edx
                                       >      mov    -0xc(%rbp),%eax
    and    $0xffffc000,%edx            |      and    $0xffffc000,%eax
    or     %edx,%eax                          or     %edx,%eax
    mov    %eax,%edx                   <
    mov    %edx,%eax                   <
    mov    %eax,-0xc(%rbp)                    mov    %eax,-0xc(%rbp)
    mov    -0xc(%rbp),%eax                    mov    -0xc(%rbp),%eax
    and    $0x3f,%ah                          and    $0x3f,%ah
    mov    %eax,-0xc(%rbp)                    mov    %eax,-0xc(%rbp)
          Vertical_Cnt   =>                         Vertical_Cnt   =>
            Wr.Vertical_Cnt   * 2,                    Wr.Vertical_Cnt   * 2,
    mov    -0x8(%rbp),%eax                    mov    -0x8(%rbp),%eax
    shr    $0x10,%eax                         shr    $0x10,%eax
    mov    %eax,%ecx                   <
    and    $0x3fff,%cx                 |      and    $0x3fff,%ax
                                       >      add    %eax,%eax
   WR := (Horizontal_Cnt =>            <
    mov    -0xc(%rbp),%eax             <
    mov    %eax,%edx                   <
            Wr.Vertical_Cnt   * 2,     <
    lea    (%rcx,%rcx,1),%eax          <
    and    $0x3fff,%ax                        and    $0x3fff,%ax
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
    movzwl %ax,%eax                           movzwl %ax,%eax
    and    $0x3fff,%eax                       and    $0x3fff,%eax
    shl    $0x10,%eax                         shl    $0x10,%eax
                                       >      mov    %eax,%edx
                                       >      mov    -0xc(%rbp),%eax
    and    $0xc000ffff,%edx            |      and    $0xc000ffff,%eax
    or     %edx,%eax                          or     %edx,%eax
    mov    %eax,%edx                   <
    mov    %edx,%eax                   <
    mov    %eax,-0xc(%rbp)                    mov    %eax,-0xc(%rbp)
    mov    -0xc(%rbp),%eax                    mov    -0xc(%rbp),%eax
    and    $0xbfffffff,%eax                   and    $0xbfffffff,%eax
    mov    %eax,-0xc(%rbp)                    mov    %eax,-0xc(%rbp)
    mov    -0xc(%rbp),%eax                    mov    -0xc(%rbp),%eax
    and    $0x7fffffff,%eax                   and    $0x7fffffff,%eax
    mov    %eax,-0xc(%rbp)                    mov    %eax,-0xc(%rbp)
    mov    -0xc(%rbp),%eax                    mov    -0xc(%rbp),%eax
    xchg   %eax,-0x8(%rbp)                    xchg   %eax,-0x8(%rbp)
          others         => <>);                    others         => <>);





Again, there are some differences between both versions, even though some
parts of the Assembly code are the same or look very similar.

Finally, we might want to compare the nonatomic full-access version
vs. the atomic full-access version of the Window_Register type:

type Window_Register is record
   --  [...]
end record
  with Size      => 32,
       Bit_Order => System.Low_Order_First,
       Volatile,
       Full_Access_Only;

type Window_Register is record
   --  [...]
end record
  with Size      => 32,
       Bit_Order => System.Low_Order_First,
       Atomic,
       Full_Access_Only;





These are the differences between both versions:

--  Volatile, Full_Access_Only         |  --  Atomic, Full_Access_Only

procedure Show_Register is                procedure Show_Register is
    push   %rbp                               push   %rbp
    mov    %rsp,%rbp                          mov    %rsp,%rbp
    sub    $0x20,%rsp                         sub    $0x20,%rsp
   WR : Window_Register :=                   WR : Window_Register :=
          (Horizontal_Cnt => 800,                   (Horizontal_Cnt => 800,
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0xffffc000,%eax                   and    $0xffffc000,%eax
    or     $0x320,%eax                        or     $0x320,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0x3f,%ah                          and    $0x3f,%ah
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0xc000ffff,%eax                   and    $0xc000ffff,%eax
    or     $0x2580000,%eax                    or     $0x2580000,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    or     $0x40000000,%eax                   or     $0x40000000,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    and    $0x7fffffff,%eax                   and    $0x7fffffff,%eax
    mov    %eax,-0x4(%rbp)                    mov    %eax,-0x4(%rbp)
   WR : Window_Register :=                   WR : Window_Register :=
    mov    -0x4(%rbp),%eax                    mov    -0x4(%rbp),%eax
    mov    %eax,-0x14(%rbp)                   mov    %eax,-0x14(%rbp)
    mov    -0x14(%rbp),%eax                   mov    -0x14(%rbp),%eax
    mov    %eax,-0x8(%rbp)                    mov    %eax,-0x8(%rbp)
           Vertical_Cnt   => 600,                    Vertical_Cnt   => 600,
           Refresh_Needed => True,                   Refresh_Needed => True,
           others         => <>);                    others         => <>);
begin                                     begin
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
            WR.Horizontal_Cnt * 2,                    WR.Horizontal_Cnt * 2,
    mov    -0x8(%rbp),%eax                    mov    -0x8(%rbp),%eax
    mov    %eax,%ecx                          mov    %eax,%ecx
    and    $0x3fff,%cx                        and    $0x3fff,%cx
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
    mov    -0xc(%rbp),%eax                    mov    -0xc(%rbp),%eax
    mov    %eax,%edx                          mov    %eax,%edx
            WR.Horizontal_Cnt * 2,                    WR.Horizontal_Cnt * 2,
    lea    (%rcx,%rcx,1),%eax                 lea    (%rcx,%rcx,1),%eax
    and    $0x3fff,%ax                        and    $0x3fff,%ax
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
    movzwl %ax,%eax                           movzwl %ax,%eax
    and    $0x3fff,%eax                       and    $0x3fff,%eax
    and    $0xffffc000,%edx                   and    $0xffffc000,%edx
    or     %edx,%eax                          or     %edx,%eax
    mov    %eax,%edx                          mov    %eax,%edx
    mov    %edx,%eax                          mov    %edx,%eax
    mov    %eax,-0xc(%rbp)                    mov    %eax,-0xc(%rbp)
    mov    -0xc(%rbp),%eax                    mov    -0xc(%rbp),%eax
    and    $0x3f,%ah                          and    $0x3f,%ah
    mov    %eax,-0xc(%rbp)                    mov    %eax,-0xc(%rbp)
          Vertical_Cnt   =>                         Vertical_Cnt   =>
            Wr.Vertical_Cnt   * 2,                    Wr.Vertical_Cnt   * 2,
    mov    -0x8(%rbp),%eax                    mov    -0x8(%rbp),%eax
    shr    $0x10,%eax                         shr    $0x10,%eax
    mov    %eax,%ecx                          mov    %eax,%ecx
    and    $0x3fff,%cx                        and    $0x3fff,%cx
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
    mov    -0xc(%rbp),%eax                    mov    -0xc(%rbp),%eax
    mov    %eax,%edx                          mov    %eax,%edx
            Wr.Vertical_Cnt   * 2,                    Wr.Vertical_Cnt   * 2,
    lea    (%rcx,%rcx,1),%eax                 lea    (%rcx,%rcx,1),%eax
    and    $0x3fff,%ax                        and    $0x3fff,%ax
   WR := (Horizontal_Cnt =>                  WR := (Horizontal_Cnt =>
    movzwl %ax,%eax                           movzwl %ax,%eax
    and    $0x3fff,%eax                       and    $0x3fff,%eax
    shl    $0x10,%eax                         shl    $0x10,%eax
    and    $0xc000ffff,%edx                   and    $0xc000ffff,%edx
    or     %edx,%eax                          or     %edx,%eax
    mov    %eax,%edx                          mov    %eax,%edx
    mov    %edx,%eax                          mov    %edx,%eax
    mov    %eax,-0xc(%rbp)                    mov    %eax,-0xc(%rbp)
    mov    -0xc(%rbp),%eax                    mov    -0xc(%rbp),%eax
    and    $0xbfffffff,%eax                   and    $0xbfffffff,%eax
    mov    %eax,-0xc(%rbp)                    mov    %eax,-0xc(%rbp)
    mov    -0xc(%rbp),%eax                    mov    -0xc(%rbp),%eax
    and    $0x7fffffff,%eax                   and    $0x7fffffff,%eax
    mov    %eax,-0xc(%rbp)                    mov    %eax,-0xc(%rbp)
    mov    -0xc(%rbp),%eax                    mov    -0xc(%rbp),%eax
    mov    %eax,-0x8(%rbp)             |      xchg   %eax,-0x8(%rbp)
          others         => <>);                    others         => <>);





As we can see, the code is basically the same — except for the last
Assembly instruction, which is a mov instruction in the volatile version
and an xchg instruction in the atomic version — which is an atomic
instruction on this platform.






Atomic operations


Note

This feature was introduced in Ada 2022.



Ada offers four packages to handle atomic operations. Those packages are
child packages of the System.Atomic_Operations package. We will discuss
each of those package individually in this section.


Relevant topics


	C.6.1 The Package System.Atomic_Operations[#7]







Atomic Exchange

The generic System.Atomic_Operations.Exchange package provides
operations to compare and exchange objects atomically.


Atomic_Exchange function

One of those operations is the Atomic_Exchange function, which performs
the following operations atomically:

function Atomic_Exchange
  (Item  : aliased in out Atomic_Type;
   Value :                Atomic_Type)
   return Atomic_Type
is
   Old_Item : Atomic_Type := Item;
begin
   Item := Value;
   return Old_Item;
end Atomic_Exchange;





As mentioned in the Ada Reference Manual[#8], we can use this
function to implement a spinlock[#9]. For example:


spinlocks.ads

 1with System.Atomic_Operations.Exchange;
 2
 3package Spinlocks is
 4
 5   type Lock is new Boolean with Atomic;
 6
 7   package Lock_Exchange is new
 8     System.Atomic_Operations.Exchange (Lock);
 9
10end Spinlocks;








show_locks.adb

 1with Spinlocks;
 2use Spinlocks;
 3use Spinlocks.Lock_Exchange;
 4
 5procedure Show_Locks is
 6   L : aliased Lock := False;
 7begin
 8   --  Get the lock
 9   while Atomic_Exchange (Item  => L,
10                          Value => True) loop
11      null;
12   end loop;
13
14   --  At this point, we got the lock.
15   --  Do some stuff here...
16
17   --  Release the lock.
18   L := False;
19end Show_Locks;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic_Operations.Exchange
MD5: 36699b917485f14c4e8a905a6c48027b







In this example, we call the Atomic_Exchange function for the L
lock until we get it. Then, we can use the resource that we protected via the
lock. After we finish our work, we can release the lock by setting L to
False.

Note that System.Atomic_Operations.Exchange is a generic package, so we
have to instantiate it for a specific atomic type — in this case, the
atomic Boolean Lock type.

We can use multiple tasks to illustrate a situation where using a lock is
important to ensure that no race conditions[#10]
occur:


spinlocks.ads

 1with System.Atomic_Operations.Exchange;
 2
 3package Spinlocks is
 4
 5   type Lock is new Boolean with Atomic;
 6
 7   package Lock_Exchange is new
 8     System.Atomic_Operations.Exchange (Lock);
 9
10end Spinlocks;








show_locks.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Spinlocks;
 4use Spinlocks;
 5use Spinlocks.Lock_Exchange;
 6
 7procedure Show_Locks is
 8   L          : aliased Lock := False;
 9   Task_Count : Integer      := 0;
10
11   task type A_Task;
12
13   task body A_Task is
14      Task_Number : Integer;
15   begin
16      --  Get the lock
17      while Atomic_Exchange (Item  => L,
18                             Value => True) loop
19         null;
20      end loop;
21
22      --  At this point, we got the lock.
23      Task_Count  := Task_Count + 1;
24      Task_Number := Task_Count;
25
26      --  Release the lock.
27      L := False;
28
29      Put_Line ("Task_Number: "
30                & Task_Number'Image);
31
32   end A_Task;
33
34   A, B, C, D, E, F : A_Task;
35begin
36   null;
37end Show_Locks;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic_Operations.Exchange
MD5: af7aad741c20be1e8433b04def90dcdb








Runtime output



Task_Number:  1
Task_Number:  2
Task_Number:  3
Task_Number:  4
Task_Number:  5
Task_Number:  6







In this example, we create multiple tasks (A, B, C,
D, E, F) and initialize the Task_Number of each task
based on the value of the Task_Count variable. To avoid multiple tasks accessing
the Task_Count variable at the same time, we use the L lock, which we get
before updating the Task_Count.



Atomic_Compare_And_Exchange function

Another function from the System.Atomic_Operations.Exchange package is
Atomic_Compare_And_Exchange, which performs the following operations
atomically:

function Atomic_Compare_And_Exchange
  (Item    : aliased in out Atomic_Type;
   Prior   : aliased in out Atomic_Type;
   Desired :                Atomic_Type)
   return Boolean is
 begin
    if Item = Prior then
       Item := Value;
       --  The item is only updated if its
       --  value and the prior value match

       return True;
    else
       Prior := Item;
       return False;
    end if;
 end Atomic_Exchange;





This function can be used for
lazy initialization[#11] of variables. For
example, consider an application with multiple tasks that make use of a certain
value that isn't initialized at its declaration, but at a later point in time
by an arbitrary task. We can use Atomic_Compare_And_Exchange to ensure
that we only update that value if it wasn't already initialized.

Let's start with the package specification:


lazy_initialization.ads

 1with System.Atomic_Operations.Exchange;
 2with Ada.Numerics.Discrete_Random;
 3
 4package Lazy_Initialization is
 5
 6   subtype Lazy_Value_Total_Range is
 7     Integer range 99 .. 1000;
 8
 9   Lazy_Value_Default_Value : constant
10      := Lazy_Value_Total_Range'First;
11
12   subtype Lazy_Value_Range is Integer
13     range Lazy_Value_Default_Value + 1 ..
14           Lazy_Value_Total_Range'Last;
15
16   type Lazy_Value is new Lazy_Value_Total_Range
17     with Atomic,
18          Default_Value =>
19            Lazy_Value_Default_Value;
20
21   package Value_Exchange is new
22     System.Atomic_Operations.Exchange
23       (Lazy_Value);
24
25   package Lazy_Value_Random is new
26     Ada.Numerics.Discrete_Random
27       (Lazy_Value_Range);
28
29end Lazy_Initialization;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic_Operations.Compare_And_Exchange
MD5: 09d49998aa7e3d5c0cfb4b74af8e542b







In this package, we declare the Lazy_Value type with a default value
(specified by the Lazy_Value_Default_Value constant). Note that we have
two ranges here: Lazy_Value_Total_Range and Lazy_Value_Range. We
use the Lazy_Value_Total_Range in the declaration of the
Lazy_Value type: it indicates the total range of the type. We use the
Lazy_Value_Range as a constraint for the total range. This range doesn't
contain the default value (Lazy_Value_Default_Value), and we use it to
indicate the valid values of the type. (We discuss the application of
Lazy_Value_Range later on.)

Also, in addition to instantiating the System.Atomic_Operations.Exchange
package, we instantiate the Ada.Numerics.Discrete_Random package, which
we'll use to generate random numbers in the expected range
(Lazy_Value_Range) for the Lazy_Value type. (We discussed the
Ada.Numerics.Discrete_Random package in the
Introduction to Ada[#12] course.)

Let's use this package in the Show_Lazy_Initialization procedure:


show_lazy_initialization.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Numerics.Discrete_Random;
 3
 4with Lazy_Initialization;
 5use Lazy_Initialization;
 6use Lazy_Initialization.Value_Exchange;
 7
 8procedure Show_Lazy_Initialization is
 9  subtype A_Task_Number is Natural;
10
11   Value             : aliased Lazy_Value;
12   Value_Modified_By : A_Task_Number := 0;
13
14   task type A_Task is
15      entry Start (This : A_Task_Number);
16      entry Stop;
17   end A_Task;
18
19   task body A_Task is
20      Task_Number : A_Task_Number;
21   begin
22      accept Start (This : A_Task_Number) do
23         Task_Number := This;
24      end Start;
25
26      Sleep_Some_Time : declare
27         subtype Sleep_Range is
28           Integer range 1 .. 3;
29
30         package Random_Sleep is new
31           Ada.Numerics.Discrete_Random
32             (Sleep_Range);
33         use Random_Sleep;
34
35         G : Generator;
36      begin
37         Reset (G);
38         delay Duration (Random (G));
39      end Sleep_Some_Time;
40
41      Generate_Value : declare
42         use Lazy_Value_Random;
43
44         G             :         Generator;
45         Initial_Value :         Lazy_Value_Range;
46         Prior         : aliased Lazy_Value;
47      begin
48         Reset (G);
49         Initial_Value := Random (G);
50
51         if Atomic_Compare_And_Exchange
52           (Item    => Value,
53            Prior   => Prior,
54            Desired => Lazy_Value (Initial_Value))
55         then
56            Value_Modified_By := Task_Number;
57         end if;
58
59      end Generate_Value;
60
61      accept Stop do
62         Put_Line ("Current task number:     "
63                   & Task_Number'Image);
64         Put_Line ("Value:               "
65                   & Value'Image);
66         Put_Line ("Modified by task number: "
67                   & Value_Modified_By'Image);
68         Put_Line ("---------------------");
69      end Stop;
70   end A_Task;
71
72   Some_Tasks : array (1 .. 5) of A_Task;
73begin
74   for I in Some_Tasks'Range loop
75      Some_Tasks (I).Start (I);
76   end loop;
77   for I in Some_Tasks'Range loop
78      Some_Tasks (I).Stop;
79   end loop;
80end Show_Lazy_Initialization;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic_Operations.Compare_And_Exchange
MD5: 9cc898edd767f8bbcfe2c81e7ca0e442








Runtime output



Current task number:      1
Value:                428
Modified by task number:  5
---------------------
Current task number:      2
Value:                428
Modified by task number:  5
---------------------
Current task number:      3
Value:                428
Modified by task number:  5
---------------------
Current task number:      4
Value:                428
Modified by task number:  5
---------------------
Current task number:      5
Value:                428
Modified by task number:  5
---------------------







In the Show_Lazy_Initialization procedure, the most important variable
is Value, which is the variable we have to protect via a lock. In
addition, we have the auxiliary Value_Modified_By variable, which
indicates the number of the task that initialized the Value variable.

In this procedure, we also see two main
block statements:


	the block statement with the Sleep_Some_Time identifier, where we make
the task sleep for a random amount of time (in the Sleep_Range
range); and


	the block statement with the Generate_Value identified, where we
generate a new value randomly and attempt to update the Value variable
(of Lazy_Value type).




Let's discuss some details about the Generate_Value block statement. We
start by declaring some variables. Here, it's important to highlight that the
Prior variable is initialized with the default value
(Lazy_Value_Default_Value). We then call the
Atomic_Compare_And_Exchange function, and pass Value and
Prior as actual parameters. We can have two possible outcomes:


	If Value hasn't been modified by a task yet, it will contain the
default value — which means that the values of the Prior and
Value variables match. In this case, the call to
Atomic_Compare_And_Exchange will update the Value variable and
return True. (Note that we also update the Value_Modified_By
variable when Atomic_Compare_And_Exchange returns True.)


	If Value has already been modified by a task, its value doesn't match
the (default) value of Prior anymore, so the call to
Atomic_Compare_And_Exchange doesn't modify the Value variable.




As mentioned before, we use a stricter range for the random number generator:
the Lazy_Value_Range. Because this range doesn't contain the default
value (Lazy_Value_Default_Value), we will never generate a random value
that matches the default value.


Relevant topics


	C.6.2 The Package System.Atomic_Operations.Exchange[#13]








Atomic Test and Set

The System.Atomic_Operations.Test_And_Set package provides atomic
operations to set and clear atomic flags. To declare flags, we use the
Test_And_Set_Flag type. The following operations are available:


	the Atomic_Test_And_Set function, which we call to verify whether the
flag can be set and, if positive, set it accordingly.



	The function returns True if the flag has been set, and
False otherwise.









	the Atomic_Clear procedure, which we call to clear the flag.




We can use these functions to implement an application similar to the
spinlocks that
we've seen before:


show_test_and_set.adb

 1with System.Atomic_Operations.Test_And_Set;
 2use  System.Atomic_Operations.Test_And_Set;
 3
 4with Ada.Text_IO; use Ada.Text_IO;
 5
 6procedure Show_Test_And_Set is
 7   Lock       : aliased Test_And_Set_Flag;
 8   Task_Count : Integer := 0;
 9
10   task type A_Task;
11
12   task body A_Task is
13      Task_Number : Integer;
14   begin
15      --  Get the lock
16      while Atomic_Test_And_Set (Lock) loop
17         null;
18      end loop;
19
20      --  At this point, we got the lock.
21      Task_Count  := Task_Count + 1;
22      Task_Number := Task_Count;
23
24      --  Release the lock.
25      Atomic_Clear (Lock);
26
27      Put_Line ("Task_Number: "
28                & Task_Number'Image);
29
30   end A_Task;
31
32   A, B, C, D, E, F : A_Task;
33begin
34   null;
35end Show_Test_And_Set;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic_Operations.Test_And_Set
MD5: 45814e2e157d3fd45f876c89914a5cc5








Runtime output



Task_Number:  1
Task_Number:  2
Task_Number:  3
Task_Number:  4
Task_Number:  5
Task_Number:  6







Here, we call Atomic_Test_And_Set in a loop until it returns
True. Then, we update the Task_Count and Task_Number. When we're
finished, we call the Atomic_Clear procedure to release the lock.


Relevant topics


	C.6.3 The Package System.Atomic_Operations.Test_and_Set[#14]








Atomic Operations using Integer Arithmetic

The generic System.Atomic_Operations.Integer_Arithmetic package is used
to perform atomic operations on atomic integer types. It provides the following
operations: the procedures Atomic_Add and Atomic_Subtract, and
the functions Atomic_Fetch_And_Add and Atomic_Fetch_And_Subtract.
The procedures and the corresponding Atomic_Fetch_ functions do
basically the same thing, with the difference that Atomic_Fetch
functions return the previous (older) value of the input item.

The Atomic_Add procedure performs the following operations atomically:

procedure Atomic_Add
  (Item  : aliased in out Atomic_Type;
   Value :                Atomic_Type) is
begin
   Item := Item + Value;
end Atomic_Add;





The corresponding Atomic_Fetch_And_Add function performs the following
operations atomically:

function Atomic_Fetch_And_Add
  (Item  : aliased in out Atomic_Type;
   Value :                Atomic_Type)
   return Atomic_Type
is
   Old_Item : Atomic_Type := Item;
begin
   Item := Item + Value;
   return Old_Item;
end Atomic_Fetch_And_Add;





The Atomic_Subtract procedure performs the following operations
atomically:

procedure Atomic_Subtract
  (Item  : aliased in out Atomic_Type;
   Value :                Atomic_Type) is
begin
   Item := Item - Value;
end Atomic_Subtract;





The corresponding Atomic_Fetch_And_Subtract function performs the
following operations atomically:

function Atomic_Fetch_And_Subtract
  (Item  : aliased in out Atomic_Type;
   Value :                Atomic_Type)
   return Atomic_Type
is
   Old_Item : Atomic_Type := Item;
begin
   Item := Item - Value;
   return Old_Item;
end Atomic_Fetch_And_Subtract;





Let's reuse a
previous code example
that sets a unique number for each task. In this case, instead of using locks, we
use the atomic operations from the
System.Atomic_Operations.Integer_Arithmetic package:


atomic_integers.ads

 1with System.Atomic_Operations.Integer_Arithmetic;
 2
 3package Atomic_Integers is
 4
 5   type Atomic_Integer is new Integer
 6     with Atomic;
 7
 8   package Atomic_Integer_Arithmetic is new
 9     System.Atomic_Operations.Integer_Arithmetic
10       (Atomic_Integer);
11
12end Atomic_Integers;








show_atomic_integers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Atomic_Integers;
 4use  Atomic_Integers;
 5use  Atomic_Integers.Atomic_Integer_Arithmetic;
 6
 7procedure Show_Atomic_Integers is
 8   Task_Count : aliased Atomic_Integer := 0;
 9
10   task type A_Task;
11
12   task body A_Task is
13      Task_Number : Atomic_Integer;
14   begin
15      Task_Number :=
16        Atomic_Fetch_And_Add (Task_Count, 1);
17
18      Put_Line ("Task_Number: "
19                & Task_Number'Image);
20
21   end A_Task;
22
23   A, B, C, D, E, F : A_Task;
24begin
25   null;
26end Show_Atomic_Integers;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic_Operations.Integer_Arithmetic
MD5: 835093f90b9efe37b93ca84fe1ce3444








Runtime output



Task_Number:  0
Task_Number:  1
Task_Number:  2
Task_Number:  3
Task_Number:  4
Task_Number:  5







In this example, we call the Atomic_Fetch_And_Add function to update the
Task_Count variable and, at the same time, initialize the Task_Number
variable of the current task.


Relevant topics


	C.6.4 The Package System.Atomic_Operations.Integer_Arithmetic[#15]








Atomic Operations using Modular Arithmetic

The generic System.Atomic_Operations.Modular_Arithmetic package is very
similar to the System.Atomic_Operations.Integer_Arithmetic package. In
fact, it provides the same operations: the procedures Atomic_Add and
Atomic_Subtract, and the functions Atomic_Fetch_And_Add and
Atomic_Fetch_And_Subtract. The only difference is that it is used for
modular types instead of integer types.

Let's reuse the
previous code example,
but replace the atomic integer type by an atomic modular type:


atomic_modulars.ads

 1with System.Atomic_Operations.Modular_Arithmetic;
 2
 3package Atomic_Modulars is
 4
 5   type Atomic_Modular is mod 100
 6     with Atomic;
 7
 8   package Atomic_Modular_Arithmetic is new
 9     System.Atomic_Operations.Modular_Arithmetic
10       (Atomic_Modular);
11
12end Atomic_Modulars;








show_atomic_modulars.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Atomic_Modulars;
 4use  Atomic_Modulars;
 5use  Atomic_Modulars.Atomic_Modular_Arithmetic;
 6
 7procedure Show_Atomic_Modulars is
 8   Task_Count : aliased Atomic_Modular := 0;
 9
10   task type A_Task;
11
12   task body A_Task is
13      Task_Number : Atomic_Modular;
14   begin
15      Task_Number :=
16        Atomic_Fetch_And_Add (Task_Count, 1);
17
18      Put_Line ("Task_Number: "
19                & Task_Number'Image);
20
21   end A_Task;
22
23   A, B, C, D, E, F : A_Task;
24begin
25   null;
26end Show_Atomic_Modulars;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Shared_Variable_Control.Atomic_Operations.Modular_Arithmetic
MD5: 3a5a85febacd13f5e053cf00b19746ff








Runtime output



Task_Number:  0
Task_Number:  1
Task_Number:  2
Task_Number:  3
Task_Number:  4
Task_Number:  5







As we did in the previous example, we again call the
Atomic_Fetch_And_Add function to update the Task_Count variable and, at
the same time, initialize the Task_Number variable of the current task. The
only difference is that we use a modular type (Atomic_Modular).


Relevant topics


	C.6.5 The Package System.Atomic_Operations.Modular_Arithmetic[#16]
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Records


Default Initialization

As mentioned in the
Introduction to Ada[#1] course, record
components can have default initial values. Also, we've seen that other kinds
of types can have default values.

In the Ada Reference Manual, we refer to these default initial values as
"default expressions of record components." The term default expression
indicates that we can use any kind of expression for the default initialization
of record components — which includes subprogram calls for example:


show_default_initialization.ads

 1package Show_Default_Initialization is
 2
 3   function Init return Integer is
 4     (42);
 5
 6   type Rec is record
 7      A : Integer := Init;
 8   end record;
 9
10end Show_Default_Initialization;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Simple_Example
MD5: 6d06be7f087513b669ba5481d6ee5004







In this example, the A component is initialized by default by a call to
the Init procedure.


In the Ada Reference Manual


	3.8 Record Types[#2]







Dependencies

Default expressions cannot depend on other components. For example, if we have
two components A and B, we cannot initialize B based on
the value that A has:


show_default_initialization_dependency.ads

 1package Show_Default_Initialization_Dependency is
 2
 3   function Init return Integer is
 4     (42);
 5
 6   type Rec is record
 7      A : Integer := Init;
 8      B : Integer := Rec.A;  --  Illegal!
 9   end record;
10
11end Show_Default_Initialization_Dependency;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.No_Dependency
MD5: ca23cbd7e4a54d0b9c6974aed0ee77c8








Build output



show_default_initialization_dependency.ads:8:25: error: component "Rec.A" cannot be used before end of record declaration
gprbuild: *** compilation phase failed







In this example, we cannot initialize the B component based on the value
of the A component. (In fact, the syntax Rec.A as a way to refer
to the A component is only allowed in predicates, not in the record
component declaration.)



Initialization Order

The default initialization of record components is performed in arbitrary
order. In fact, the order is decided by the compiler, so we don't have control
over it.

Let's see an example:


simple_recs.ads

 1package Simple_Recs is
 2
 3   function Init (S : String;
 4                  I : Integer)
 5                  return Integer;
 6
 7   type Rec is record
 8      A : Integer := Init ("A", 1);
 9      B : Integer := Init ("B", 2);
10   end record;
11
12end Simple_Recs;








simple_recs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Recs is
 4
 5   function Init (S : String;
 6                  I : Integer)
 7                  return Integer is
 8   begin
 9      Put_Line (S & ": " & I'Image);
10      return I;
11   end Init;
12
13end Simple_Recs;








show_initialization_order.adb

1with Simple_Recs; use Simple_Recs;
2
3procedure Show_Initialization_Order is
4   R : Rec;
5begin
6   null;
7end Show_Initialization_Order;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Initialization_Order
MD5: e3ab92ea9b2a99815cea8c2ea11cbbfb








Runtime output



A:  1
B:  2







When running this code example, you might see this:

A: 1
B: 2





However, the compiler is allowed to rearrange the operations, so this output is
possible as well:

B: 2
A: 1





Therefore, we must write the default expression of each individual record
components in such a way that the resulting initialization value is always
correct, independently of the order that those expressions are evaluated.



Evaluation

According to the Annotated Ada Reference Manual, the "default expression of a
record component is only evaluated upon the creation of a default-initialized
object of the record type." This means that the default expression is by itself
not evaluated when we declare the record type, but when we create an object of
this type. It follows from this rule that the default is only evaluated when
necessary, i.e,, when an explicit initial value is not specified in the object
declaration.

Let's see an example:


show_initialization_order.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Simple_Recs; use Simple_Recs;
 3
 4procedure Show_Initialization_Order is
 5begin
 6   Put_Line ("Some processing first...");
 7   Put_Line
 8     ("Now, let's declare an object "
 9      & "of the record type Rec...");
10
11   declare
12      R : Rec;
13   begin
14      Put_Line
15        ("An object of Rec type has "
16         & "just been created.");
17   end;
18
19end Show_Initialization_Order;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Initialization_Order
MD5: 126e3edfe4cb8033f40b939ff9922958








Runtime output



Some processing first...
Now, let's declare an object of the record type Rec...
A:  1
B:  2
An object of Rec type has just been created.







Here, we only see the information displayed by the Init function
— which is called to initialize the A and B components of
the R record — during the object creation. In other words,
the default expressions Init ("A", 1) and Init ("B", 2) are not
evaluated when we declare the R type, but when we create an object of
this type.


In the Ada Reference Manual


	3.8 Record Types[#3]








Defaults and object declaration


Note

This subsection was originally written by Robert A. Duff and published as
Gem #12: Limited Types in Ada 2005[#4].



Consider the following type declaration:


type_defaults.ads

 1package Type_Defaults is
 2   type Color_Enum is (Red, Blue, Green);
 3
 4   type T is private;
 5private
 6   type T is
 7      record
 8         Color     : Color_Enum := Red;
 9         Is_Gnarly : Boolean := False;
10         Count     : Natural;
11      end record;
12
13   procedure Do_Something;
14end Type_Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Default_Init
MD5: 218154278081f89595534bc02e34539b







If we want to say, "make Count equal 100, but initialize
Color and Is_Gnarly to their defaults", we can do this:


type_defaults.adb

 1package body Type_Defaults is
 2
 3   Object_100 : constant T :=
 4                  (Color     => <>,
 5                   Is_Gnarly => <>,
 6                   Count     => 100);
 7
 8   procedure Do_Something is null;
 9
10end Type_Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Default_Init
MD5: e64f8881ee74b90dd6058ca8961aae31








Historically

Prior to Ada 2005, the following style was common:


type_defaults.adb

 1package body Type_Defaults is
 2
 3   Object_100 : constant T :=
 4                  (Color     => Red,
 5                   Is_Gnarly => False,
 6                   Count     => 100);
 7
 8   procedure Do_Something is null;
 9
10end Type_Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Default_Init
MD5: c1ddfae75d7f0c691356027903a6d144







Here, we only wanted Object_100 to be a default-initialized
T, with Count equal to 100. It's a little bit annoying
that we had to write the default values Red and False twice.
What if we change our mind about Red, and forget to change it in all
the relevant places? Since Ada 2005, the <> notation comes to the
rescue, as we've just seen.



On the other hand, if we want to say, "make Count equal 100,
but initialize all other components, including the ones we might add next
week, to their defaults", we can do this:


type_defaults.adb

1package body Type_Defaults is
2
3   Object_100 : constant T := (Count  => 100,
4                               others => <>);
5
6   procedure Do_Something is null;
7
8end Type_Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Default_Init
MD5: 93f5d71ae80ff0ebad54f2569539f536







Note that if we add a component Glorp : Integer; to type T,
then the others case leaves Glorp undefined just as this
code would do:


type_defaults.adb

1package body Type_Defaults is
2
3   procedure Do_Something is
4      Object_100 : T;
5   begin
6      Object_100.Count := 100;
7   end Do_Something;
8
9end Type_Defaults;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Default_Init
MD5: 6d328318e2695516794df33466fa5283







Therefore, you should be careful and think twice before using
others.



Advanced Usages

In addition to expressions such as subprogram calls, we can use
per-object expressions
for the default value of a record component. (We discuss this topic later on
in more details.)

For example:


rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3   type T (D : Positive) is private;
 4
 5private
 6
 7   type T (D : Positive) is record
 8      V : Natural := D - 1;
 9      --             ^^^^^
10      --    Per-object expression
11   end record;
12
13end Rec_Per_Object_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Default_Initialization.Per_Object_Expressions
MD5: 92591ea482db2b009b8eeafe633ca6cd







In this example, component V is initialized by default with the
per-object expression D - 1, where D refers to the discriminant
D.




Mutually dependent types

In this section, we discuss how to use
incomplete types to declare mutually
dependent types. Let's start with this example:


mutually_dependent.ads

 1package Mutually_Dependent is
 2
 3   type T1 is record
 4      B : T2;
 5   end record;
 6
 7   type T2 is record
 8      A : T1;
 9   end record;
10
11end Mutually_Dependent;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Mutually_Dependent_Types.Mutually_Dependent
MD5: ffa8d6ab83a1172dcbae0978952dacb2








Build output



mutually_dependent.ads:4:11: error: "T2" is undefined
gprbuild: *** compilation phase failed







When you try to compile this example, you get a compilation error. The first
problem with this code is that, in the declaration of the T1 record, the
compiler doesn't know anything about T2. We could solve this by
declaring an incomplete type (type T2;) before the declaration of
T1. This, however, doesn't solve all the problems in the code: the
compiler still doesn't know the size of T2, so we cannot create a
component of this type. We could, instead, declare an access type and use it
here. By doing this, even though the compiler doesn't know the size of
T2, it knows the size of an access type designating T2, so the
record component can be of such an access type.

To summarize, in order to solve the compilation error above, we need to:


	use at least one incomplete type;


	declare at least one component as an access to an object.




For example, we could declare an incomplete type T2 and then declare
the component B of the T1 record as an access to T2.
This is the corrected version:


mutually_dependent.ads

 1package Mutually_Dependent is
 2
 3   type T2;
 4   type T2_Access is access T2;
 5
 6   type T1 is record
 7      B : T2_Access;
 8   end record;
 9
10   type T2 is record
11      A : T1;
12   end record;
13
14end Mutually_Dependent;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Mutually_Dependent_Types.Mutually_Dependent
MD5: 1ae10638624a97fa18b9d8f96bfa74ed







We could strive for consistency and declare two incomplete types and two
accesses, but this isn't strictly necessary in this case. Here's the adapted
code:


mutually_dependent.ads

 1package Mutually_Dependent is
 2
 3   type T1;
 4   type T1_Access is access T1;
 5
 6   type T2;
 7   type T2_Access is access T2;
 8
 9   type T1 is record
10      B : T2_Access;
11   end record;
12
13   type T2 is record
14      A : T1_Access;
15   end record;
16
17end Mutually_Dependent;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Mutually_Dependent_Types.Mutually_Dependent
MD5: 9a9899cd0dd2525bd27d67d6629a0071







Later on, we'll see that these code examples can be written using
anonymous access types.


In the Ada Reference Manual


	3.10.1 Incomplete Type Declarations[#5]








Null records

A null record is a record that doesn't have any components. Consequently, it
cannot store any information. When declaring a null record, we simply
write null instead of declaring actual components, as we usually do for
records. For example:


null_recs.ads

1package Null_Recs is
2
3   type Null_Record is record
4      null;
5   end record;
6
7end Null_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Null_Record
MD5: 3c82da822710342354134fa71a03452a







Note that the syntax can be simplified to is null record, which is much
more common than the previous form:


null_recs.ads

1package Null_Recs is
2
3   type Null_Record is null record;
4
5end Null_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Null_Record
MD5: 1da1746ce5b0a237276272d2b620e282







Although a null record doesn't have components, we can still specify
subprograms for it. For example, we could specify an addition operation for it:


null_recs.ads

1package Null_Recs is
2
3   type Null_Record is null record;
4
5   function "+" (A, B : Null_Record)
6                 return Null_Record;
7
8end Null_Recs;








null_recs.adb

 1package body Null_Recs is
 2
 3   function "+" (A, B : Null_Record)
 4                 return Null_Record
 5   is
 6      pragma Unreferenced (A, B);
 7   begin
 8      return (null record);
 9   end "+";
10
11end Null_Recs;








show_null_rec.adb

1with Null_Recs; use Null_Recs;
2
3procedure Show_Null_Rec is
4   A, B : Null_Record;
5begin
6   B := A + A;
7   A := A + B;
8end Show_Null_Rec;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Null_Record
MD5: 3a1c2fbae75541dfb0b2ff4c14d22039








In the Ada Reference Manual


	4.3.1 Record Aggregates[#6]







Simple Prototyping

A null record doesn't provide much functionality on itself, as we're not
storing any information in it. However, it's far from being useless. For
example, we can make use of null records to design an API, which we can then
use in an application without having to implement the actual functionality of
the API. This allows us to design a prototype without having to think about all
the implementation details of the API in the first stage.

Consider this example:


devices.ads

 1package Devices is
 2
 3   type Device is private;
 4
 5   function Create
 6     (Active : Boolean)
 7      return Device;
 8
 9   procedure Reset
10     (D : out Device) is null;
11
12   procedure Process
13     (D : in out Device) is null;
14
15   procedure Activate
16     (D : in out Device) is null;
17
18   procedure Deactivate
19     (D : in out Device) is null;
20
21private
22
23   type Device is null record;
24
25   function Create (Active : Boolean)
26                    return Device is
27     (null record);
28
29end Devices;








show_device.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Devices;     use Devices;
 3
 4procedure Show_Device is
 5   A : Device;
 6begin
 7   Put_Line ("Creating device...");
 8   A := Create (Active => True);
 9
10   Put_Line ("Processing on device...");
11   Process (A);
12
13   Put_Line ("Deactivating device...");
14   Deactivate (A);
15
16   Put_Line ("Activating device...");
17   Activate (A);
18
19   Put_Line ("Resetting device...");
20   Reset (A);
21end Show_Device;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Device
MD5: 7d2fce20ac33607f7081381b307a564a








Runtime output



Creating device...
Processing on device...
Deactivating device...
Activating device...
Resetting device...







In the Devices package, we're declaring the Device type and its
primitive subprograms: Create, Reset, Process,
Activate and Deactivate. This is the API that we use in our
prototype. Note that, although the Device type is declared as a private
type, it's still defined as a null record in the full view.

In this example, the Create function, implemented as an expression
function in the private part, simply returns a null record. As expected, this
null record returned by Create matches the definition of the
Device type.

All procedures associated with the Device type are implemented as null
procedures, which means they don't actually have an implementation nor have any
effect. We'll discuss this topic
later on in the course.

In the Show_Device procedure — which is an application
that implements our prototype —, we declare an object of Device
type and call all subprograms associated with that type.



Extending the prototype

Because we're either using expression functions or null procedures in the
specification of the Devices package, we don't have a package body for
it (as there's nothing to be implemented). We could, however, move those user
messages from the Show_Devices procedure to a dummy implementation of
the Devices package. This is the adapted code:


devices.ads

 1package Devices is
 2
 3   type Device is null record;
 4
 5   function Create (Active : Boolean)
 6                    return Device;
 7
 8   procedure Reset (D : out Device);
 9
10   procedure Process (D : in out Device);
11
12   procedure Activate (D : in out Device);
13
14   procedure Deactivate (D : in out Device);
15
16end Devices;








devices.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Devices is
 4
 5   function Create (Active : Boolean)
 6                    return Device
 7   is
 8      pragma Unreferenced (Active);
 9   begin
10      Put_Line ("Creating device...");
11      return (null record);
12   end Create;
13
14   procedure Reset (D : out Device)
15   is
16      pragma Unreferenced (D);
17   begin
18      Put_Line ("Processing on device...");
19   end Reset;
20
21   procedure Process (D : in out Device)
22   is
23      pragma Unreferenced (D);
24   begin
25      Put_Line ("Deactivating device...");
26   end Process;
27
28   procedure Activate (D : in out Device)
29   is
30      pragma Unreferenced (D);
31   begin
32      Put_Line ("Activating device...");
33   end Activate;
34
35   procedure Deactivate (D : in out Device)
36   is
37      pragma Unreferenced (D);
38   begin
39      Put_Line ("Resetting device...");
40   end Deactivate;
41
42end Devices;








show_device.adb

 1with Devices; use Devices;
 2
 3procedure Show_Device is
 4   A : Device;
 5begin
 6   A := Create (Active => True);
 7   Process (A);
 8   Deactivate (A);
 9   Activate (A);
10   Reset (A);
11end Show_Device;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Device
MD5: 1a21b41f3847f6c132ccbc9696ab7689








Runtime output



Creating device...
Deactivating device...
Resetting device...
Activating device...
Processing on device...







As we changed the specification of the Devices package to not use null
procedures, we now need a corresponding package body for it. In this package
body, we  implement the operations on the Device type, which actually
just display a user message indicating which operation is being called.

Let's focus on this updated version of the Show_Device procedure. Now
that we've removed all those calls to Put_Line from this procedure and
just have the calls to operations associated with the Device type, it
becomes more apparent that, even though Device is just a null record, we
can design an application with a sequence of various commands operating on it.
Also, when we just read the source-code of the Show_Device procedure,
there's no clear indication that the Device type doesn't actually hold
any information.



More complex applications

As we've just seen, we can use null records like any other type and create
complex prototypes with them. We could, for instance, design an application
that makes use of many null records, or even have types that depend on or
derive from null records. Let's see a simple example:


many_devices.ads

 1package Many_Devices is
 2
 3   type Device is null record;
 4
 5   type Device_Config is null record;
 6
 7   function Create (Config : Device_Config)
 8                    return Device is
 9     (null record);
10
11   type Derived_Device is new Device;
12
13   procedure Process (D : Derived_Device) is null;
14
15end Many_Devices;








show_derived_device.adb

 1with Many_Devices; use Many_Devices;
 2
 3procedure Show_Derived_Device is
 4   A : Device;
 5   B : Derived_Device;
 6   C : Device_Config;
 7begin
 8   A := Create (Config => C);
 9   B := Create (Config => C);
10
11   Process (B);
12end Show_Derived_Device;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Derived_Device
MD5: 757a3def24c8333a27b64943727d8d4e







In this example, the Create function has a null record parameter
(of Device_Config type) and returns a null record (of Device
type). Also, we derive the Derived_Device type from the Device
type. Consequently, Derived_Device is also a null record (since it's
derived from a null record). In the Show_Derived_Device procedure, we
declare objects of those types (A, B and C) and call
primitive subprograms to operate on them.

This example shows that, even though the types we've declared are just null
records, they can still be used to represent dependencies in our application.



Implementing the API

Let's focus again on the previous example. After we have an initial prototype,
we can start implementing some of the functionality needed for the
Device type. For example, we can store information about the current
activation state in the record:


devices.ads

 1package Devices is
 2
 3   type Device is private;
 4
 5   function Create (Active : Boolean)
 6                    return Device;
 7
 8   procedure Reset (D : out Device);
 9
10   procedure Process (D : in out Device);
11
12   procedure Activate (D : in out Device);
13
14   procedure Deactivate (D : in out Device);
15
16private
17
18   type Device is record
19      Active : Boolean;
20   end record;
21
22end Devices;








devices.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Devices is
 4
 5   function Create (Active : Boolean)
 6                    return Device
 7   is
 8      pragma Unreferenced (Active);
 9   begin
10      Put_Line ("Creating device...");
11      return (Active => Active);
12   end Create;
13
14   procedure Reset (D : out Device)
15   is
16      pragma Unreferenced (D);
17   begin
18      Put_Line ("Processing on device...");
19   end Reset;
20
21   procedure Process (D : in out Device)
22   is
23      pragma Unreferenced (D);
24   begin
25      Put_Line ("Deactivating device...");
26   end Process;
27
28   procedure Activate (D : in out Device)
29   is
30   begin
31      Put_Line ("Activating device...");
32      D.Active := True;
33   end Activate;
34
35   procedure Deactivate (D : in out Device)
36   is
37   begin
38      Put_Line ("Resetting device...");
39      D.Active := False;
40   end Deactivate;
41
42end Devices;








show_device.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Devices;     use Devices;
 3
 4procedure Show_Device is
 5   A : Device;
 6begin
 7   A := Create (Active => True);
 8   Process (A);
 9   Deactivate (A);
10   Activate (A);
11   Reset (A);
12end Show_Device;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Device
MD5: 348ce0c110b47a6b6fd1c9fe73ef0558








Build output



devices.adb:11:25: warning: aspect Unreferenced specified for "Active" [enabled by default]








Runtime output



Creating device...
Deactivating device...
Resetting device...
Activating device...
Processing on device...







Now, the Device record contains an Active component, which is
used in the updated versions of Create, Activate and
Deactivate.

Note that we haven't done any change to the implementation of the
Show_Device procedure: it's still the same application as before. As
we've been hinting in the beginning, using null records makes it easy for us to
first create a prototype — as we did in the Show_Device procedure
— and postpone the API implementation to a later phase of the project.



Tagged null records

A null record may be tagged, as we can see in this example:


null_recs.ads

1package Null_Recs is
2
3   type Tagged_Null_Record is
4     tagged null record;
5
6   type Abstract_Tagged_Null_Record is
7     abstract tagged null record;
8
9end Null_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Tagged_Null_Record
MD5: 918572d2c50911b84c80a9c601b75439







As we see in this example, a type can be tagged, or even
abstract tagged. We discuss abstract types
later on in the course.

As expected, in addition to deriving from tagged types, we can also extend
them. For example:


devices.ads

 1package Devices is
 2
 3   type Device is private;
 4
 5   function Create (Active : Boolean)
 6                    return Device;
 7
 8   type Derived_Device is private;
 9
10private
11
12   type Device is tagged null record;
13
14   function Create (Active : Boolean)
15                    return Device is
16     (null record);
17
18   type Derived_Device is new Device with record
19      Active : Boolean;
20   end record;
21
22   function Create (Active : Boolean)
23                    return Derived_Device is
24     (Active => Active);
25
26end Devices;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Null_Records.Extended_Device
MD5: 15e06a5115cbcb131477b5224a6594db







In this example, we derive Derived_Device from the Device type
and extend it with the Active component. (Because we have a type
extension, we also need to override the Create function.)

Since we're now introducing elements from object-oriented programming, we could
consider using interfaces instead of null records. We'll discuss this topic
later on in the course.




Record discriminants

We introduced the topic of record discriminants in the
Introduction to Ada course[#7]. Also,
in a previous chapter, we mentioned that record types with unconstrained
discriminants without defaults are
indefinite types.

In this section, we discuss a couple of details about record discriminants that
we haven't covered yet. Although the discussion will be restricted to
record discriminants, keep in mind that tasks and protected types can also have
discriminants. We'll focus on discriminants for tasks and protected types in
separate chapters.

In addition, discriminants can be used to write
per-object expressions. We discuss this
topic later in this chapter.


In the Ada Reference Manual


	3.7 Discriminants[#8]







Known and unknown discriminant parts

When it comes to discriminants, a type declaration falls into one of the
following three categories: it has either no discriminants at all, known
discriminants or unknown discriminants.

In order to have no discriminants, a type simply doesn't have a discriminant
part in its declaration. For example:


show_discriminants.ads

 1package Show_Discriminants is
 2
 3   type T_No_Discr is private;
 4   --            ^^^
 5   --   no discriminant part
 6
 7private
 8
 9   type T_No_Discr is null record;
10
11end Show_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.No_Discriminant_Part
MD5: f6701bd9c46b265753a258a6f99a5c7a







By using parentheses after the type name, we're defining a discriminant part.
In this case, the type can either have unknown or known discriminants. For
example:


show_discriminants.ads

 1package Show_Discriminants is
 2
 3   type T_Unknown_Discr (<>) is
 4   --                    ^^
 5   --   Unknown discriminant
 6     private;
 7
 8   type T_Known_Discr (D : Integer) is
 9   --                  ^^^^^^^^^^^
10   --   Known discriminant
11     private;
12
13private
14
15   type T_Unknown_Discr is
16     null record;
17
18   type T_Known_Discr (D : Integer) is
19     null record;
20
21end Show_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Discriminant_Parts
MD5: 486edc81b72473e022bb9e56ebaca559







An unknown discriminant part is represented by (<>) in the partial view
— this is basically the so-called box notation <> (also known as
box compound delimiter) in parentheses. We discuss unknown discriminant parts
and their peculiarities
later on in this chapter. In this
section, we mainly focus on known discriminants.

We've already seen examples of known discriminants in previous chapters. In
simple terms, known discriminants are composed by one or more discriminant
specifications, which are similar to subprogram parameters, but without
parameter modes. In fact, we can think of discriminants as parameters for a
type T, but with the goal of defining specific characteristics or
constraints when declaring objects of type T.



Discriminant as constant property

We can think of discriminants as constant properties of a type. In fact, if you
want to specify a record component C that shouldn't change, declaring it
constant isn't allowed in Ada:


constant_properties.ads

 1package Constant_Properties is
 2
 3   type Rec is record
 4      C : constant Integer;
 5      --  ^^^^^^^^
 6      --  ERROR: record components
 7      --         cannot be constant.
 8      V :          Integer;
 9   end record;
10
11end Constant_Properties;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Constant_Properties
MD5: ba189f437348c5892847d067b0bc2e78








Build output



constant_properties.ads:4:11: error: constant component not permitted
gprbuild: *** compilation phase failed







A simple solution is to use a record discriminant:


constant_properties.ads

1package Constant_Properties is
2
3   type Rec (C : Integer) is
4   record
5      V :          Integer;
6   end record;
7
8end Constant_Properties;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Constant_Properties
MD5: b638c2fd78761def2b60e9ae7dceb765







A record discriminant can be accessed as a normal component, but it is
read-only, so we cannot change it:


show_constant_property.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Constant_Properties;
 4use  Constant_Properties;
 5
 6procedure Show_Constant_Property is
 7   R : Rec (10);
 8begin
 9   Put_Line ("R.C = "
10             & R.C'Image);
11
12   R.C := R.C + 1;
13   --  ERROR: cannot change
14   --         record discriminant
15end Show_Constant_Property;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Constant_Properties
MD5: 82cde0032f2cb022e690f1175216fd77








Build output



show_constant_property.adb:12:05: error: assignment to discriminant not allowed
gprbuild: *** compilation phase failed







In this code example, the compilation fails because we cannot change the
C discriminant. In this sense, C is a basically a constant
component of the R object.



Private types

As we've seen in previous chapters, private types can have discriminants. For
example:


private_with_discriminants.ads

 1package Private_With_Discriminants is
 2
 3   type T (L : Positive) is private;
 4
 5private
 6
 7   type Integer_Array is
 8     array (Positive range <>) of Integer;
 9
10   type T (L : Positive) is
11   record
12      Arr : Integer_Array (1 .. L);
13   end record;
14
15end Private_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Private_With_Discriminants
MD5: 8f63443479e31a187a038381d9a32831







Here, discriminant L is used to specify the constraints of the array
component Arr. Note that the same discriminant part must appear in both
the partial and the full view of type T.



Object declaration

As we've already seen, we declare objects of a type T with a
discriminant D by specifying the actual value of discriminant D.
This is called a
discriminant constraint.
For example:


recs.ads

1package Recs is
2
3   type T (L : Positive;
4           M : Positive) is
5     null record;
6
7end Recs;








show_object_declaration.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Recs;        use Recs;
 4
 5procedure Show_Object_Declaration is
 6   A : T (L => 5, M => 6);
 7   B : T (7, 8);
 8begin
 9   Put_Line ("A.L = "
10             & A.L'Image);
11   Put_Line ("A.M = "
12             & A.M'Image);
13   Put_Line ("B.L = "
14             & B.L'Image);
15   Put_Line ("B.M = "
16             & B.M'Image);
17end Show_Object_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Objects_Discriminants
MD5: 9daae29be9d0f99980ca152a3aca7363








Runtime output



A.L =  5
A.M =  6
B.L =  7
B.M =  8







As we can see in the declaration of objects A and B, for the
discriminant values, we can use a positional ((7, 8)) or named
association ((L => 5, M => 6)).


Object size

Discriminants can have an impact on the object size because we can set the
discriminant to constraint a component of an
indefinite subtype. For example:


recs.ads

 1package Recs is
 2
 3   type Null_Rec (L : Positive;
 4                  M : Positive) is
 5     private;
 6
 7   type Rec_Array (L : Positive) is
 8     private;
 9
10private
11
12   type Null_Rec (L : Positive;
13                  M : Positive) is
14     null record;
15
16   type Integer_Array is
17     array (Positive range <>) of Integer;
18
19   type Rec_Array (L : Positive) is
20   record
21      Arr : Integer_Array (1 .. L);
22   end record;
23
24end Recs;








show_object_sizes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Recs;        use Recs;
 4
 5procedure Show_Object_Sizes is
 6   Null_Rec_A  : Null_Rec (1, 2);
 7   Null_Rec_B  : Null_Rec (5, 6);
 8   Rec_Array_A : Rec_Array (10);
 9   Rec_Array_B : Rec_Array (20);
10begin
11   Put_Line ("Null_Rec_A'Size = "
12             & Null_Rec_A'Size'Image);
13   Put_Line ("Null_Rec_B'Size = "
14             & Null_Rec_B'Size'Image);
15   Put_Line ("Rec_Array_A'Size = "
16             & Rec_Array_A'Size'Image);
17   Put_Line ("Rec_Array_B'Size = "
18             & Rec_Array_B'Size'Image);
19end Show_Object_Sizes;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Objects_Discriminants_Size
MD5: 0abbc12286aff9fe428ea585564cf6d4








Build output



show_object_sizes.adb:8:04: warning: variable "Rec_Array_A" is read but never assigned [-gnatwv]
show_object_sizes.adb:9:04: warning: variable "Rec_Array_B" is read but never assigned [-gnatwv]








Runtime output



Null_Rec_A'Size =  64
Null_Rec_B'Size =  64
Rec_Array_A'Size =  352
Rec_Array_B'Size =  672







In this example, Null_Rec_A and Null_Rec_B have the same size
because the type is a null record. However, Rec_Array_A and
Rec_Array_B have different sizes because we're setting the L
discriminant — which we use to constraint the Arr array component
of the Rec_Array type — to 10 and 20, respectively.




Object assignments

As we've just seen, when we set the values for the discriminants of a type in
the object declaration, we're constraining the objects. Those constraints are
checked at runtime by the
discriminant check. If the discriminants
don't match, the Constraint_Error exception is raised.

Let's see an example:


recs.ads

1package Recs is
2
3   type T (L : Positive;
4           M : Positive) is
5     null record;
6
7end Recs;








show_object_assignments.adb

1with Recs;        use Recs;
2
3procedure Show_Object_Assignments is
4   A1, A2 : T (5, 6);
5   B      : T (7, 8);
6begin
7   A1 := A2;    --  OK
8   B  := A1;    --  ERROR!
9end Show_Object_Assignments;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Object_Assignments
MD5: 199247f1c0575c6845d85fd1911e1cf2








Build output



show_object_assignments.adb:8:10: warning: incorrect value for discriminant "L" [enabled by default]
show_object_assignments.adb:8:10: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_object_assignments.adb:8 discriminant check failed







In this example, the A1 := A2 assignment is accepted because both
A1 and A2 have the same constraints ((5, 6)). However, the
B := A1 assignment is not accepted because the discriminant check fails
at runtime.

Note that the discriminant check is not performed when we use
mutable subtypes — we discuss this
specific kind of subtypes later on.



Discriminant type

In a discriminant specification, the type of the discriminant can only be a
discrete subtype or an
access type. Other kinds of
types — e.g. composite types such as record types — are illegal for
discriminants. However, we can always use them indirectly by using access
types. (We'll see an example later.)

In addition to that, we can also use a different kind of access types, namely
anonymous access-to-object subtypes.
This specific kind of discriminant is called
access discriminant. We discuss
this topic in more details in another chapter.

Let's see a code example:


recs.ads

 1package Recs is
 2
 3   type Usage_Mode is (Off,
 4                       Simple_Usage,
 5                       Advanced_Usage);
 6
 7   type Priv_Info is private;
 8
 9   type Priv_Info_Access is access Priv_Info;
10
11   type Proc_Access is
12     access procedure (P : in out Priv_Info);
13
14   type Priv_Rec (Last  : Positive;
15                  Usage : Usage_Mode;
16                  Info  : Priv_Info_Access;
17                  Proc  : Proc_Access) is
18     private;
19
20private
21
22   type Priv_Info is record
23     A : Positive;
24     B : Positive;
25   end record;
26
27   type Priv_Rec (Last  : Positive;
28                  Usage : Usage_Mode;
29                  Info  : Priv_Info_Access;
30                  Proc  : Proc_Access) is
31     null record;
32
33end Recs;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Discriminants_Subtype
MD5: 4ddbc703d8ffcd6dc31e3715df62931a







In this example, we're declaring the Priv_Rec type with the following
discriminants:


	The Last discriminant of the scalar (i.e. discrete) type
Positive;


	The Usage discriminant of the enumeration (i.e. discrete) type
Usage_Mode;


	The Info discriminant of the
access-to-object type
Priv_Info_Access;



	We discuss
access-to-object types as discriminant type
in another chapter.









	The Proc discriminant of the
access-to-subprogram type
Proc_Access;



	We discuss
access-to-subprogram types as discriminant type
in another chapter.











As indicated previously, it's illegal to use a private type or a record type as
the type of a discriminant. For example:


recs.ads

 1package Recs is
 2
 3   type Priv_Info is private;
 4
 5   type Priv_Rec (Info : Priv_Info) is
 6     private;
 7   --             ^^^^^^^^^^^^^^^^
 8   --  ERROR: cannot use private type
 9   --         in discriminant.
10
11private
12
13   type Priv_Info is record
14     A : Positive;
15     B : Positive;
16   end record;
17
18   type Priv_Rec (Info  : Priv_Info) is
19     null record;
20
21end Recs;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Discriminants_Subtype_Error
MD5: 17f36f0e09cb069d8215b38adbb46541








Build output



recs.ads:5:26: error: discriminants must have a discrete or access type
gprbuild: *** compilation phase failed







We cannot use the Priv_Info directly as a discriminant type because it's
a private type. However, as we've just seen in the previous code example, we
use it indirectly by using an access type to this private type (see
Priv_Info_Access in the code example).


Indefinite subtypes as discriminants

As we already implied, we cannot use indefinite subtypes as discriminants. For
example, the following code won't compile:


unconstrained_types.ads

 1package Unconstrained_Types is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   type Simple_Record (Arr : Integer_Array) is
 7   --                  ^^^^^^^^^^^^^^^^^^^
 8   --  ERROR: cannot use indefinite type
 9   --         in discriminant.
10   record
11      L : Natural := Arr'Length;
12   end record;
13
14end Unconstrained_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types_Error
MD5: f373b401ef1b179fef15cce0d2077286








Build output



unconstrained_types.ads:6:30: error: discriminants must have a discrete or access type
gprbuild: *** compilation phase failed







Integer_Array is a correct type declaration — although
the type itself is indefinite after the declaration. However, we cannot
use it as the discriminant in the declaration of Simple_Record.
We could, however, have a correct declaration by using discriminants as
access values:


unconstrained_types.ads

 1package Unconstrained_Types is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   type Integer_Array_Access is
 7     access Integer_Array;
 8
 9   type Simple_Record
10     (Arr : Integer_Array_Access) is
11   record
12      L : Natural := Arr'Length;
13   end record;
14
15end Unconstrained_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Types.Definite_Indefinite_Subtypes.Indefinite_Types_Error
MD5: dc8193e3684b172e8503e1c5427cf93d







By adding the Integer_Array_Access type and using it in
Simple_Record's type declaration, we can indirectly use an
indefinite type in the declaration of another indefinite type. We discuss
this topic later
in another chapter.




Default values

We can specify default values for discriminants. Note, however, that we must
either specify default values for all discriminants of the discriminant
part or for none of them. This contrasts with default values for subprogram
parameters, where we can
specify default values for just a subset of all parameters of a specific subprogram.

As expected, we can override the default values by specifying the values of
each discriminant when declaring an object. Let's see a simple example:


recs.ads

 1package Recs is
 2
 3   type T (L : Positive := 1;
 4           M : Positive := 2) is
 5     private;
 6
 7private
 8
 9   type T (L : Positive := 1;
10           M : Positive := 2) is
11     null record;
12
13end Recs;








show_object_declaration.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Recs;        use Recs;
 4
 5procedure Show_Object_Declaration is
 6   A : T;
 7   B : T (7, 8);
 8begin
 9   Put_Line ("A.L = "
10             & A.L'Image);
11   Put_Line ("A.M = "
12             & A.M'Image);
13   Put_Line ("B.L = "
14             & B.L'Image);
15   Put_Line ("B.M = "
16             & B.M'Image);
17end Show_Object_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Discriminant_Default_Value
MD5: 33385c4ba4ed9fc90c55990bde0b70cb








Runtime output



A.L =  1
A.M =  2
B.L =  7
B.M =  8







In this example, object A makes use of the default values for the
discriminants of type T, so it has the discriminants
(L => 1, M => 2). In the case of object B, we're specifying the
values (L => 7, M => 8), which are used instead of the default values.

Note that we cannot set default values for nonlimited tagged types. The same
applies to generic formal types. For example:


recs.ads

 1package Recs is
 2
 3   type TT (L : Positive := 1;
 4            M : Positive := 2) is
 5   --       ^^^^^^^^^^^^^^^^^
 6   --  ERROR: cannot assign default
 7   --         in discriminant of
 8   --         nonlimited tagged type.
 9     tagged private;
10
11   type LTT (L : Positive := 1;
12             M : Positive := 2) is
13     tagged limited private;
14
15private
16
17   type TT (L : Positive := 1;
18            M : Positive := 2) is
19     tagged null record;
20
21   type LTT (L : Positive := 1;
22             M : Positive := 2) is
23     tagged limited null record;
24
25end Recs;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Discriminant_Default_Value_Tagged_TYpe
MD5: 94b78f032efe49de0b8198083a25d79b








Build output



recs.ads:3:29: error: discriminants of nonlimited tagged type cannot have defaults
recs.ads:4:29: error: discriminants of nonlimited tagged type cannot have defaults
gprbuild: *** compilation phase failed







As we can see, compilation fails because of the default values for the
discriminants of the nonlimited tagged type TT. In the case of the
limited tagged type LTT, the default values for the discriminants are
legal.


Mutable subtypes

An unconstrained discriminated subtype with defaults is called a mutable
subtype, and a variable of such a subtype is called a mutable variable because
the discriminants of such a variable can be changed. An important feature of
mutable subtypes is that it allows for changing the discriminants of an object
via assignments — in this case, no
discriminant check is performed.

Let's see an example:


mutability.ads

 1package Mutability is
 2
 3   type T_Non_Mutable
 4     (L : Positive;
 5      M : Positive) is
 6     null record;
 7
 8   type T_Mutable
 9     (L : Positive := 1;
10      M : Positive := 2) is
11     null record;
12
13end Mutability;








show_mutable_subtype_assignment.adb

 1with Mutability; use Mutability;
 2
 3procedure Show_Mutable_Subtype_Assignment is
 4   NM_1 : T_Non_Mutable (5, 6);
 5   NM_2 : T_Non_Mutable (7, 8);
 6
 7   M_1  : T_Mutable (7, 8);
 8   M_2  : T_Mutable;
 9begin
10   NM_2 := NM_1;  --  ERROR!
11   M_2  := M_1;   --  OK
12end Show_Mutable_Subtype_Assignment;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Mutable_Subtype
MD5: ace4470544bdc6efb0dca7039ca33cbc








Build output



show_mutable_subtype_assignment.adb:10:12: warning: incorrect value for discriminant "L" [enabled by default]
show_mutable_subtype_assignment.adb:10:12: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_mutable_subtype_assignment.adb:10 discriminant check failed







In this example, the NM_2 := NM_1 assignment fails because both objects
are of a non-mutable subtype with different discriminants, so that the
discriminant check fails at runtime. However, the M_2 := M_1 assignment
is OK because both objects are mutable variables. In this case, this assignment
changes the discriminants of M_2 from (L => 1, M => 2) to
(L => 7, M => 8).

Note that assignments of mutable variables may not always work at runtime. For
example, if a discriminant of a mutable subtype is used to constraint a
component of indefinite subtype, we might see the corresponding checks fail at
runtime. For example:


mutability.ads

 1package Mutability is
 2
 3   type T_Mutable_Array (L : Positive := 10) is
 4     private;
 5
 6private
 7
 8   type Integer_Array is
 9     array (Positive range <>) of Integer;
10
11   type T_Mutable_Array (L : Positive := 10) is
12   record
13      Arr : Integer_Array (1 .. L);
14   end record;
15
16end Mutability;








show_mutable_subtype_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Mutability;  use Mutability;
 4
 5procedure Show_Mutable_Subtype_Error is
 6   A : T_Mutable_Array (10);
 7   B : T_Mutable_Array (20);
 8begin
 9   Put_Line ("A'Size = "
10             & A'Size'Image);
11   Put_Line ("B'Size = "
12             & B'Size'Image);
13
14   A := B;  --  ERROR!
15end Show_Mutable_Subtype_Error;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Mutable_Subtype_Error
MD5: 95bc55e7a01c1160dd2f7139778d2d16








Build output



show_mutable_subtype_error.adb:7:04: warning: variable "B" is read but never assigned [-gnatwv]
show_mutable_subtype_error.adb:14:09: warning: incorrect value for discriminant "L" [enabled by default]
show_mutable_subtype_error.adb:14:09: warning: Constraint_Error will be raised at run time [enabled by default]
mutability.ads:11:09: warning: creation of "T_Mutable_Array" object may raise Storage_Error [enabled by default]








Runtime output



A'Size =  352
B'Size =  672

raised CONSTRAINT_ERROR : show_mutable_subtype_error.adb:14 discriminant check failed







In this case, the assignment A := B raises the Constraint_Error
exception at runtime. Here, the Arr component of each object has a
different range: 1 .. 10 for object A and 1 .. 20 for
object B.
To prevent this situation, we should declare T_Mutable_Array as a
limited type, so that assignments are not permitted.




Derived types and subtypes

As expected, we may derive types with discriminants or declare subtypes of it.
However, there are a couple of details associated with this, which we discuss
now.


Subtypes

When declaring a subtype of a type with discriminants, we have the choice to
specify the value of the discriminants for the parent type, or specify no
discriminants at all:


subtypes_with_discriminants.ads

 1package Subtypes_With_Discriminants is
 2
 3   type T
 4     (L : Positive;
 5      M : Positive) is
 6     null record;
 7
 8   subtype Sub_T is T;
 9   --  Discriminants are not specified:
10   --  taking the ones from T.
11
12   subtype Sub_T_2 is T
13    (L => 3, M => 4);
14   --  Discriminants are specified:
15   --  taking the ones from Sub_T_2
16
17end Subtypes_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Subtypes
MD5: 6f02c295f295c81fd20d06f7c710994c







For the Sub_T subtype declaration in this example, we don't specify
values for the parent type's discriminants. For Sub_T_2, in contrast, we
set the discriminants to (L => 3, M => 4).

When declaring objects of these subtypes, we need to take the constraints into
account:


subtypes_with_discriminants.ads

 1package Subtypes_With_Discriminants is
 2
 3   type T
 4     (L : Positive;
 5      M : Positive) is
 6     null record;
 7
 8   subtype Sub_T is T;
 9   --  Discriminants are not specified:
10   --  taking the ones from T.
11
12   subtype Sub_T_2 is T
13    (L => 3, M => 4);
14   --  Discriminants are specified:
15   --  taking the ones from Sub_T_2
16
17end Subtypes_With_Discriminants;








show_subtypes_with_discriminants.adb

 1with Subtypes_With_Discriminants;
 2use  Subtypes_With_Discriminants;
 3
 4procedure Show_Subtypes_With_Discriminants is
 5   A1 : T (1, 2);
 6   A2 : T (3, 4);
 7   B1 : Sub_T (1, 2);
 8   B2 : Sub_T (3, 4);
 9   C2 : Sub_T_2;
10
11   --  C1 : Sub_T_2 (1, 2);
12   --                ^^^^
13   --  ERROR: discriminants already
14   --         constrained
15begin
16   B1 := A1;
17   --  OK: discriminants match
18
19   B2 := A1;
20   --  CONSTRAINT_ERROR!
21
22   B2 := A2;
23   --  OK: discriminants match
24
25   C2 := A1;
26   --  CONSTRAINT_ERROR!
27
28   C2 := A2;
29   --  OK: discriminants match
30end Show_Subtypes_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Subtypes
MD5: 9a8516d70e7a53ae332e5c5b6df7f04e








Build output



show_subtypes_with_discriminants.adb:19:10: warning: incorrect value for discriminant "L" [enabled by default]
show_subtypes_with_discriminants.adb:19:10: warning: Constraint_Error will be raised at run time [enabled by default]
show_subtypes_with_discriminants.adb:25:10: warning: incorrect value for discriminant "L" [enabled by default]
show_subtypes_with_discriminants.adb:25:10: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_subtypes_with_discriminants.adb:19 discriminant check failed







For objects of Sub_T subtype, we have to specify the value of each
discriminant. On the other hand, for objects of Sub_T_2 type, we
cannot specify the constraints because they have already been defined in the
subtype's declaration — in this case, they're always set to
(3, 4).

When assigning objects of different subtypes, the discriminant check will be
performed — as we
mentioned before. In
this example, the assignments B2 := A1 and C2 := A1 fail because
the objects have different constraints.



Derived types

The behavior for derived types is very similar to the one we've just described
for subtypes. For example:


derived_with_discriminants.ads

 1package Derived_With_Discriminants is
 2
 3   type T
 4     (L : Positive;
 5      M : Positive) is
 6     null record;
 7
 8   type T_Derived is new T;
 9   --  Discriminants are not specified:
10   --  taking the ones from T.
11
12   type T_Derived_2 is new T
13     (L => 3, M => 4);
14   --  Discriminants are specified:
15   --  taking the ones from T_Derived_2
16
17end Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types
MD5: 1e88f787bd9b568e43fc423c121f24f7







For the T_Derived type, we reuse the discriminants of the parent type
T. For the T_Derived_2 type, we specify a value for each
discriminant of T.

As you probably notice, this code looks very similar to the code using
subtypes. The main difference between using subtypes and derived types is that,
as expected, we have to perform a
type conversion in the assignments:


show_derived_with_discriminants.adb

 1with Derived_With_Discriminants;
 2use  Derived_With_Discriminants;
 3
 4procedure Show_Derived_With_Discriminants is
 5   A1 : T (1, 2);
 6   A2 : T (3, 4);
 7   B1 : T_Derived (1, 2);
 8   B2 : T_Derived (3, 4);
 9   C2 : T_Derived_2;
10
11   --  C1 : Sub_T_2 (1, 2);
12   --                ^^^^
13   --  ERROR: discriminants already
14   --         constrained
15begin
16   B1 := T_Derived (A1);
17   --  OK: discriminants match
18
19   B2 := T_Derived (A1);
20   --  ERROR!
21
22   C2 := T_Derived_2 (A1);
23   --  CONSTRAINT_ERROR!
24
25   C2 := T_Derived_2 (A2);
26   --  OK: discriminants match
27end Show_Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types
MD5: 1b32807fcd3b343fbf8ab0d0287ca5bb








Build output



show_derived_with_discriminants.adb:22:23: warning: incorrect value for discriminant "L" [enabled by default]
show_derived_with_discriminants.adb:22:23: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_derived_with_discriminants.adb:19 discriminant check failed







Once again, a discriminant check is performed when assigning objects to ensure
that the type discriminants match. In this code example, the assignments
B2 := A1 and C2 := A1 fail because the objects have different
constraints.



Derived types with renamed discriminants

We could rewrite a type declaration such as type T_Derived is new T by
explicitly declaring the discriminants. We can do that for the previous code
example:


derived_with_discriminants.ads

 1package Derived_With_Discriminants is
 2
 3   type T
 4     (L : Positive;
 5      M : Positive) is
 6     null record;
 7
 8   --  The declaration:
 9   --
10   --     type T_Derived is new T;
11   --
12   --  is the same as:
13   --
14   type T_Derived
15     (L : Positive;
16      M : Positive) is
17     new T (L => L, M => M);
18
19end Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_Same_Discriminants
MD5: 3ee4b3a70e8ab9ba2684c6a2c695f689







We may, however, rename the discriminants instead. For example, we could rename
L and M to X and Y. For example:


derived_with_discriminants.ads

 1package Derived_With_Discriminants is
 2
 3   type T
 4     (L : Positive;
 5      M : Positive) is
 6     null record;
 7
 8   type T_Derived
 9     (X : Positive;
10      Y : Positive) is
11     new T (L => X, M => Y);
12
13end Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_Renamed_Discriminants
MD5: ec2954f538fa63b4d3c7c134527be35d







Of course, if we use named association when declaring objects, we have to use
the correct discriminant names:


show_derived_with_discriminants.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Derived_With_Discriminants;
 4use  Derived_With_Discriminants;
 5
 6procedure Show_Derived_With_Discriminants is
 7   A : T (L => 1, M => 2);
 8   B : T_Derived (X => 3, Y => 4);
 9   --             ^^^^^^^^^^^^^^
10   --  Using correct discriminant names
11begin
12   Put_Line ("A.L = "
13             & A.L'Image);
14   Put_Line ("A.M = "
15             & A.M'Image);
16   Put_Line ("B.X = "
17             & B.X'Image);
18   Put_Line ("B.Y = "
19             & B.Y'Image);
20end Show_Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_Renamed_Discriminants
MD5: cd3ca2d84c8b7d334b152ebab1955a5e








Runtime output



A.L =  1
A.M =  2
B.X =  3
B.Y =  4







In essence, the discriminants of both parent and derived types are the same:
the only difference is that they are accessed by different names. This allows
us to convert from a parent type to a derived type:


show_derived_with_discriminants.adb

1with Derived_With_Discriminants;
2use  Derived_With_Discriminants;
3
4procedure Show_Derived_With_Discriminants is
5   A : T (L => 1, M => 2);
6   B : T_Derived (X => 1, Y => 2);
7begin
8   B := T_Derived (A);  --  OK
9end Show_Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_Renamed_Discriminants
MD5: d685f16bf3a9d64b4c1f182880455ad0







Here, even though objects A and B have discriminants with
different names, the assignment B := T_Derived (A) is valid.



Derived types with more constrained discriminants

When deriving types with discriminants, we may use a more constrained type for
the discriminants of derived type. For example, if the discriminant D of
the parent type is of Integer type, the corresponding discriminant of
the derived type may use a constrained subtype such as Natural or
Positive — because both Natural and Positive are
subtypes of type Integer. For example:


derived_with_discriminants.ads

 1package Derived_With_Discriminants is
 2
 3   type T
 4     (L : Integer;
 5      M : Integer) is
 6     null record;
 7
 8   type T_Derived_2
 9     (X : Natural;
10      Y : Positive) is
11     new T (L => X, M => Y);
12
13end Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_More_Constrained_Discriminants
MD5: 413f04f1f98dde2a6e0df3ee6955da7f







As expected, the constraints of each discriminant's type are taken into account
when evaluating the value that is specified for each discriminant:


show_derived_with_discriminants.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Derived_With_Discriminants;
 4use  Derived_With_Discriminants;
 5
 6procedure Show_Derived_With_Discriminants is
 7   A : T (L => -1, M => -2);
 8   B : T_Derived_2 (X => 0, Y => 1);
 9begin
10   Put_Line ("A.L = "
11             & A.L'Image);
12   Put_Line ("A.M = "
13             & A.M'Image);
14   Put_Line ("B.X = "
15             & B.X'Image);
16   Put_Line ("B.Y = "
17             & B.Y'Image);
18end Show_Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_More_Constrained_Discriminants
MD5: 508bb7a6eb93005f8f1e5a937b55473c








Runtime output



A.L = -1
A.M = -2
B.X =  0
B.Y =  1







Here, we can use (L => -1, M => -2) in the declaration of object
A because both discriminants are of Integer type. However, in the
declaration of object B, we can only use values for the discriminants
that are in the range of the Natural and Positive subtypes,
respectively. (If you change the code to use negative values instead, a
Constraint_Error exception is raised at runtime.)



Extending the discriminant part

As we've seen, we can rename discriminants or use more constrained subtypes for
discriminants in derived types. We might also want to add a new discriminant to
the derived type — in addition to the discriminants of the parent's type.
However, this is considered a type extension, as the new discriminant is part
of the type definition.

As an example, we may want to add the A discriminant of Boolean
type to a derived type. For non-tagged types, such a declaration will trigger a
compilation error as expected:


derived_with_discriminants.ads

 1package Derived_With_Discriminants is
 2
 3   type T
 4     (L : Positive;
 5      M : Positive) is
 6     null record;
 7
 8   type T_Derived
 9     (X : Positive;
10      Y : Positive;
11      A : Boolean) is
12   --  ^^^^^^^^^^^
13   --  ERROR: cannot extend type with new
14   --         Boolean discriminant A
15     new T (L => X, M => Y);
16
17end Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_Extension_Error
MD5: f9ba4ae1c344d63ed706005e30fe60c2








Build output



derived_with_discriminants.ads:11:07: error: new discriminants must constrain old ones
gprbuild: *** compilation phase failed







To circumvent this issue, we could, of course, declare a component of T
type instead of deriving from it:


derived_with_discriminants.ads

 1package Derived_With_Discriminants is
 2
 3   type T
 4     (L : Positive;
 5      M : Positive) is
 6     null record;
 7
 8   type T_2
 9     (X : Positive;
10      Y : Positive;
11      A : Boolean) is
12   record
13      A_Comp : T (L => X, M => Y);
14   end record;
15
16end Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_Extension_Error
MD5: 41e911cdc8486cd49931b2082586d8e7







In this case, A_Comp is a component of type T, and we're using
the discriminant X and Y as the constraints of this component.

Naturally, using tagged types is another alternative:


derived_with_discriminants.ads

 1package Derived_With_Discriminants is
 2
 3   type T
 4     (L : Positive;
 5      M : Positive) is
 6     tagged null record;
 7
 8   type T_Derived_Extended
 9     (X : Positive;
10      Y : Positive;
11      A : Boolean) is  --  New discriminant
12     new T (L => X, M => Y)
13       with null record;
14
15   type T_Derived_Extended_2
16     (A : Boolean;     --  New discriminant
17      X : Positive;
18      Y : Positive) is
19     new T (L => X, M => Y)
20       with null record;
21
22   type T_Derived_Extended_3
23     (A : Boolean) is  --  New discriminant
24     new T (L => 1, M => 2)
25       with null record;
26
27   type T_Derived_Extended_4
28     (A : Boolean;     --  New discriminant
29      X : Positive) is
30     new T (L => X, M => X)
31       with null record;
32
33end Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Tagged_Types
MD5: b8124d132a4b5066826980c8cc43a7ad







In this code example, we're adding the A discriminant when declaring
T_Derived_Extended. Because T is a tagged type, such a new
discriminant is fine.

Note that the order of the discriminants can be rearranged: when deriving a new
type, we don't need to specify the discriminants of the parent type before any
new discriminants. In fact, in the declaration of T_Derived_Extended_2,
the additional discriminant A is declared before the discriminants that
match the parent type's discriminants.

In addition, we may even use literals to specify the constraints for the parent
type — as we're doing in the declaration of T_Derived_Extended_3.
Also, we can use the same discriminant from the derived type for the
constraints of the parent type — in the declaration of
T_Derived_Extended_4, we use the X discriminant for both L
and M discriminants of type T.



Deriving with defaults

If the discriminants of the parent type have default values, those default
values are inherited by the derived type. Alternatively, we can set different
default values.

Let's see a code example:


derived_with_discriminants.ads

 1package Derived_With_Discriminants is
 2
 3   type T
 4     (L : Positive := 1;
 5      M : Positive := 2) is
 6     null record;
 7
 8   type T_Derived is new T;
 9
10   type T_Derived_2
11     (L : Positive := 1;
12      M : Positive := 3) is
13     new T (L => L, M => M);
14
15end Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_Defaults
MD5: 4ffa513c0cd8b6812359a2fc4d8325d2







In this example, the derived type T_Derived has the same default values
as the parent type T, namely (L => 1, M => 2). For the derived
type T_Derived_2, we're changing the value of M to 3 and keeping
the same value for L.

As we've seen before, instead of setting default values, we can set the
constraints of the parent type in the declaration of the derived type:


derived_with_discriminants.ads

 1package Derived_With_Discriminants is
 2
 3   type T
 4     (L : Positive := 1;
 5      M : Positive := 2) is
 6     null record;
 7
 8   type T_Derived_Constrainted is new T
 9     (L => 1, M => 3);
10
11end Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_Defaults_Constraints
MD5: d6053fc79a3e7010ec7b3ec73f51f4e5







In this case, we're constraining the discriminants of the parent type to
(L => 1, M => 3). Note that L has the same value as the default
value set for the parent type T.


For further reading...

In other contexts (such as
record aggregates, which we discuss in
another chapter), we could use the so-called
box notation to specify that we
want to use the default value. This, however, isn't possible with type
discriminants:


derived_with_discriminants.ads

 1package Derived_With_Discriminants is
 2
 3   type T
 4     (L : Positive := 1;
 5      M : Positive := 2) is
 6     null record;
 7
 8   type T_Derived_Constraint is new T
 9     (L => <>, M => 3);
10   --   ^^^^^^^
11   --  ERROR: cannot use default values
12   --         via box notation
13end Derived_With_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants.Derived_Types_Defaults_Constraints_Box_Notation
MD5: 18d755ec4de45164a47009ab25368452








Build output



derived_with_discriminants.ads:9:11: error: missing operand
gprbuild: *** compilation phase failed







Instead of using <>, we have to repeat the value explicitly.







Discriminant constraints and operations

In this section, we discuss some details about discriminant constraints and
operations related to discriminants — more specifically, the
Constrained attribute.


In the Ada Reference Manual


	3.7.1 Discriminant Constraints[#9]







Discriminant constraints

As we discussed before, when
declaring an object with a discriminant,
we have to specify the values of the all discriminants — unless, of
course, those discriminants have a
default value. The values
we specify for the discriminants are called discriminant constraints.

Let's revisit the code example we've seen earlier on:


recs.ads

1package Recs is
2
3   type T (L : Positive;
4           M : Positive) is
5     null record;
6
7end Recs;








show_object_declaration.adb

1with Recs;        use Recs;
2
3procedure Show_Object_Declaration is
4   A : T (L => 5, M => 6);
5   B : T (7, 8);
6   C : T (7, M => 8);
7begin
8   null;
9end Show_Object_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants_Constraints_Operations.Discriminant_Constraint
MD5: 9e37a1cde73f27b99fd2a9eb57f23c44







Here, L => 5, M => 6 (for object A) are named constraints, while
7, 8 (for object B) are positional constraints.

It's possible to use both positional and named constraints, as we do for object
C: 7, M => 8. In this case, the positional associations must
precede the named associations.

In the case of named constraints, we can use multiple selector names:


show_object_declaration.adb

1with Recs;        use Recs;
2
3procedure Show_Object_Declaration is
4   A : T (L | M => 5);
5   --     ^^^^^
6   --  multiple selector names
7begin
8   null;
9end Show_Object_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants_Constraints_Operations.Discriminant_Constraint
MD5: b6fbe1d69bb520a7b6845536a1601978







This is only possible, however, if those named discriminants are all of the
same type. (In this case, L and M are both of Positive
subtype.)


In the Ada Reference Manual


	3.7.1 Discriminant Constraints[#10]







Discriminant constraint in subtypes

We can use discriminant constraints in the declaration of subtypes. For
example:


show_object_declaration.adb

 1with Recs;        use Recs;
 2
 3procedure Show_Object_Declaration is
 4   subtype T_5_6 is T (L => 5, M => 6);
 5   --                  ^^^^^^^^^^^^^^
 6   --  discriminant constraints for subtype
 7
 8   A : T_5_6;
 9begin
10   null;
11end Show_Object_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants_Constraints_Operations.Discriminant_Constraint
MD5: c6c4226073f4282d68d621519ca4d420







In this example, we use the named discriminant constraints
L => 5, M => 6 in the declaration of the subtype T_5_6.




Constrained Attribute

We can use the Constrained attribute to verify whether an object of
discriminated type is constrained or not. Let's look at a simple example:


recs.ads

1package Recs is
2
3   type T (L : Positive := 1) is
4     null record;
5
6end Recs;








show_constrained_attribute.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Recs;        use Recs;
 4
 5procedure Show_Constrained_Attribute is
 6   Constr   : T (L => 5);
 7   --            ^^^^^^ constrained.
 8   Unconstr : T;
 9   --         ^ unconstrained;
10   --           using defaults.
11begin
12   Put_Line ("Constr'Constrained:   "
13             & Constr'Constrained'Image);
14   Put_Line ("Unconstr'Constrained: "
15             & Unconstr'Constrained'Image);
16end Show_Constrained_Attribute;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants_Constraints_Operations.Simple_Constrained_Attribute
MD5: 6a9a807f5af132a07949d2887fa5bfe5








Runtime output



Constr'Constrained:   TRUE
Unconstr'Constrained: FALSE







As the Constrained attribute indicates, the Constr object is
constrained (by the L => 5 discriminant constraint), while the
Unconstr object is unconstrained. Note that, even though Unconstr
is using the default value for L — which would correspond to the
discriminant constraint L => 1 — the object itself hasn't been
constraint at its declaration.

Let's continue our discussion with a more complex example by reusing
the Unconstrained_Types package that we declared in a
previous section. In this
version of the package, we're adding a Reset procedure for the
discriminated record type Simple_Record:


unconstrained_types.ads

 1package Unconstrained_Types is
 2
 3   type Simple_Record
 4     (Extended : Boolean := False) is
 5   record
 6      V : Integer;
 7      case Extended is
 8         when False =>
 9            null;
10         when True  =>
11            V_Float : Float;
12      end case;
13   end record;
14
15   procedure Reset (R : in out Simple_Record);
16
17end Unconstrained_Types;








unconstrained_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Unconstrained_Types is
 4
 5   procedure Reset (R : in out Simple_Record) is
 6      Zero_Not_Extended : constant
 7        Simple_Record := (Extended => False,
 8                          V        => 0);
 9
10      Zero_Extended : constant
11        Simple_Record := (Extended => True,
12                          V        => 0,
13                          V_Float  => 0.0);
14   begin
15      Put_Line ("---- Reset: R'Constrained => "
16                & R'Constrained'Image);
17
18      if not R'Constrained then
19         R := Zero_Extended;
20      else
21         if R.Extended then
22            R := Zero_Extended;
23         else
24            R := Zero_Not_Extended;
25         end if;
26      end if;
27   end Reset;
28
29end Unconstrained_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants_Constraints_Operations.Constrained_Attribute
MD5: b56e6d71fd4f05e8490412d7fe40b923







As the name indicates, the Reset procedure initializes all record
components with zero. Note that we use the Constrained attribute to
verify whether objects are constrained before assigning to them. For objects
that are not constrained, we can simply assign another object to it — as
we do with the R := Zero_Extended statement. When an object is
constrained, however, the discriminants must match. If we assign an object to
R, the discriminant of that object must match the discriminant of
R. This is the kind of verification that we do in the else part
of that procedure: we check the state of the Extended discriminant
before assigning an object to the R parameter.

Note that the Simple_Record type has a
variant part. We discuss this topic later on
in this chapter.

Note as well that, in the initialization of the Zero_Not_Extended and
Zero_Extended constants, we have to indicate the discriminant as a
component of the aggregates (e.g.: (Extended => False, V => 0). We
discuss this topic in another chapter when we learn more about
aggregates and record discriminants.

The Using_Constrained_Attribute procedure below declares two objects of
Simple_Record type: R1 and R2. Because the
Simple_Record type has a default value for its discriminant, we can
declare objects of this type without specifying a value for the discriminant.
This is exactly what we do in the declaration of R1. Here, we don't
specify any constraints, so that it takes the default value
(Extended => False).  In the declaration of R2, however, we
explicitly set Extended to False:


using_constrained_attribute.adb

 1with Ada.Text_IO;         use Ada.Text_IO;
 2
 3with Unconstrained_Types; use Unconstrained_Types;
 4
 5procedure Using_Constrained_Attribute is
 6   R1 : Simple_Record;
 7   R2 : Simple_Record (Extended => False);
 8
 9   procedure Show_Rs is
10   begin
11      Put_Line ("R1'Constrained => "
12                & R1'Constrained'Image);
13      Put_Line ("R1.Extended => "
14                & R1.Extended'Image);
15      Put_Line ("--");
16      Put_Line ("R2'Constrained => "
17                & R2'Constrained'Image);
18      Put_Line ("R2.Extended => "
19                & R2.Extended'Image);
20      Put_Line ("----------------");
21   end Show_Rs;
22begin
23   Show_Rs;
24
25   Reset (R1);
26   Reset (R2);
27   Put_Line ("----------------");
28
29   Show_Rs;
30end Using_Constrained_Attribute;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Discriminants_Constraints_Operations.Constrained_Attribute
MD5: f7517fcd3c68a784f55064f188d4e7bb








Runtime output



R1'Constrained => FALSE
R1.Extended => FALSE
--
R2'Constrained => TRUE
R2.Extended => FALSE
----------------
---- Reset: R'Constrained => FALSE
---- Reset: R'Constrained => TRUE
----------------
R1'Constrained => FALSE
R1.Extended => TRUE
--
R2'Constrained => TRUE
R2.Extended => FALSE
----------------







When we run this code, the user messages from Show_Rs indicate to us
that R1 is not constrained, while R2 is constrained.
Because we declare R1 without specifying a value for the Extended
discriminant, R1 is not constrained. In the declaration of
R2, on the other hand, the explicit value for the Extended
discriminant makes this object constrained. Note that, for both R1 and
R2, the value of Extended is False in the declarations.

As we were just discussing, the Reset procedure includes checks to avoid
mismatches in discriminants. When we don't have those checks, we might get
exceptions at runtime. We can force this situation by replacing the
implementation of the Reset procedure with the following lines:

--  [...]
begin
   Put_Line ("---- Reset: R'Constrained => "
             & R'Constrained'Image);
   R := Zero_Extended;
end Reset;





Running the code now generates a runtime exception:

raised CONSTRAINT_ERROR : unconstrained_types.adb:12 discriminant check failed





This exception is raised during the call to Reset (R2). As we see in the
code, R2 is constrained. Also, its Extended discriminant is set
to False, which means that it doesn't have the V_Float
component. Therefore, R2 is not compatible with the constant
Zero_Extended object, so we cannot assign Zero_Extended to
R2. Also, because R2 is constrained, its Extended
discriminant cannot be modified.

The behavior is different for the call to Reset (R1), which works fine.
Here, when we pass R1 as an argument to the Reset procedure, its
Extended discriminant is False by default. Thus, R1 is
also not compatible with the Zero_Extended object. However, because
R1 is not constrained, the assignment modifies R1 (by changing
the value of the Extended discriminant). Therefore, with the call to
Reset, the Extended discriminant of R1 changes from
False to True.


In the Ada Reference Manual


	3.7.2 Operations of Discriminated Types[#11]









Unknown discriminants

As we've seen previously, a
type with discriminants can have known discriminants or unknown discriminants.
In this section, we focus on unknown discriminants. Because the discriminants
are unknown, this is an
indefinite type.
Let's start with a simple example:


unknown_discriminants.ads

 1package Unknown_Discriminants is
 2
 3   type T_Unknown_Discr (<>) is
 4   --                   ^^^^
 5   --   Unknown discriminant part
 6     private;
 7
 8private
 9
10   type T_Unknown_Discr is
11     null record;
12
13end Unknown_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Simple_Example
MD5: 5f673c957132b1bca633c247f857e37b







Note that we can only use an unknown discriminant part in the
partial view; we cannot use it in the full view of a
type:


unknown_discriminants.ads

1package Unknown_Discriminants is
2
3   type T_Unknown_Discr (<>) is
4     null record;
5
6end Unknown_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Wrong_Full_View
MD5: dfce1471556af87b6a99314b1ee32446








Build output



unknown_discriminants.ads:3:25: error: full type declaration cannot have unknown discriminants
gprbuild: *** compilation phase failed







To be more precise, an unknown discriminant part can only be used in the
declaration of a private type, a private extension or an
incomplete type. In addition, as we'll see in
another chapter, it can also be used in the generic equivalents: generic
private types, generic private extensions, generic incomplete types, and formal
derived types.

For example:


unknown_discriminants.ads

 1package Unknown_Discriminants is
 2
 3   --   Private type
 4   type Rec (<>) is
 5     private;
 6
 7   --   Tagged private type
 8   type Tagged_Rec (<>) is
 9     tagged private;
10
11   --   Incomplete type
12   type T_Incomplete (<>);
13
14   type T_Incomplete (<>) is
15     private;
16
17private
18
19   type Rec is
20     null record;
21
22   type Tagged_Rec is
23     tagged null record;
24
25   type T_Incomplete is
26     null record;
27
28end Unknown_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Simple_Example
MD5: e601ab326c43501e36e0d4656dc1629e







In this example, we have three forms of private types using an unknown
discriminant part: an untagged private type (Rec), a tagged type
(Tagged_Rec) and an incomplete type (T_Incomplete) that
becomes an untagged private type.
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Object declaration

Now, let's talk about objects of types with unknown discriminants. Consider
the Rec type below:


unknown_discriminants.ads

 1package Unknown_Discriminants is
 2
 3   type Rec (<>) is private;
 4
 5private
 6
 7   type Rec is
 8   record
 9      I : Integer;
10   end record;
11
12end Unknown_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Object_Declaration
MD5: 9f588870ec70ea30c795a6a0a602f589







We cannot declare objects of type Rec directly, as this type is
indefinite:


show_object_declaration.adb

1with Unknown_Discriminants;
2use  Unknown_Discriminants;
3
4procedure Show_Object_Declaration is
5   A : Rec;
6begin
7   null;
8end Show_Object_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Object_Declaration
MD5: 5f30773fc17096943939468faf50338b








Build output



show_object_declaration.adb:5:08: error: unconstrained subtype not allowed (need initialization)
gprbuild: *** compilation phase failed







Because the type is indefinite, it requires explicit initialization — we
can do this by introducing a subprogram that initializes the type. In our
code example, we can implement a simple Init function for this type:


unknown_discriminants.ads

 1package Unknown_Discriminants is
 2
 3   type Rec (<>) is private;
 4
 5   function Init return Rec;
 6
 7private
 8
 9   type Rec is
10   record
11      I : Integer;
12   end record;
13
14   function Init return Rec is
15     ((I => 0));
16
17end Unknown_Discriminants;








show_constructor_function.adb

1with Unknown_Discriminants;
2use  Unknown_Discriminants;
3
4procedure Show_Constructor_Function is
5   R : Rec := Init;
6begin
7   null;
8end Show_Constructor_Function;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Discriminants.Object_Declaration
MD5: 1cee0c4b883b3a0c25fae0a5111db2a8







In the Show_Constructor_Function procedure from this
example, we call the Init function to initialize the R object in
its declaration (of Rec type). Note that for this specific type, this is
the only possible way to declare the R object. In fact, compilation
fails if we write R : Rec;.

Using a private type with unknown discriminants is an important Ada idiom, as
we gain extra control over its initialization. For example, if we have to
ensure that certain components of the private record are initialized when an
object is being declared, we can perform this initialization in the Init
function — instead of just hoping that an initialization function is
called for this object at some point. Also, if further information is needed to
initialize an object, we can add parameters to the Init function,
thereby forcing the user to provide this information.

For even more control over objects, we can use
limited types with unknown discriminants.



Partial and full view

As we've just seen, if we declare a type with an unknown discriminant part, we
can only use it in the partial view. In the full view. we cannot use an unknown
discriminant part, but have to use either no discriminants or known
discriminants. For example:


unknown_discriminants.ads

 1package Unknown_Discriminants is
 2
 3   type Rec_No_Discr (<>) is private;
 4
 5   type Rec_Known_Discr (<>) is private;
 6
 7private
 8
 9   type Rec_No_Discr is null record;
10
11   type Rec_Known_Discr
12     (L : Positive) is null record;
13
14end Unknown_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Partial_Full_View
MD5: 3d37dcc9d1b12bf9a189cf515b168430







In this example, Rec_No_Discr has no discriminants in its full
view, while Rec_Known_Discr has the discriminant L.

In addition, the full view can be an (unconstrained) array type as well:


unknown_discriminants.ads

 1package Unknown_Discriminants is
 2
 3   type Arr (<>) is private;
 4
 5private
 6
 7   type Arr is
 8     array (Positive range <>)
 9       of Integer;
10
11end Unknown_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Partial_Full_View
MD5: d1e0f60048c6ca6bcf863a8c0cf68314







Here, the full view of Arr is an array type.
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Derived types

As expected, we can derive from types with unknown discriminants. Consider the
following package:


unknown_discriminants.ads

1package Unknown_Discriminants is
2
3   type Rec (<>) is private;
4
5private
6
7   type Rec is null record;
8
9end Unknown_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Derived_Type
MD5: 948e7c7ecd00915fa23a98cbaf2bbcbe







We can then declare the Derived_Rec type:


unknown_discriminants-children.ads

1package Unknown_Discriminants.Children is
2
3   type Derived_Rec is
4     new Rec;
5
6end Unknown_Discriminants.Children;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Derived_Type
MD5: 1fa7e905c794d48bf6c76ff51e1abd8d







Note that Derived_Rec has unknown discriminants, even though we're not
explicitly using an unknown discriminant part ((<>)) in its declaration.
(In fact, we're not allowed to use an unknown discriminant part in this case.)
Therefore, declaring objects of this type directly isn't possible, just like
the parent type Rec:


show_object_declaration.adb

1with Unknown_Discriminants.Children;
2use  Unknown_Discriminants.Children;
3
4procedure Show_Object_Declaration is
5   A : Derived_Rec;
6begin
7   null;
8end Show_Object_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Derived_Type
MD5: 5d0b8980e6f60595b9de8a2ea8fa2132








Build output



show_object_declaration.adb:5:08: error: unconstrained subtype not allowed (need initialization)
gprbuild: *** compilation phase failed








Deriving from tagged types

We can also derive from tagged types with unknown discriminants. Consider the
following package:


unknown_discriminants.ads

1package Unknown_Discriminants is
2
3   type Rec (<>) is tagged private;
4
5private
6
7   type Rec is tagged null record;
8
9end Unknown_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Derived_Tagged_Type
MD5: ef66d098df1c93495bf5f6c6ac86f203







We can derive from the Rec type. In this case, however, we can use
an unknown discriminant part, a known discriminant part, or no discriminants:


unknown_discriminants-children.ads

 1package Unknown_Discriminants.Children is
 2
 3   type Derived_Rec_Unknown_Discr (<>) is
 4     new Rec with private;
 5
 6   type Derived_Rec_Known_Discr (L : Positive) is
 7     new Rec with private;
 8
 9   type Derived_Rec_No_Discr is
10     new Rec with private;
11
12private
13
14   type Derived_Rec_Unknown_Discr is
15     new Rec with null record;
16
17   type Derived_Rec_Known_Discr (L : Positive) is
18     new Rec with null record;
19
20   type Derived_Rec_No_Discr is
21     new Rec with null record;
22
23end Unknown_Discriminants.Children;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Derived_Tagged_Type
MD5: 98583f0b39c6f8bea49d1781844bb33e







In this example, we declare Derived_Rec_Unknown_Discr with an unknown
discriminant part, Derived_Rec_Known_Discr with a known discriminant
part, and Derived_Rec_No_Discr with no discriminants.

As expected, Derived_Rec_Unknown_Discr has unknown discriminants because
it has an unknown discriminant part. In the case of
Derived_Rec_No_Discr, which has no discriminants, we're deriving the
unknown discriminants of Rec, so it also has unknown discriminants.
In contrast, because Derived_Rec_Known_Discr has a known discriminant
part, those discriminants are overriding the unknown discriminants of the
parent type Rec. Therefore, we can declare objects of
Derived_Rec_Known_Discr type without explicit initialization:


show_object_declaration.adb

 1with Unknown_Discriminants.Children;
 2use  Unknown_Discriminants.Children;
 3
 4procedure Show_Object_Declaration is
 5   A : Derived_Rec_Unknown_Discr;
 6   --  ERROR: unknown discriminants
 7   --         because of the type's
 8   --         unknown discriminant part
 9
10   B : Derived_Rec_Known_Discr (1);
11   --  OK: known discriminants
12
13   C : Derived_Rec_No_Discr;
14   --  ERROR: unknown discriminants
15   --         because of parent type's
16   --         unknown discriminant part
17begin
18   null;
19end Show_Object_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Derived_Tagged_Type
MD5: 91f6ae2abf88976833d0e4eff02d4c40








Build output



show_object_declaration.adb:5:08: error: unconstrained subtype not allowed (need initialization)
show_object_declaration.adb:13:08: error: unconstrained subtype not allowed (need initialization)
gprbuild: *** compilation phase failed







As we can see, we can only directly declare objects of type
Derived_Rec_Known_Discr because it has known discriminants, while the
other two derived types have unknown discriminants — which are explicitly
specified (Derived_Rec_Unknown_Discr) or implicitly derived from the
parent (Derived_Rec_No_Discr).

Note that the parent type Rec had a requirement for explicit
initialization. By using known discriminants in the declaration of
Derived_Rec_Known_Discr, we're removing this requirement for the derived
type.

The contrary is also true: we can derive a type with known discriminants and
use an unknown discriminant part:


unknown_discriminants-children-grand.ads

 1package Unknown_Discriminants.Children.Grand is
 2
 3   type Grand_Rec_Unknown_Discr (<>) is
 4     new Derived_Rec_Known_Discr (1)
 5       with private;
 6
 7private
 8
 9   type Grand_Rec_Unknown_Discr is
10     new Derived_Rec_Known_Discr (1)
11       with null record;
12
13end Unknown_Discriminants.Children.Grand;








show_object_declaration.adb

 1with Unknown_Discriminants.Children.Grand;
 2use  Unknown_Discriminants.Children.Grand;
 3
 4procedure Show_Object_Declaration is
 5   A : Grand_Rec_Unknown_Discr;
 6   --  ERROR: unknown discriminants
 7   --         because of the type's
 8   --         unknown discriminant part
 9begin
10   null;
11end Show_Object_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Derived_Tagged_Type
MD5: 0e931df8294cee1f49b187c43614aa20








Build output



show_object_declaration.adb:5:08: error: unconstrained subtype not allowed (need initialization)
show_object_declaration.adb:5:08: error: provide initial value or explicit discriminant values
show_object_declaration.adb:5:08: error: or give default discriminant values for type "Grand_Rec_Unknown_Discr"
gprbuild: *** compilation phase failed







In this example, Grand_Rec_Unknown_Discr has unknown discriminants and
requires explicit initialization, even though its parent type
Derived_Rec_Known_Discr has known discriminants.
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Unconstrained subtypes

A subtype is called an unconstrained subtype if its type has unknown
discriminants. Consider a simple Rec type:


unknown_discriminants.ads

1package Unknown_Discriminants is
2
3   type Rec (<>) is private;
4
5private
6
7   type Rec is null record;
8
9end Unknown_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Unconstrained_Subtype
MD5: 948e7c7ecd00915fa23a98cbaf2bbcbe







A subtype of Rec type is unconstrained:


unknown_discriminants-children.ads

1package Unknown_Discriminants.Children is
2
3   subtype Rec_Unconstrained is Rec;
4
5end Unknown_Discriminants.Children;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Unconstrained_Subtype
MD5: 6b76b6a94d8c9487dbeea3256d5de01f







In this example, Rec_Unconstrained is an unconstrained subtype because
it's derived from the Rec type. We can verify this by triggering a
compilation error:


show_object_declaration.adb

1with Unknown_Discriminants.Children;
2use  Unknown_Discriminants.Children;
3
4procedure Show_Object_Declaration is
5   A : Rec_Unconstrained;
6begin
7   null;
8end Show_Object_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Derived_Type
MD5: 442fab4d174de31f27d0de56bf9b8422








Build output



show_object_declaration.adb:5:08: error: "Rec_Unconstrained" is undefined
gprbuild: *** compilation phase failed







In addition, if we declare a subtype based on a type that allows range, index,
or discriminant constraints, but we don't constraint the subtype, this subtype
is also considered an unconstrained subtype. For example:


unconstrained_subtypes.ads

 1package Unconstrained_Subtypes is
 2
 3   type Arr is
 4     array (Positive range <>) of
 5       Integer;
 6
 7   type Rec (L : Positive) is
 8     null record;
 9
10   subtype Arr_Sub is Arr;
11   --                 ^^^
12   --  no constraints
13
14   subtype Rec_Sub is Rec;
15   --                 ^^^
16   --  no constraints
17
18end Unconstrained_Subtypes;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Unknown_Discriminants.Other_Unconstrained_Subtypes
MD5: 3ebc2eb371472dc76eb543b4633e59b3







In this example, Arr_Sub and Rec_Sub are unconstrained subtypes.
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Variant parts

We've introduced variant records back in the
Introduction to Ada course[#16].
In simple terms, a variant record is a record with discriminants that allows
for varying its structure. Basically, it's a record containing a case
statement that specifies which record components exist for each discriminant
value. For example:


devices.ads

 1package Devices is
 2
 3   type Device_State is
 4     (Off, On);
 5
 6   type Device_Info is
 7   record
 8      V : Float;
 9   end record;
10
11   type Device (State : Device_State := Off) is
12   record
13      case State is
14         when Off =>
15            null;
16         when On =>
17            Info : Device_Info;
18      end case;
19   end record;
20
21end Devices;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Simple_Device
MD5: 3b63a63aef1d9cb00be870c831829158







The Device type from this example has a variant part. Depending on the
value of the State discriminant, it can be either a null record (when
State is Off) or have the Info component (when
State is On).

Let's look at a test application for the Devices package:


show_device.adb

 1with Devices; use Devices;
 2
 3procedure Show_Device is
 4   D     : Device;
 5   D_Off : Device (Off);
 6   D_On  : Device (On);
 7begin
 8   D := D_Off;
 9   --  OK!
10
11   D := D_On;
12   --  OK!
13
14   D_Off := D_On;
15   --       ^^^^
16   --  CONSTRAINT_ERROR!
17
18   D_On  := D_Off;
19   --       ^^^^^
20   --  CONSTRAINT_ERROR!
21end Show_Device;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Simple_Device
MD5: a11e2739131f435e8428a5e2a9a478e7








Build output



show_device.adb:11:09: warning: "D_On" may be referenced before it has a value [enabled by default]
show_device.adb:14:13: warning: incorrect value for discriminant "State" [enabled by default]
show_device.adb:14:13: warning: Constraint_Error will be raised at run time [enabled by default]
show_device.adb:18:13: warning: incorrect value for discriminant "State" [enabled by default]
show_device.adb:18:13: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_device.adb:14 discriminant check failed







As we've discussed
previously, when we
set the values for the discriminants of a type in the object declaration, we're
constraining the objects. If the discriminants of two objects don't match, the
Constraint_Error exception is raised at runtime because the
discriminant check fails. Therefore, in the
Show_Device procedure, because D_Off and D_On are
constrained and have different values for the State discriminant, we
cannot assign them to each other. In contrast, because D wasn't
constrained at its declaration, we can assign objects with different
discriminants (such as D_Off and D_On) to it.

Note that the variant part of a record can be more complex. For example, we
could have an additional discriminant and use it in the variant part:


devices.ads

 1package Devices is
 2
 3   type Device_State is
 4     (Off, On);
 5
 6   type Device_Info is
 7   record
 8      V : Float;
 9   end record;
10
11   type Device (State : Device_State;
12                Boost : Boolean) is
13   record
14      case State is
15         when Off =>
16            null;
17         when On =>
18            Info : Device_Info;
19            case Boost is
20               when False =>
21                  null;
22               when True =>
23                  Factor : Float;
24            end case;
25      end case;
26   end record;
27
28end Devices;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Device_Boost
MD5: 4c5e84ccebca9e4ef5e2d6d131ba0e6a







In this version of the Devices package, we introduced a boost button
as a discriminant (Boost) and an associated boost factor component
(Factor) in the variant part.

In the remaining parts of this section, we discuss a couple of details about
variant records.
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Discriminant type and value coverage

The subtype of discriminants used in the variant part must be of a discrete
type — it cannot be of an access or a floating-point type, for example.
Also, all possible values of the subtype of each discriminant must be covered
in the case statement of the variant part. For example, consider the following
variant record:


subtype_coverage.ads

 1package Subtype_Coverage is
 2
 3   type Var_Rec (Value : Integer) is
 4   record
 5      case Value is
 6         when 0 .. 100 =>
 7            I : Integer;
 8
 9         --  ERROR: missing values!
10      end case;
11   end record;
12
13end Subtype_Coverage;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Coverage
MD5: 084a468bc8d6f63d21f804c9ddc70622








Build output



subtype_coverage.ads:5:07: error: missing case values: -16#8000_0000# .. -1
subtype_coverage.ads:5:07: error: missing case values: 101 .. 16#7FFF_FFFF#
gprbuild: *** compilation phase failed







This package cannot be compiled because, in the variant part, we're only
covering values for the Value discriminant in the range between 0 and
100. To fix this compilation error, we have to cover all values instead. For
example:


subtype_coverage.ads

 1package Subtype_Coverage is
 2
 3   type Var_Rec (Value : Integer) is
 4   record
 5      case Value is
 6         when Integer'First .. -1 =>
 7            null;
 8         when 0 .. 100 =>
 9            I : Integer;
10         when 101 .. Integer'Last =>
11            null;
12      end case;
13   end record;
14
15end Subtype_Coverage;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Coverage
MD5: 9dfa0dfc3d3e11394a79b1ab6b61bafc







Of course, specifying all possible values can be difficult. As an alternative,
we could simplify the case statement by just using others as a discrete
choice that encompasses all values that haven't been specified earlier in the
case statement:


subtype_coverage.ads

 1package Subtype_Coverage is
 2
 3   type Var_Rec (Value : Integer) is
 4   record
 5      case Value is
 6         when 0 .. 100 =>
 7            I : Integer;
 8         when others =>
 9            null;
10      end case;
11   end record;
12
13end Subtype_Coverage;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Coverage
MD5: 0b28038d5137de702cb5b8e875fadefa







By using when others => ... in this last example, we ensure that all
values have been covered.



Record size

When declaring an object, the values we select for the discriminants related to
the variant part have an impact on the overall size of that object — in
fact, it may be smaller or bigger depending on this selection. Let's see an
example:


variant_records.ads

 1package Variant_Records is
 2
 3   type Simple_Record
 4     (Extended : Boolean := False) is
 5   record
 6      V : Integer;
 7      case Extended is
 8         when False =>
 9            null;
10         when True  =>
11            V_Float : Float;
12      end case;
13   end record;
14
15end Variant_Records;








show_variant_rec_size.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2
 3with Variant_Records; use Variant_Records;
 4
 5procedure Show_Variant_Rec_Size is
 6   SR_No_Ext : Simple_Record
 7                 (Extended => False);
 8   SR_Ext    : Simple_Record
 9                 (Extended => True);
10   SR        : Simple_Record;
11begin
12   Put_Line ("SR_No_Ext'Size : "
13             & SR_No_Ext'Size'Image
14             & " bits");
15   Put_Line ("SR_Ext'Size : "
16             & SR_Ext'Size'Image
17             & " bits");
18   Put_Line ("SR'Size : "
19             & SR'Size'Image
20             & " bits");
21end Show_Variant_Rec_Size;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Size
MD5: 4aaf10924e7469d000cefeb70a69a2fa








Build output



show_variant_rec_size.adb:6:04: warning: variable "SR_No_Ext" is read but never assigned [-gnatwv]
show_variant_rec_size.adb:8:04: warning: variable "SR_Ext" is read but never assigned [-gnatwv]
show_variant_rec_size.adb:10:04: warning: variable "SR" is read but never assigned [-gnatwv]








Runtime output



SR_No_Ext'Size :  64 bits
SR_Ext'Size :  96 bits
SR'Size :  96 bits







As we can confirm when we run this application, the choice for the discriminant
has an impact on the size of the object. In the case of the SR_No_Ext
object, setting the Extended discriminant to False excludes the
V_Float component. For the SR_Ext object, on the other hand, we
include the V_Float component. Therefore, on a typical PC, the size of
SR_No_Ext is 8 bytes (4 bytes for the Extended discriminant and
4 bytes for the V component), while the size of SR_Ext is 12
bytes (i.e., additional 4 bytes for the V_Float component).

In the case of SR, because the object isn't constrained, the size of the
object is 12 bytes on a typical PC — the same size as SR_Ext. This
is because SR has to account for the case when all components must be
available, even though the Extended discriminant is set to False
by default. Remember that an assignment such as SR := SR_Ext is valid,
so enough memory must be available to ensure that the assignment is performed
correctly.

This principle applies to more complicated variant records. For example:


variant_records.ads

 1package Variant_Records is
 2
 3   type Simple_Record
 4     (Extended   : Boolean := False;
 5      Extended_2 : Boolean := False) is
 6   record
 7      V : Integer;
 8      case Extended is
 9         when False =>
10            case Extended_2 is
11               when False =>
12                  null;
13               when True  =>
14                  V_Int_2 : Integer;
15                  V_Int_3 : Integer;
16            end case;
17         when True  =>
18            V_Float : Float;
19            case Extended_2 is
20               when False =>
21                  null;
22               when True  =>
23                  V_Float_2 : Float;
24            end case;
25      end case;
26   end record;
27
28end Variant_Records;








show_variant_rec_size.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2
 3with Variant_Records; use Variant_Records;
 4
 5procedure Show_Variant_Rec_Size is
 6   SR : Simple_Record;
 7begin
 8   Put_Line ("SR'Size : "
 9             & SR'Size'Image
10             & " bits");
11end Show_Variant_Rec_Size;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Size
MD5: 5f0ac936a5fee50cbe88a7b863a1a550








Build output



show_variant_rec_size.adb:6:04: warning: variable "SR" is read but never assigned [-gnatwv]








Runtime output



SR'Size :  128 bits







In this example, the size of SR is 16 bytes on a typical PC. This
accounts for 4 bytes for the discriminants Extended and
Extended_2, and 4 bytes for each of the 3 components that are being
taken into account for the worst case:


	components V, V_Int_2 and V_Int_3 when we set
Extended => False, Extended_2 => True;


	components V, V_Float and V_Float_2 when we set
Extended => True, Extended_2 => True.




Note that a memory block is shared between the V_Int_2 and
V_Int_3 components from the first worst case, and V_Float and the
V_Float_2 components from the second worst case. As we can see, the
compiler will typically optimize the size of a record as much as possible by
assessing which components are really needed for the worst case.

Also, as we discussed previously, we can use
unchecked unions in combination with variant
records, which has an impact on the object size.



Ensuring valid information

We can use variant parts to prevent invalid information from being used. Let's
look again at the Device type from the previous code example:

type Device (State : Device_State) is
record
   case State is
      when Off =>
         null;
      when On =>
         Info : Device_Info;
   end case;
end record;





For the sake of this example, we could say that a device that is turned off
doesn't have any valuable information. Therefore, the device information stored
in the Info component of the Device type is only valid if the
device is turned on. Thus, if the device is turned off (i.e.,
Device_State = Off), we should prevent the application from processing
device information that is probably incorrect. Let's extend the previous code
example to accommodate this requirement:


devices.ads

 1package Devices is
 2
 3   type Device_State is
 4     (Off, On);
 5
 6   type Device
 7     (State : Device_State := Off) is
 8       private;
 9
10   procedure Turn_Off (D : in out Device);
11
12   procedure Turn_On (D : in out Device);
13
14   type Device_Info is
15   record
16      V : Float;
17   end record;
18
19   function Current_Info (D : Device)
20                          return Device_Info;
21
22private
23
24   type Device (State : Device_State := Off) is
25   record
26      case State is
27         when Off =>
28            null;
29         when On =>
30            Info : Device_Info;
31      end case;
32   end record;
33
34   Device_Off : constant Device :=
35                  (State => Off);
36
37   Device_On  : constant Device :=
38                  (State => On,
39                   others => <>);
40
41end Devices;








devices.adb

 1package body Devices is
 2
 3   procedure Turn_Off (D : in out Device) is
 4   begin
 5      D := Device_Off;
 6   end Turn_Off;
 7
 8   procedure Turn_On (D : in out Device) is
 9   begin
10      D := Device_On;
11   end Turn_On;
12
13   function Current_Info (D : Device)
14                          return Device_Info is
15     (D.Info);
16
17end Devices;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Device
MD5: e03db406de3550865dd99986d2c71145







Let's create a test application called Show_Device that makes use of
this device by turning it on and off, and by retrieving information from it:


show_device.adb

 1with Devices; use Devices;
 2
 3procedure Show_Device is
 4   D : Device;
 5   I : Device_Info;
 6begin
 7   Turn_On (D);
 8   I := Current_Info (D);
 9
10   Turn_Off (D);
11
12   --  The following call raises
13   --  an exception at runtime
14   --  because D is turned off.
15   I := Current_Info (D);
16end Show_Device;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Device
MD5: cba0100ad5bbb2b6bf00d0847a700271








Runtime output




raised CONSTRAINT_ERROR : devices.adb:15 discriminant check failed







In this example, by using the variant part, we're preventing information
retrieved by an inappropriate call to the Current_Info function from being used
elsewhere in the application. In fact, if the device is turned off, a call to
Current_Info raises the Constraint_Error exception because the
Info component isn't accessible. We see that effect in the
Show_Device procedure: the call to Current_Info fails (by raising
an exception) when the device has just been turned off.

To avoid exceptions at runtime, we must check the device's state before
calling Current_Info:


show_device.adb

 1with Devices; use Devices;
 2
 3procedure Show_Device is
 4   D : Device;
 5   I : Device_Info;
 6begin
 7   Turn_On (D);
 8
 9   if D.State = On then
10      I := Current_Info (D);
11   end if;
12
13   Turn_Off (D);
14
15   if D.State = On then
16      I := Current_Info (D);
17   end if;
18end Show_Device;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Device
MD5: 62230848af720b156f22c96d59f772d2







Now, no exception is raised, as we only retrieve information from
the device when it is turned on — that is, we only call the
Current_Info function when the State discriminant of the object is
set to On.



Extending record types

We can use variant parts as a means to extend record types. This can be viewed
as a static approach to implement type extension — similar to type
extension via tagged types, but with clear differences.

Let's say we have a sensor, and we implement a package called Sensors
that interfaces with that sensor:


sensors.ads

 1package Sensors is
 2
 3   type Sensor is private;
 4
 5   type Sensor_Info is
 6   record
 7      Info_1 : Float := 0.0;
 8   end record;
 9
10   function Current_Info (S : Sensor)
11                          return Sensor_Info;
12
13   procedure Display (SI : Sensor_Info);
14
15private
16
17   type Sensor is null record;
18
19end Sensors;








sensors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Sensors is
 4
 5   function Current_Info (S : Sensor)
 6                          return Sensor_Info is
 7     ((Info_1 => 4.0));
 8   --            ^^^^
 9   --  NOTE: we're returning dummy
10   --        information!
11
12   procedure Display (SI : Sensor_Info) is
13   begin
14      Put_Line ("Info_1 : "
15                & SI.Info_1'Image);
16   end Display;
17
18end Sensors;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Sensors
MD5: 140a0d9cbca023de875417409c3f67d9







The Sensor type from the Sensors package has two subprograms: the
Current_Info function and the Display procedure. We use those
subprograms in the Show_Sensors procedure below:


show_sensors.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3with Sensors;     use Sensors;
4
5procedure Show_Sensors is
6   S1 : Sensor;
7begin
8   Display (Current_Info (S1));
9end Show_Sensors;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Sensors
MD5: 93aa76da463fea9b4483ed97fa8bcf64








Runtime output



Info_1 :  4.00000E+00







Now, let's assume that a new model of this sensor is available, and it has
additional features — e.g., it provides additional information to the
user. If we wanted to update the application to be able to handle this new
model of the sensor without removing support for the original model, we could
convert the Sensor_Info type to a tagged type and derive a
Sensor_Info_V2 type from it. (We would probably have to implement a
Sensor_V2 type derived from the Sensor type as well.)

Alternatively, we could add a variant part to the Sensor_Info type to
store the additional information. For example:


sensors.ads

 1package Sensors is
 2
 3   type Sensor_Model is (Sensor_V1,
 4                         Sensor_V2);
 5
 6   type Sensor
 7     (Model : Sensor_Model := Sensor_V1) is
 8       private;
 9
10   type Sensor_Info
11     (Model : Sensor_Model := Sensor_V1) is
12   record
13      Info_1 : Float := 0.0;
14      case Model is
15         when Sensor_V1 =>
16            null;
17         when Sensor_V2 =>
18            Info_2 : Float := 0.0;
19      end case;
20   end record;
21
22   function Current_Info (S : Sensor)
23                          return Sensor_Info;
24
25   procedure Display (SI : Sensor_Info);
26
27private
28
29   type Sensor
30     (Model : Sensor_Model := Sensor_V1) is
31       null record;
32
33end Sensors;








sensors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Sensors is
 4
 5   function Current_Info (S : Sensor)
 6                          return Sensor_Info is
 7   begin
 8      --  Using dummy info for the information
 9      --  returned by the function
10      case S.Model is
11         when Sensor_V1 =>
12            return ((Model  => Sensor_V1,
13                     Info_1 => 4.0));
14         when Sensor_V2 =>
15            return ((Model  => Sensor_V2,
16                     Info_1 => 8.0,
17                     Info_2 => 6.0));
18      end case;
19   end Current_Info;
20
21   procedure Display (SI : Sensor_Info) is
22   begin
23      Put_Line ("Model  : "
24                & SI.Model'Image);
25      Put_Line ("Info_1 : "
26                & SI.Info_1'Image);
27      if SI.Model = Sensor_V2 then
28         Put_Line ("Info_2 : "
29                   & SI.Info_2'Image);
30      end if;
31   end Display;
32
33end Sensors;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Sensors
MD5: 74198e928e3dfa3a7a7f2786971da8a7







In this new version of the Sensors package, the Model
discriminant was added to the Sensor_Info type. If the model is set to
version 2 for a specific sensor (i.e., Model = Sensor_V2), a new
component (Info_2) is available.

The Current_Info and Display subprograms have been adapted to
take this new model into account. In the Current_Info function, we return
information for the newer model of the sensor. In the Display
procedure, we display the additional information provided by the newer model.

Note that the original test application that makes use of the sensor
(Show_Sensors) doesn't require any adaptation:


show_sensors.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3with Sensors;     use Sensors;
4
5procedure Show_Sensors is
6   S1 : Sensor;
7begin
8   Display (Current_Info (S1));
9end Show_Sensors;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Sensors
MD5: 93aa76da463fea9b4483ed97fa8bcf64








Runtime output



Info_1 :  4.00000E+00







Because we have a default value for the discriminant of the Sensor type,
we're essentially making the type backwards-compatible, so that users of this
type don't have to adapt their code after the update to the Sensors
package. Of course, we don't have binary backwards-compatibility because the
size of the type (Sensor_Info'Size) increases.

Of course, in our test application, we can also use the new model of that
sensor:


show_sensors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Sensors;     use Sensors;
 4
 5procedure Show_Sensors is
 6   S1 : Sensor;
 7   S2 : Sensor (Sensor_V2);
 8begin
 9   Display (Current_Info (S1));
10   Display (Current_Info (S2));
11end Show_Sensors;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Variant_Parts.Sensors
MD5: 347d272cddbacf7bf2987aa23014ff0b








Runtime output



Model  : SENSOR_V1
Info_1 :  4.00000E+00
Model  : SENSOR_V2
Info_1 :  8.00000E+00
Info_2 :  6.00000E+00







In the updated version of the Show_Sensors procedure, we're now using
both old and new versions of the sensor.




Per-Object Expressions

In record type declarations, we might want to define a component that makes use
of a name that refers to a
discriminant
of the record type, or to the record
type itself. An expression where we use such a name is called a per-object
expression.

The term "per-object" comes from the fact that, in the component definition,
we're referring to a piece of information that will be known just when creating
an object of that type. For example, if the per-object expression refers to a
discriminant of a type T, the actual value of that discriminant will
only be specified when we declare an object of type T. Therefore, the
component definition is specific for that individual object — but not
necessarily for other objects of the same type, as we might use different
values for the discriminant.

The constraint that contains a per-object expression is called a per-object
constraint. The actual constraint of that component isn't completely known when
we declare the record type, but only later on when an object of that type is
created. (Note that the syntax of a constraint includes the parentheses or the
keyword range.)

In addition to referring to discriminants, per-object expressions can also
refer to the record type itself, as we'll see later.

Let's start with a simple record declaration:


rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3   type Stack (S : Positive) is private;
 4
 5private
 6
 7   type Integer_Array is
 8     array (Positive range <>) of Integer;
 9
10   type Stack (S : Positive) is record
11      Arr : Integer_Array (1 .. S);
12      --                   ^^^^^^
13      --
14      --                        S
15      --                        ^
16      --    Per-object expression
17      --
18      --                  (1 .. S)
19      --                  ^^^^^^^^
20      --     Per-object constraint
21
22      Top : Natural := 0;
23   end record;
24
25end Rec_Per_Object_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_Expression
MD5: e4012454ea886fd429d82159b8d344b7







In this example, we see the Stack record type with a discriminant
S. In the declaration of the Arr component of the that type,
S is a per-object expression, as it refers to the S discriminant.
Also, (1 .. S) is a per-object constraint.

Let's look at another example using anonymous access types:


rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3   type T is private;
 4
 5   type T_Processor (Selected_T : access T) is
 6     private;
 7
 8private
 9
10   type T is null record;
11
12   type T_Container (Selected_T : access T) is
13     null record;
14
15   type T_Processor (Selected_T : access T) is
16   record
17      E : T_Container (Selected_T);
18      --
19      --               Selected_T
20      --               ^^^^^^^^^^
21      --    Per-object expression
22      --
23      --              (Selected_T)
24      --              ^^^^^^^^^^^^
25      --     Per-object constraint
26   end record;
27
28end Rec_Per_Object_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_Expression_Access_Discriminant
MD5: 8b404688be1e103773c28a6977785836







Let's focus on the T_Processor type from this example. The
Selected_T discriminant is being used in the definition of the E
component. The per-object constraint is (Selected_T).

Finally, per-object expressions can also refer to the record type we're
declaring. For example:


rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3   type T is limited private;
 4
 5private
 6
 7   type T_Processor (Selected_T : access T) is
 8     null record;
 9
10   type T is limited record
11      E : T_Processor (T'Access);
12      --
13      --               T'Access
14      --               ^^^^^^^^
15      --  Per-object expression
16      --
17      --              (T'Access)
18      --              ^^^^^^^^^^
19      --   Per-object constraint
20   end record;
21
22end Rec_Per_Object_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_Expression_Access_Discriminant
MD5: a67b3034008fdf2a8c5fd1b6da769128







In this example, when we write T'Access within the declaration of the
T record type, the actual value for the Access attribute will be
known when an object of T type is created. In that sense,
T'Access is a per-object expression — (T'Access) is the
corresponding per-object constraint.

Note that T'Access is referring to the type within a type definition.
This is generally treated as a reference to the object being created, the
so-called current instance.


In the Ada Reference Manual


	3.8 Record Types[#18]







Default value

We can also use per-object expressions to calculate the default value of a
record component:


rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3   type T (D : Positive) is private;
 4
 5private
 6
 7   type T (D : Positive) is record
 8      V : Natural := D - 1;
 9      --             ^^^^^
10      --    Per-object expression
11
12      S : Natural := D'Size;
13      --             ^^^^^^
14      --    Per-object expression
15   end record;
16
17end Rec_Per_Object_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_Expression_Default_Value
MD5: 70454b0b116094a02b897d8d1d0080fb







Here, we calculate the default value of V using the per-object
expression D - 1, and the default of value of S using the
per-object D'Size.

The default expression for a component of a discriminated record can be
an arbitrary per-object expression. (This contrasts with
important restrictions
that exist for per-object constraints, as we discuss later on.) Such
expressions might include function calls or uses of any defined operator. For
this reason, the following code example is accepted by the compiler:


rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3   type Stack (S : Positive) is private;
 4
 5private
 6
 7   type Integer_Array is
 8     array (Positive range <>) of Integer;
 9
10   type Stack (S : Positive) is record
11      Arr : Integer_Array (1 .. S);
12
13      Top : Natural := 0;
14
15      Overflow_Warning : Positive
16        := S * 9 / 10;
17      --   ^^^^^^^^^^
18      --   Per-object expression
19      --   using computation for
20      --   the default expression.
21   end record
22     with
23       Dynamic_Predicate =>
24         Overflow_Warning in
25           (S + 1) / 2 .. S - 1;
26      --
27      --   (S + 1) / 2
28      --   ^^^^^^^^^^^
29      --   Per-object expression
30      --   using computation.
31      --
32      --                  S - 1
33      --                  ^^^^^
34      --   Per-object expression
35      --   using computation.
36
37end Rec_Per_Object_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_Expression_Computation
MD5: 6783568fd3e76a85ca7c1cc65ba023c5







In this example, we can identify multiple per-object expressions that use
a computation: S * 9 / 10, (S + 1) / 2, and S - 1.



Restrictions

There are some important restrictions on per-object constraints:


	Per-object range constraints such as 1 .. T'Size are not allowed.



	For example, the following code example doesn't compile:



rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3   type Bit_Field is
 4     array (Positive range <>) of Boolean
 5       with Pack;
 6
 7   type T is record
 8      Arr : Bit_Field (1 .. T'Size);
 9      --                    ^^^^^^
10      --  ERROR: per-object range constraint
11      --         using the Size attribute
12      --         is illegal.
13   end record;
14
15end Rec_Per_Object_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_Expression_Range_Constraint
MD5: c2ac9588c1d1adac8c584a0e36a81342








Build output



rec_per_object_expressions.ads:8:30: error: in a constraint the current instance can only be used with an access attribute
gprbuild: *** compilation phase failed



















	Within a per-object index constraint or discriminant constraint, each
per-object expression must be the name of a discriminant directly, without
any further computation.



	Therefore, we're allowed to write (1 .. S) — as we've seen
in a previous example —. However, writing (1 .. S - 1) would
be illegal.


	For example, the following adaptation to the previous code example
doesn't compile:



rec_per_object_expressions.ads

 1package Rec_Per_Object_Expressions is
 2
 3   type Stack (S : Positive) is private;
 4
 5private
 6
 7   type Integer_Array is
 8     array (Natural range <>) of Integer;
 9
10   type Stack (S : Positive) is record
11      Arr : Integer_Array (0 .. S - 1);
12      --                        ^^^^^
13      --  ERROR: computation in per-object
14      --         expression is illegal.
15
16      Top : Integer := -1;
17   end record;
18
19end Rec_Per_Object_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Records.Per_Object_Expressions.Per_Object_Expression_Range_Computation
MD5: 1224bb63f7953743d84a258226c35c50








Build output



rec_per_object_expressions.ads:11:33: error: discriminant in constraint must appear alone
gprbuild: *** compilation phase failed










In this example, using the computation S - 1 to specify the
range of Arr isn't permitted. (Note that,
as we've seen before,
this restriction doesn't apply when the computation is used in a
per-object expression that calculates the default value of a component.)










	We can only use access attributes (T'Access and
T'Unchecked_Access) in per-object constraints.







Footnotes



[#1]
https://learn.adacore.com/courses/intro-to-ada/chapters/records.html#intro-ada-record-default-values



[#2]
http://www.ada-auth.org/standards/22rm/html/RM-3-8.html



[#3]
http://www.ada-auth.org/standards/22aarm/html/AA-3-8.html



[#4]
https://www.adacore.com/gems/ada-gem-12



[#5]
http://www.ada-auth.org/standards/22rm/html/RM-3-10-1.html



[#6]
http://www.ada-auth.org/standards/22rm/html/RM-4-3-1.html



[#7]
https://learn.adacore.com/courses/intro-to-ada/chapters/more_about_records.html#intro-ada-record-discriminants



[#8]
http://www.ada-auth.org/standards/12rm/html/RM-3-7.html



[#9]
http://www.ada-auth.org/standards/12rm/html/RM-3-7-1.html



[#10]
http://www.ada-auth.org/standards/22rm/html/RM-3-7-1.html



[#11]
http://www.ada-auth.org/standards/22rm/html/RM-3-7-2.html



[#12]
http://www.ada-auth.org/standards/12rm/html/RM-3-7.html



[#13]
http://www.ada-auth.org/standards/12rm/html/RM-3-7.html



[#14]
http://www.ada-auth.org/standards/12rm/html/RM-3-7.html



[#15]
http://www.ada-auth.org/standards/12rm/html/RM-3-2.html



[#16]
https://learn.adacore.com/courses/intro-to-ada/chapters/more_about_records.html#intro-ada-variant-records



[#17]
http://www.ada-auth.org/standards/12rm/html/RM-3-8-1.html



[#18]
http://www.ada-auth.org/standards/22rm/html/RM-3-8.html





            

          

      

      

    

  

    
      
          
            
  
Aggregates


Container Aggregates


Note

This feature was introduced in Ada 2022.



A container aggregate is a list of elements — such as [1, 2, 3]
— that we use to initialize or assign to a container. For example:


show_container_aggregate.adb

 1with Ada.Containers.Vectors;
 2
 3procedure Show_Container_Aggregate is
 4
 5   package Float_Vec is new
 6     Ada.Containers.Vectors (Positive, Float);
 7
 8   V : constant Float_Vec.Vector :=
 9         [1.0, 2.0, 3.0];
10
11   pragma Unreferenced (V);
12begin
13   null;
14end Show_Container_Aggregate;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Container_Aggregates.Simple_Container_Aggregate
MD5: b54cd5800179d4016bbce5a9b10734f2







In this example, [1.0, 2.0, 3.0] is a container aggregate that we use
to initialize a vector V.

We can specify container aggregates in three forms:



	as a null container aggregate, which indicates a container without any
elements and is represented by the [] syntax;


	as a positional container aggregate, where the elements are simply
listed in a sequence (such as [1, 2]);


	as a named container aggregate, where a key is indicated for each element
of the list (such as [1 => 10, 2 => 15]).







Let's look at a complete example:


show_container_aggregate.adb

 1with Ada.Containers.Vectors;
 2
 3procedure Show_Container_Aggregate is
 4
 5   package Float_Vec is new
 6     Ada.Containers.Vectors (Positive, Float);
 7
 8   --  Null container aggregate
 9   Null_V  : constant Float_Vec.Vector :=
10               [];
11
12   --  Positional container aggregate
13   Pos_V   : constant Float_Vec.Vector :=
14               [1.0, 2.0, 3.0];
15
16   --  Named container aggregate
17   Named_V : constant Float_Vec.Vector :=
18               [1 => 1.0,
19                2 => 2.0,
20                3 => 3.0];
21
22   pragma Unreferenced (Null_V, Pos_V, Named_V);
23begin
24   null;
25end Show_Container_Aggregate;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Container_Aggregates.Simple_Container_Aggregate
MD5: f00b21da1722669ae92bd5fe4a9a3966







In this example, we see the three forms of container aggregates. The difference
between positional and named container aggregates is that:



	for positional container aggregates, the vector index is implied by
its position;







while



	for named container aggregates, the index (or key) of each element is
explicitly indicated.







Also, the named container aggregate in this example (Named_V) is using
an index as the name (i.e. it's an indexed aggregate). Another option is to use
non-indexed aggregates, where we use actual keys — as we do in maps.
For example:


show_named_container_aggregate.adb

 1with Ada.Containers.Vectors;
 2with Ada.Containers.Indefinite_Hashed_Maps;
 3with Ada.Strings.Hash;
 4
 5procedure Show_Named_Container_Aggregate is
 6
 7   package Float_Vec is new
 8     Ada.Containers.Vectors (Positive, Float);
 9
10   package Float_Hashed_Maps is new
11     Ada.Containers.Indefinite_Hashed_Maps
12       (Key_Type        => String,
13        Element_Type    => Float,
14        Hash            => Ada.Strings.Hash,
15        Equivalent_Keys => "=");
16
17   --  Named container aggregate
18   --  using an index
19   Indexed_Named_V : constant Float_Vec.Vector :=
20                       [1 => 1.0,
21                        2 => 2.0,
22                        3 => 3.0];
23
24   --  Named container aggregate
25   --  using a key
26   Keyed_Named_V : constant
27     Float_Hashed_Maps.Map :=
28       ["Key_1" => 1.0,
29        "Key_2" => 2.0,
30        "Key_3" => 3.0];
31
32   pragma Unreferenced (Indexed_Named_V,
33                        Keyed_Named_V);
34begin
35   null;
36end Show_Named_Container_Aggregate;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Container_Aggregates.Named_Container_Aggregate
MD5: 9d117543135e75e66801628ca29e32ef







In this example, Indexed_Named_V and Keyed_Named_V are both
initialized with a named container aggregate. However:


	the container aggregate for Indexed_Named_V is an indexed aggregate,
so we use an index for each element;




while


	the container aggregate for Keyed_Named_V has a key for each element.




Later on, we'll talk about the
Aggregate aspect, which allows for
defining custom container aggregates for any record type.


In the Ada Reference Manual


	4.3.5 Container Aggregates[#1]








Record aggregates

We've already seen record aggregates in the
Introduction to Ada[#2] course, so this is just
a brief overview on the topic.

As we already know, record aggregates can have positional and named component
associations. For example, consider this package:


points.ads

1package Points is
2
3   type Point_3D is record
4      X, Y, Z : Integer;
5   end record;
6
7   procedure Display (P : Point_3D);
8
9end Points;








points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5   procedure Display (P : Point_3D) is
 6   begin
 7      Put_Line ("(X => "
 8                & Integer'Image (P.X)
 9                & ",");
10      Put_Line (" Y => "
11                & Integer'Image (P.Y)
12                & ",");
13      Put_Line (" Z => "
14                & Integer'Image (P.Z)
15                & ")");
16   end Display;
17
18end Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: fd01961cf1da9b48d2a6150da30f7377







We can use positional or named record aggregates when assigning to an object
P of Point_3D type:


show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4   P : Point_3D;
 5begin
 6   --  Positional component association
 7   P := (0, 1, 2);
 8
 9   Display (P);
10
11   --  Named component association
12   P := (X => 3,
13         Y => 4,
14         Z => 5);
15
16   Display (P);
17end Show_Record_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: fc4cff950e31a633ab4e2ae3d21ddc7b








Runtime output



(X =>  0,
 Y =>  1,
 Z =>  2)
(X =>  3,
 Y =>  4,
 Z =>  5)







Also, we can have a mixture of both:


show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4   P : Point_3D;
 5begin
 6   --  Positional and named component associations
 7   P := (3, 4,
 8         Z => 5);
 9
10   Display (P);
11end Show_Record_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: 493a2a87b4b28dfb0882ad73acf84710








Runtime output



(X =>  3,
 Y =>  4,
 Z =>  5)







In this case, only the Z component has a named association, while the
other components have a positional association.

Note that a positional association cannot follow a named association, so we
cannot write P := (3, Y => 4, 5);, for example. Once we start using a
named association for a component, we have to continue using it for the
remaining components.

In addition, we can choose multiple components at once and assign the same value
to them. For that, we use the | syntax:


show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4   P : Point_3D;
 5begin
 6   --  Multiple component selection
 7   P := (X | Y => 5,
 8         Z     => 6);
 9
10   Display (P);
11end Show_Record_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: a4fde562fb60d290caf46d86b13e694b








Runtime output



(X =>  5,
 Y =>  5,
 Z =>  6)







Here, we assign 5 to both X and Y.


In the Ada Reference Manual


	4.3.1 Record Aggregates[#3]







<>

We can use the <> syntax to tell the compiler to use the default value
for specific components. However, if there's no default value for specific
components, that component isn't initialized to a known value. For example:


show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4   P : Point_3D;
 5begin
 6   P := (0, 1, 2);
 7   Display (P);
 8
 9   --  Specifying X component.
10   P := (X => 42,
11         Y => <>,
12         Z => <>);
13   Display (P);
14
15   --  Specifying Y and Z components.
16   P := (X => <>,
17         Y => 10,
18         Z => 20);
19   Display (P);
20end Show_Record_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: 25145e7cba5a566c518ac4218e550899








Runtime output



(X =>  0,
 Y =>  1,
 Z =>  2)
(X =>  42,
 Y =>  1,
 Z =>  2)
(X =>  42,
 Y =>  10,
 Z =>  20)







Here, as the components of Point_3D don't have a default value, those
components that have <> are not initialized:


	when we write (X => 42, Y => <>, Z => <>), only X is
initialized;


	when we write (X => <>, Y => 10, Z => 20) instead, only X is
uninitialized.





For further reading...

As we've just seen, all components that get a <> are uninitialized
because the components of Point_3D don't have a default value.
As no initialization is taking place for those components of the aggregate,
the actual value that is assigned to the record is undefined. In other
words, the resulting behavior might dependent on the compiler's
implementation.

When using GNAT, writing (X => 42, Y => <>, Z => <>) keeps the value
of Y and Z intact, while (X => <>, Y => 10, Z => 20)
keeps the value of X intact.



If the components of Point_3D had default values, those would have been
used. For example, we may change the type declaration of Point_3D and use
default values for each component:


points.ads

 1package Points is
 2
 3   type Point_3D is record
 4      X : Integer := 10;
 5      Y : Integer := 20;
 6      Z : Integer := 30;
 7   end record;
 8
 9   procedure Display (P : Point_3D);
10
11end Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: 8a716db129e6f231c4003b77d8b61ea3







Then, writing <> makes use of those default values we've just specified:


show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4   P : Point_3D := (0, 0, 0);
 5begin
 6   --  Using default value for
 7   --  all components
 8   P := (X => <>,
 9         Y => <>,
10         Z => <>);
11   Display (P);
12end Show_Record_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: e64c6fe4e4b3dbaa084d9b97b4fb971f








Runtime output



(X =>  10,
 Y =>  20,
 Z =>  30)







Now, as expected, the default values of each component (10, 20 and 30) are used
when we write <>.

Similarly, we can specify a default value for the type of each component. For
example, let's declare a Point_Value type with a default value —
using the Default_Value aspect — and use it in the Point_3D
record type:


points.ads

 1package Points is
 2
 3   type Point_Value is new Float
 4     with Default_Value => 99.9;
 5
 6   type Point_3D is record
 7      X : Point_Value;
 8      Y : Point_Value;
 9      Z : Point_Value;
10   end record;
11
12   procedure Display (P : Point_3D);
13
14end Points;








points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5   procedure Display (P : Point_3D) is
 6   begin
 7      Put_Line ("(X => "
 8                & Point_Value'Image (P.X)
 9                & ",");
10      Put_Line (" Y => "
11                & Point_Value'Image (P.Y)
12                & ",");
13      Put_Line (" Z => "
14                & Point_Value'Image (P.Z)
15                & ")");
16   end Display;
17
18end Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregate_Default_Value
MD5: 508d7f5e7d02da1677485f7d588847f6







Then, writing <> makes use of the default value of the Point_Value
type:


show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4   P : Point_3D := (0.0, 0.0, 0.0);
 5begin
 6   --  Using default value of Point_Value
 7   --  for all components
 8   P := (X => <>,
 9         Y => <>,
10         Z => <>);
11   Display (P);
12end Show_Record_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregate_Default_Value
MD5: 895799077af4a295c250480c32954a2c








Runtime output



(X =>  9.99000E+01,
 Y =>  9.99000E+01,
 Z =>  9.99000E+01)







In this case, the default value of the Point_Value type (99.9) is used
for all components when we write <>.



others

Also, we can use the others selector to assign a value to all components
that aren't explicitly mentioned in the aggregate. For example:


show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4   P : Point_3D;
 5begin
 6   --  Specifying X component;
 7   --  using 42 for all
 8   --  other components.
 9   P := (X      => 42,
10         others => 100);
11   Display (P);
12
13   --  Specifying all components
14   P := (others => 256);
15   Display (P);
16end Show_Record_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Pos_Named_Rec_Aggregates
MD5: 3146363eb36ab4485c7755794fb78bbc








Runtime output



(X =>  42,
 Y =>  100,
 Z =>  100)
(X =>  256,
 Y =>  256,
 Z =>  256)







When we write P := (X => 42, others => 100), we're assigning 42 to
X and 100 to all other components (Y and Z in this case).
Also, when we write P := (others => 256), all components have the
same value (256).

Note that writing a specific value in others — such as
(others => 256)  — only works when all components have the same
type. In this example, all components of Point_3D have the same type:
Integer. If we had components with different types in the components
selected by others, say Integer and Float, then
(others => 256) would trigger a compilation error. For example, consider
this package:


custom_records.ads

1package Custom_Records is
2
3   type Integer_Float is record
4     A, B : Integer := 0;
5     Y, Z : Float   := 0.0;
6   end record;
7
8end Custom_Records;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregates_Others
MD5: 875e470aa2cbc5fcfefae649ed5528f6







If we had written an aggregate such as (others => 256) for an object of
type Integer_Float, the value (256) would be OK for components A
and B, but not for components Y and Z:


show_record_aggregates_others.adb

 1with Custom_Records; use Custom_Records;
 2
 3procedure Show_Record_Aggregates_Others is
 4   Dummy : Integer_Float;
 5begin
 6   --  ERROR: components selected by
 7   --         others must be of same
 8   --         type.
 9   Dummy := (others => 256);
10end Show_Record_Aggregates_Others;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregates_Others
MD5: d543ee07e24caf63384ab0d140054be2








Build output



show_record_aggregates_others.adb:9:14: error: components in "others" choice must have same type
show_record_aggregates_others.adb:9:24: error: expected type "Standard.Float"
show_record_aggregates_others.adb:9:24: error: found type universal integer
gprbuild: *** compilation phase failed







We can fix this compilation error by making sure that others only refers
to components of the same type:


show_record_aggregates_others.adb

 1with Custom_Records; use Custom_Records;
 2
 3procedure Show_Record_Aggregates_Others is
 4   Dummy : Integer_Float;
 5begin
 6   --  OK: components selected by
 7   --      others have Integer type.
 8   Dummy := (Y | Z  => 256.0,
 9             others => 256);
10end Show_Record_Aggregates_Others;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregates_Others
MD5: d01977a49e08d2c6cb6b7788581ed56f







In any case, writing (others => <>) is always accepted by the compiler
because it simply selects the default value of each component, so the type of
those values is unambiguous:


show_record_aggregates_others.adb

1with Custom_Records; use Custom_Records;
2
3procedure Show_Record_Aggregates_Others is
4   Dummy : Integer_Float;
5begin
6   Dummy := (others => <>);
7end Show_Record_Aggregates_Others;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregates_Others
MD5: db9b72ffc933436e76305887276eeafd







This code compiles because <> uses the appropriate default value of each
component.



Record discriminants

When a record type has discriminants, they must appear as components of an
aggregate of that type. For example, consider this package:


points.ads

 1package Points is
 2
 3   type Point_Dimension is (Dim_1, Dim_2, Dim_3);
 4
 5   type Point (D : Point_Dimension) is record
 6      case D is
 7      when Dim_1 =>
 8         X1         : Integer;
 9      when Dim_2 =>
10         X2, Y2     : Integer;
11      when Dim_3 =>
12         X3, Y3, Z3 : Integer;
13      end case;
14   end record;
15
16   procedure Display (P : Point);
17
18end Points;








points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5   procedure Display (P : Point) is
 6   begin
 7      Put_Line (Point_Dimension'Image (P.D));
 8
 9      case P.D is
10      when Dim_1 =>
11         Put_Line ("  (X => "
12                   & Integer'Image (P.X1)
13                   & ")");
14      when Dim_2 =>
15         Put_Line ("  (X => "
16                   & Integer'Image (P.X2)
17                   & ",");
18         Put_Line ("   Y => "
19                   & Integer'Image (P.Y2)
20                  & ")");
21      when Dim_3 =>
22         Put_Line ("  (X => "
23                   & Integer'Image (P.X3)
24                   & ",");
25         Put_Line ("   Y => "
26                   & Integer'Image (P.Y3)
27                   & ",");
28         Put_Line ("   Z => "
29                   & Integer'Image (P.Z3)
30                   & ")");
31      end case;
32   end Display;
33
34end Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregate_Discriminant
MD5: bd71322a65ca50e1eefa0aedd407931a







To write aggregates of the Point type, we have to specify the D
discriminant as a component of the aggregate. The discriminant must be included
in the aggregate — and must be static — because the compiler must
be able to examine the aggregate to determine if it is both complete and
consistent. All components must be accounted for one way or another, as usual
— but, in addition, references to those components whose existence
depends on the discriminant's values must be consistent with the actual
discriminant value used in the aggregate. For example, for type Point,
an aggregate can only reference the X3, Y3, and Z3
components when Dim_3 is specified for the discriminant D;
otherwise, those three components don't exist in that aggregate. Also, the
discriminant D must be the first one if we use positional component
association. For example:


show_rec_aggregate_discriminant.adb

 1with Points; use Points;
 2
 3procedure Show_Rec_Aggregate_Discriminant is
 4   --  Positional component association
 5   P1 : constant Point := (Dim_1, 0);
 6
 7   --  Named component association
 8   P2 : constant Point := (D  => Dim_2,
 9                           X2 => 3,
10                           Y2 => 4);
11
12   --  Positional / named component association
13   P3 : constant Point := (Dim_3,
14                           X3 => 3,
15                           Y3 => 4,
16                           Z3 => 5);
17begin
18   Display (P1);
19   Display (P2);
20   Display (P3);
21end Show_Rec_Aggregate_Discriminant;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Record_Aggregates.Rec_Aggregate_Discriminant
MD5: d487e0c68ea69c3e0f2adb8ac958e31d








Runtime output



DIM_1
  (X =>  0)
DIM_2
  (X =>  3,
   Y =>  4)
DIM_3
  (X =>  3,
   Y =>  4,
   Z =>  5)







As we see in this example, we can use any component association in the
aggregate, as long as we make sure that the discriminants of the type appear as
components — and are the first components in the case of positional
component association.




Full coverage rules for Aggregates


Note

This section was originally written by Robert A. Duff and published as
Gem #1: Limited Types in Ada 2005[#4].



One interesting feature of Ada are the full coverage rules for
aggregates. For example, suppose we have a record type:


persons.ads

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4package Persons is
 5   type Years is new Natural;
 6
 7   type Person is record
 8      Name : Unbounded_String;
 9      Age  : Years;
10   end record;
11end Persons;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.Full_Coverage_Rules
MD5: 7755bffa8b4473c425ae5075e9c478e9







We can create an object of the type using an aggregate:


show_aggregate_init.adb

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4with Persons; use Persons;
 5
 6procedure Show_Aggregate_Init is
 7
 8   X : constant Person :=
 9         (Name =>
10            To_Unbounded_String ("John Doe"),
11          Age  => 25);
12begin
13   null;
14end Show_Aggregate_Init;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.Full_Coverage_Rules
MD5: 681e665b76265eff4c4d870ec011ba37







The full coverage rules say that every component of Person must be
accounted for in the aggregate. If we later modify type Person by
adding a component:


persons.ads

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4package Persons is
 5   type Years is new Natural;
 6
 7   type Person is record
 8      Name      : Unbounded_String;
 9      Age       : Natural;
10      Shoe_Size : Positive;
11   end record;
12end Persons;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.Full_Coverage_Rules
MD5: 5fc5b93748d92932bfc9e0f15c0228b7







and we forget to modify X accordingly, the compiler will remind us.
Case statements also have full coverage rules, which serve a similar
purpose.

Of course, we can defeat the full coverage rules by using others
(usually for array aggregates and case
statements, but occasionally useful for
record aggregates):


show_aggregate_init_others.adb

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4with Persons; use Persons;
 5
 6procedure Show_Aggregate_Init_Others is
 7
 8   X : constant Person :=
 9         (Name   =>
10            To_Unbounded_String ("John Doe"),
11          others => 25);
12begin
13   null;
14end Show_Aggregate_Init_Others;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Full_Coverage_Rules_Aggregates.Full_Coverage_Rules
MD5: 6d26de8dd6820682cb9150dcbb40f106







According to the Ada RM, others here means precisely the same thing
as Age | Shoe_Size. But that's wrong: what others really
means is "all the other components, including the ones we might add next
week or next year". That means you shouldn't use others unless
you're pretty sure it should apply to all the cases that haven't been
invented yet.

Later on, we'll discuss
full coverage rules for limited types.



Array aggregates

We've already discussed array aggregates in the
Introduction to Ada[#5] course. Therefore,
this section just presents some details about this topic.


In the Ada Reference Manual


	4.3.3 Array Aggregates[#6]







Positional and named array aggregates


Note

The array aggregate syntax using brackets (e.g.: [1, 2, 3]), which we
mention in this section, was introduced in Ada 2022.



Similar to record aggregates, array
aggregates can be positional or named. Consider this package:


points.ads

1package Points is
2
3   type Point_3D is array (1 .. 3) of Integer;
4
5   procedure Display (P : Point_3D);
6
7end Points;








points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5   procedure Display (P : Point_3D) is
 6   begin
 7      Put_Line ("(X => "
 8                & Integer'Image (P (1))
 9                & ",");
10      Put_Line (" Y => "
11                & Integer'Image (P (2))
12                & ",");
13      Put_Line (" Z => "
14                & Integer'Image (P (3))
15                & ")");
16   end Display;
17
18end Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: d4b3becacc321d20810c3c90f4d8b7ff







We can write positional or named aggregates when assigning to an object P
of Point_3D type:


show_array_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Array_Aggregates is
 4   P : Point_3D;
 5begin
 6   --  Positional component association
 7   P := [0, 1, 2];
 8
 9   Display (P);
10
11   --  Named component association
12   P := [1 => 3,
13         2 => 4,
14         3 => 5];
15
16   Display (P);
17end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 2d65c026639d990e7f6a99f7616d7eb4








Runtime output



(X =>  0,
 Y =>  1,
 Z =>  2)
(X =>  3,
 Y =>  4,
 Z =>  5)







In this example, we assign a positional array aggregate ([1, 2, 3]) to
P. Then, we assign a named array aggregate
([1 => 3, 2 => 4, 3 => 5]) to P. In this case, the names are
the indices of the components we're assigning to.

We can also assign array aggregates to slices:


show_array_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Array_Aggregates is
 4   P : Point_3D := [others => 0];
 5begin
 6   --  Positional component association
 7   P (2 .. 3) := [1, 2];
 8
 9   Display (P);
10
11   --  Named component association
12   P (2 .. 3) := [1 => 3,
13                  2 => 4];
14
15   Display (P);
16end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: d4e4d3ab4b7d538fc4ef1e92d28e47d9








Runtime output



(X =>  0,
 Y =>  1,
 Z =>  2)
(X =>  0,
 Y =>  3,
 Z =>  4)







Note that, when using a named array aggregate, the index (name) that we use
in the aggregate doesn't have to match the slice. In this example, we're
assigning the component from index 1 of the aggregate to the component of index
2 of the array P (and so on).


Historically

In the first versions of Ada, we could only write array aggregates using
parentheses.



show_array_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Array_Aggregates is
 4   P : Point_3D;
 5begin
 6   --  Positional component association
 7   P := (0, 1, 2);
 8
 9   Display (P);
10
11   --  Named component association
12   P := (1 => 3,
13         2 => 4,
14         3 => 5);
15
16   Display (P);
17end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 16df9c01e46623ca735b84167a11a0fd








Runtime output



(X =>  0,
 Y =>  1,
 Z =>  2)
(X =>  3,
 Y =>  4,
 Z =>  5)







This syntax is considered obsolescent since Ada 2022: brackets
([1, 2, 3]) should be used instead.








Null array aggregate


Note

This feature was introduced in Ada 2022.



We can also write null array aggregates: []. As the name implies, this
kind of array aggregate doesn't have any components.

Consider this package:


integer_arrays.ads

1package Integer_Arrays is
2
3   type Integer_Array is
4     array (Positive range <>) of Integer;
5
6   procedure Display (A : Integer_Array);
7
8end Integer_Arrays;








integer_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Integer_Arrays is
 4
 5   procedure Display (A : Integer_Array) is
 6   begin
 7      Put_Line ("Length = "
 8                & A'Length'Image);
 9
10      Put_Line ("(");
11      for I in A'Range loop
12         Put ("  "
13              & I'Image
14              & " => "
15              & A (I)'Image);
16         if I /= A'Last then
17            Put_Line (",");
18         else
19            New_Line;
20         end if;
21      end loop;
22      Put_Line (")");
23   end Display;
24
25end Integer_Arrays;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: 8e6e4951c14dcc6e8dea9b6a76064930







We can initialize an object N of Integer_Array type with a null
array aggregate:


show_array_aggregates.adb

1with Integer_Arrays; use Integer_Arrays;
2
3procedure Show_Array_Aggregates is
4   N : constant Integer_Array := [];
5begin
6   Display (N);
7end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: 188f7b006c08927f8cad83557a5e1cd9








Runtime output



Length =  0
(
)







In this example, when we call the Display procedure, we confirm that
N doesn't have any components.



|, <>, others

We've seen the following syntactic elements when we were discussing
record aggregates: |, <> and
others. We can apply them to array aggregates as well:


show_array_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Array_Aggregates is
 4   P : Point_3D;
 5begin
 6   --  All components have a value of zero.
 7   P := [others => 0];
 8
 9   Display (P);
10
11   --  Both first and second components have
12   --  a value of three.
13   P := [1 | 2 => 3,
14         3     => 4];
15
16   Display (P);
17
18   --  The default value is used for the first
19   --  component, and all other components
20   --  have a value of five.
21   P := [1      => <>,
22         others => 5];
23
24   Display (P);
25end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 648d68f393107b138c6390c599d3d247








Runtime output



(X =>  0,
 Y =>  0,
 Z =>  0)
(X =>  3,
 Y =>  3,
 Z =>  4)
(X =>  1101901064,
 Y =>  5,
 Z =>  5)







In this example, we use the |, <> and others elements in a
very similar way as we did with record aggregates. (See the comments in the code
example for more details.)

Note that, as for record aggregates, the <> makes use of the default
value (if it is available). We discuss this topic in more details
later on.



..

We can also use the range syntax (..) with array aggregates:


show_array_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Array_Aggregates is
 4   P : Point_3D;
 5begin
 6   --  All components have a value of zero.
 7   P := [1 .. 3 => 0];
 8
 9   Display (P);
10
11   --  Both first and second components have
12   --  a value of three.
13   P := [1 .. 2 => 3,
14         3      => 4];
15
16   Display (P);
17
18   --  The default value is used for the first
19   --  component, and all other components
20   --  have a value of five.
21   P := [1      => <>,
22         2 .. 3 => 5];
23
24   Display (P);
25end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 656f44d37ce676b24e9d512639fd0adc








Runtime output



(X =>  0,
 Y =>  0,
 Z =>  0)
(X =>  3,
 Y =>  3,
 Z =>  4)
(X => -1964943016,
 Y =>  5,
 Z =>  5)







This example is a variation of the previous one. However, in this case, we're
using ranges instead of the | and others syntax.



Missing components

All aggregate components must have an associated value. If we don't specify a
value for a certain component, an exception is raised:


show_array_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Array_Aggregates is
 4   P : Point_3D;
 5begin
 6   P := [1 => 4];
 7   --  ERROR: value of components at indices
 8   --         2 and 3 are missing
 9
10   Display (P);
11end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 34bbc8e8bd0bd3f8b63d07fa881233bd








Build output



show_array_aggregates.adb:6:09: warning: too few elements for type "Point_3D" defined at points.ads:3 [enabled by default]
show_array_aggregates.adb:6:09: warning: expected 3 elements; found 1 element [enabled by default]
show_array_aggregates.adb:6:09: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_array_aggregates.adb:6 range check failed







We can use others to specify a value to all components that
haven't been explicitly mentioned in the aggregate:


show_array_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Array_Aggregates is
 4   P : Point_3D;
 5begin
 6   P := [1 => 4, others => 0];
 7   --  OK: unspecified components have a
 8   --      value of zero
 9
10   Display (P);
11end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 5f1b7e3778b7d5ec990fba9558495758








Runtime output



(X =>  4,
 Y =>  0,
 Z =>  0)







However, others can only be used when the range is known —
compilation fails otherwise:


show_array_aggregates.adb

 1with Integer_Arrays; use Integer_Arrays;
 2
 3procedure Show_Array_Aggregates is
 4   N1 : Integer_Array := [others => 0];
 5   --  ERROR: range is unknown
 6
 7   N2 : Integer_Array (1 .. 3) := [others => 0];
 8   --  OK: range is known
 9begin
10   Display (N1);
11   Display (N2);
12end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: e185c823ca68e9193a0b12270ffebe61








Build output



show_array_aggregates.adb:4:27: error: "others" choice not allowed here
show_array_aggregates.adb:4:27: error: qualify the aggregate with a constrained subtype to provide bounds for it
gprbuild: *** compilation phase failed







Of course, we could fix the declaration of N1 by specifying a range
— e.g. N1 : Integer_Array (1 .. 10) := [others => 0];.



Iterated component association


Note

This feature was introduced in Ada 2022.



We can use an iterated component association to specify an aggregate. This is
the general syntax:

--  All components have a value of zero
P := [for I in 1 .. 3 => 0];





Let's see a complete example:


show_array_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Array_Aggregates is
 4   P : Point_3D;
 5begin
 6   --  All components have a value of zero
 7   P := [for I in 1 .. 3 => 0];
 8
 9   Display (P);
10
11   --  Both first and second components have
12   --  a value of three
13   P := [for I in 1 .. 3 =>
14           (if I = 1 or I = 2
15            then 3
16            else 4)];
17
18   Display (P);
19
20   --  The first component has a value of 99
21   --  and all other components have a value
22   --  that corresponds to its index
23   P := [1 => 99,
24         for I in 2 .. 3 => I];
25
26   Display (P);
27end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 68bddcec76f8431b16d1c090b74c2500








Runtime output



(X =>  0,
 Y =>  0,
 Z =>  0)
(X =>  3,
 Y =>  3,
 Z =>  4)
(X =>  99,
 Y =>  2,
 Z =>  3)







In this example, we use iterated component associations in different ways:


	We write a simple iteration ([for I in 1 .. 3 => 0]).


	We use a conditional expression in the iteration:
[for I in 1 .. 3 => (if I = 1 or I = 2 then 3 else 4)].


	We use a named association for the first element, and then iterated component
association for the remaining components:
[1 => 99, for I in 2 .. 3 => I].




So far, we've used a discrete choice list (in the for I in Range form) in
the iterated component association. We could use an iterator (in the
for E of form) instead. For example:


show_array_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Array_Aggregates is
 4   P : Point_3D := [for I in Point_3D'Range => I];
 5begin
 6   --  Each component is doubled
 7   P := [for E of P => E * 2];
 8
 9   Display (P);
10
11   --  Each component is increased
12   --  by one
13   P := [for E of P => E + 1];
14
15   Display (P);
16end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates
MD5: 932ebc6e51c2146a726bad68b7f2cad0








Runtime output



(X =>  2,
 Y =>  4,
 Z =>  6)
(X =>  3,
 Y =>  5,
 Z =>  7)







In this example, we use iterators in different ways:


	We write [for E of P => E * 2] to double the value of each component.


	We write [for E of P => E + 1] to increase the value of each component
by one.




Of course, we could write more complex operations on E in the iterators.



Multidimensional array aggregates

So far, we've discussed one-dimensional array aggregates. We can also use the
same constructs when dealing with multidimensional arrays. Consider, for
example, this package:


matrices.ads

1package Matrices is
2
3   type Matrix is array (Positive range <>,
4                         Positive range <>)
5                         of Integer;
6
7   procedure Display (M : Matrix);
8
9end Matrices;








matrices.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Matrices is
 4
 5   procedure Display (M : Matrix) is
 6
 7      procedure Display_Row (M : Matrix;
 8                             I : Integer) is
 9      begin
10         Put_Line ("  (");
11         for J in M'Range (2) loop
12            Put ("    "
13                 & J'Image
14                 & " => "
15                 & M (I, J)'Image);
16            if J /= M'Last (2) then
17               Put_Line (",");
18            else
19               New_Line;
20            end if;
21         end loop;
22         Put ("  )");
23      end Display_Row;
24
25   begin
26      Put_Line ("Length (1) = "
27                & M'Length (1)'Image);
28      Put_Line ("Length (2) = "
29                & M'Length (2)'Image);
30
31      Put_Line ("(");
32      for I in M'Range (1) loop
33         Display_Row (M, I);
34         if I /= M'Last (1) then
35            Put_Line (",");
36         else
37            New_Line;
38         end if;
39      end loop;
40      Put_Line (")");
41
42   end Display;
43
44end Matrices;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Matrix_Aggregates
MD5: 55573272f8cc0621eef7c924cfd6366a







We can assign multidimensional aggregates to a matrix M using
positional or named component association:


show_array_aggregates.adb

 1with Matrices; use Matrices;
 2
 3procedure Show_Array_Aggregates is
 4   M : Matrix (1 .. 2, 1 .. 3);
 5begin
 6   --  Positional component association
 7   M := [[0, 1, 2],
 8         [3, 4, 5]];
 9
10   Display (M);
11
12   --  Named component association
13   M := [[1 => 3,
14          2 => 4,
15          3 => 5],
16         [1 => 6,
17          2 => 7,
18          3 => 8]];
19
20   Display (M);
21
22end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Matrix_Aggregates
MD5: fe3cb6ee62422991b444c32239f72d05








Runtime output



Length (1) =  2
Length (2) =  3
(
  (
     1 =>  0,
     2 =>  1,
     3 =>  2
  ),
  (
     1 =>  3,
     2 =>  4,
     3 =>  5
  )
)
Length (1) =  2
Length (2) =  3
(
  (
     1 =>  3,
     2 =>  4,
     3 =>  5
  ),
  (
     1 =>  6,
     2 =>  7,
     3 =>  8
  )
)







The first aggregate we use in this example is [[0, 1, 2], [3, 4, 5]].
Here, [0, 1, 2] and [3, 4, 5] are subaggregates of the
multidimensional aggregate. Subaggregates don't have a type themselves, but are
rather just considered part of a multidimensional aggregate (which, of course,
has an array type). In this sense, a subaggregate such as [0, 1, 2] is
different from a one-dimensional aggregate (such as [0, 1, 2]), even
though they are written in the same way.


Strings in subaggregates

In the case of matrices using characters, we can use strings in the
corresponding array aggregates. Consider this package:


string_lists.ads

1package String_Lists is
2
3   type String_List is array (Positive range <>,
4                              Positive range <>)
5                              of Character;
6
7   procedure Display (SL : String_List);
8
9end String_Lists;








string_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body String_Lists is
 4
 5   procedure Display (SL : String_List) is
 6
 7      procedure Display_Row (SL : String_List;
 8                             I  : Integer) is
 9      begin
10         Put ("  (");
11         for J in SL'Range (2) loop
12            Put (SL (I, J));
13         end loop;
14         Put (")");
15      end Display_Row;
16
17   begin
18      Put_Line ("Length (1) = "
19                & SL'Length (1)'Image);
20      Put_Line ("Length (2) = "
21                & SL'Length (2)'Image);
22
23      Put_Line ("(");
24      for I in SL'Range (1) loop
25         Display_Row (SL, I);
26         if I /= SL'Last (1) then
27            Put_Line (",");
28         else
29            New_Line;
30         end if;
31      end loop;
32      Put_Line (")");
33   end Display;
34
35end String_Lists;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.String_Aggregates
MD5: aacdbb9aa2f3b6146d8a36ca7581fd18







Then, when assigning to an object SL of String_List type, we can
use strings in the aggregates:


show_array_aggregates.adb

 1with String_Lists; use String_Lists;
 2
 3procedure Show_Array_Aggregates is
 4   SL : String_List (1 .. 2, 1 .. 3);
 5begin
 6   --  Positional component association
 7   SL := ["ABC",
 8          "DEF"];
 9
10   Display (SL);
11
12   --  Named component associations
13   SL := [[1 => 'A',
14           2 => 'B',
15           3 => 'C'],
16          [1 => 'D',
17           2 => 'E',
18           3 => 'F']];
19
20   Display (SL);
21
22   SL := [[1 => 'X',
23           2 => 'Y',
24           3 => 'Z'],
25          [others => ' ']];
26
27   Display (SL);
28end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.String_Aggregates
MD5: 82c28e5d8e592403d8909b8eaa1fe356








Runtime output



Length (1) =  2
Length (2) =  3
(
  (ABC),
  (DEF)
)
Length (1) =  2
Length (2) =  3
(
  (ABC),
  (DEF)
)
Length (1) =  2
Length (2) =  3
(
  (XYZ),
  (   )
)







In the first assignment to SL, we have the aggregate
["ABC", "DEF"], which uses strings as subaggregates. (Of course, we can
use a named aggregate and assign characters to the individual components.)




<> and default values

As we indicated earlier, the <> syntax sets a component to its default
value — if such a default value is available. If a default value isn't
defined, however, the component will remain uninitialized, so that the behavior
is undefined. Let's look at more complex example to illustrate this situation.
Consider this package, for example:


points.ads

 1package Points is
 2
 3   subtype Point_Value is Integer;
 4
 5   type Point_3D is record
 6      X, Y, Z : Point_Value;
 7   end record;
 8
 9   procedure Display (P : Point_3D);
10
11   type Point_3D_Array is
12     array (Positive range <>) of Point_3D;
13
14   procedure Display (PA : Point_3D_Array);
15
16end Points;








points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5   procedure Display (P : Point_3D) is
 6   begin
 7      Put ("      (X => "
 8           & Point_Value'Image (P.X)
 9           & ",");
10      New_Line;
11      Put ("       Y => "
12           & Point_Value'Image (P.Y)
13           & ",");
14      New_Line;
15      Put ("       Z => "
16           & Point_Value'Image (P.Z)
17           & ")");
18   end Display;
19
20   procedure Display (PA : Point_3D_Array) is
21   begin
22      Put_Line ("(");
23      for I in PA'Range (1) loop
24         Put_Line ("  "
25                   & Integer'Image (I)
26                   & " =>");
27         Display (PA (I));
28         if I /= PA'Last (1) then
29            Put_Line (",");
30         else
31            New_Line;
32         end if;
33      end loop;
34      Put_Line (")");
35   end Display;
36
37end Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Rec_Array_Aggregates
MD5: ffaf3745621a30362c6aadaec2c3cef2







Then, let's use <> for the array components:


show_record_aggregates.adb

 1with Points; use Points;
 2
 3procedure Show_Record_Aggregates is
 4   PA : Point_3D_Array (1 .. 2);
 5begin
 6   PA := [ (X => 3,
 7            Y => 4,
 8            Z => 5),
 9           (X => 6,
10            Y => 7,
11            Z => 8) ];
12   Display (PA);
13
14   --  Array components are
15   --  uninitialized.
16   PA := [1 => <>,
17          2 => <>];
18   Display (PA);
19end Show_Record_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Rec_Array_Aggregates
MD5: 4575fead51e24b1a06faf4581efad112








Runtime output



(
   1 =>
      (X =>  3,
       Y =>  4,
       Z =>  5),
   2 =>
      (X =>  6,
       Y =>  7,
       Z =>  8)
)
(
   1 =>
      (X =>  4484528,
       Y =>  0,
       Z =>  1821779848),
   2 =>
      (X =>  32764,
       Y =>  1,
       Z =>  0)
)







Because the record components (of the Point_3D type) don't have default
values, they remain uninitialized when we write [1 => <>, 2 => <>].
(In fact, you may see garbage in the values displayed by the Display
procedure.)

When a default value is specified, it is used whenever <> is
specified. For example, we could use a type that has the Default_Value
aspect in its specification:


integer_arrays.ads

 1package Integer_Arrays is
 2
 3   type Value is new Integer
 4     with Default_Value => 99;
 5
 6   type Integer_Array is
 7     array (Positive range <>) of Value;
 8
 9   procedure Display (A : Integer_Array);
10
11end Integer_Arrays;








show_array_aggregates.adb

 1with Integer_Arrays; use Integer_Arrays;
 2
 3procedure Show_Array_Aggregates is
 4   N : Integer_Array (1 .. 4);
 5begin
 6   N := [for I in N'Range => Value (I)];
 7   Display (N);
 8
 9   N := [others => <>];
10   Display (N);
11end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: 8007fb4af578397d1f07ad85e09ab354








Runtime output



Length =  4
(
   1 =>  1,
   2 =>  2,
   3 =>  3,
   4 =>  4
)
Length =  4
(
   1 =>  99,
   2 =>  99,
   3 =>  99,
   4 =>  99
)







When writing an aggregate for the Point_3D type, any component that has
<> gets the default value of the Point type (99):


For further reading...

Similarly, we could specify the Default_Component_Value aspect
(which we discussed earlier on)
in the declaration of the array type:


integer_arrays.ads

 1package Integer_Arrays is
 2
 3   type Value is new Integer;
 4
 5   type Integer_Array is
 6     array (Positive range <>) of Value
 7       with Default_Component_Value => 9999;
 8
 9   procedure Display (A : Integer_Array);
10
11end Integer_Arrays;








show_array_aggregates.adb

 1with Integer_Arrays; use Integer_Arrays;
 2
 3procedure Show_Array_Aggregates is
 4   N : Integer_Array (1 .. 4);
 5begin
 6   N := [for I in N'Range => Value (I)];
 7   Display (N);
 8
 9   N := [others => <>];
10   Display (N);
11end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: 3f535bc5ce7f74ab0f0f48098a82c98a








Runtime output



Length =  4
(
   1 =>  1,
   2 =>  2,
   3 =>  3,
   4 =>  4
)
Length =  4
(
   1 =>  9999,
   2 =>  9999,
   3 =>  9999,
   4 =>  9999
)







In this case, when writing <> for a component, the value specified in
the Default_Component_Value aspect is used.

Finally, we might want to use both Default_Value (which we discussed
previously) and
Default_Component_Value aspects at the same time. In this case, the
value specified in the Default_Component_Value aspect has higher
priority:


integer_arrays.ads

 1package Integer_Arrays is
 2
 3   type Value is new Integer
 4     with Default_Value => 99;
 5
 6   type Integer_Array is
 7     array (Positive range <>) of Value
 8       with Default_Component_Value => 9999;
 9
10   procedure Display (A : Integer_Array);
11
12end Integer_Arrays;








show_array_aggregates.adb

 1with Integer_Arrays; use Integer_Arrays;
 2
 3procedure Show_Array_Aggregates is
 4   N : Integer_Array (1 .. 4);
 5begin
 6   N := [for I in N'Range => Value (I)];
 7   Display (N);
 8
 9   N := [others => <>];
10   Display (N);
11end Show_Array_Aggregates;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Array_Aggregates.Array_Aggregates_2
MD5: e58618b565874acaa99c5d494c2acaa4








Runtime output



Length =  4
(
   1 =>  1,
   2 =>  2,
   3 =>  3,
   4 =>  4
)
Length =  4
(
   1 =>  9999,
   2 =>  9999,
   3 =>  9999,
   4 =>  9999
)







Here, 9999 is used when we specify <> for a component.






Extension Aggregates

Extension aggregates provide a convenient way to express an aggregate for a
type that extends — adds components to — some existing type (the
"ancestor"). Although mainly a matter of convenience, an extension aggregate is
essential when we want to express an aggregate for an extension of a private
ancestor type, that is, when we don't have compile-time visibility to the
ancestor type's components.


In the Ada Reference Manual


	4.3.2 Extension Aggregates[#7]







Assignments to objects of derived types

Before we discuss extension aggregates in more detail, though, let's start
with a simple use-case. Let's say we have:


	an object A of tagged type T1, and


	an object B of tagged type T2, which extends T1.




We can initialize object B by:


	copying the T1 specific information from A to B, and


	initializing the T2 specific components of B.




We can translate the description above to the following code:

   A : T1;
   B : T2;
begin
   T1 (B) := A;

   B.Extended_Component_1 := Some_Value;
   --  [...]





Here, we use T1 (B) to select the ancestor view of object B, and
we copy all the information from A to this part of B. Then, we
initialize the remaining components of B. We'll elaborate on this kind
of assignments later on.



Example: Points

To present a more concrete example, let's start with a package that defines
one, two and three-dimensional point types:


points.ads

 1package Points is
 2
 3   type Point_1D is tagged record
 4      X : Float;
 5   end record;
 6
 7   procedure Display (P : Point_1D);
 8
 9   type Point_2D is new Point_1D with record
10      Y : Float;
11   end record;
12
13   procedure Display (P : Point_2D);
14
15   type Point_3D is new Point_2D with record
16      Z : Float;
17   end record;
18
19   procedure Display (P : Point_3D);
20
21end Points;








points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5   procedure Display (P : Point_1D) is
 6   begin
 7      Put_Line ("(X => " & P.X'Image & ")");
 8   end Display;
 9
10   procedure Display (P : Point_2D) is
11   begin
12      Put_Line ("(X => " & P.X'Image
13                & ", Y => " & P.Y'Image & ")");
14   end Display;
15
16   procedure Display (P : Point_3D) is
17   begin
18      Put_Line ("(X => " & P.X'Image
19                & ", Y => " & P.Y'Image
20                & ", Z => " & P.Z'Image & ")");
21   end Display;
22
23end Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 0acc05ae2310ab4ba038dfdb6bae0495







Let's now focus on the Show_Points procedure below, where we initialize
a two-dimensional point using a one-dimensional point.


show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4   P_1D : Point_1D;
 5   P_2D : Point_2D;
 6begin
 7   P_1D := (X => 0.5);
 8   Display (P_1D);
 9
10   Point_1D (P_2D) := P_1D;
11   --  Equivalent to: "P_2D.X := P_1D.X;"
12
13   P_2D.Y := 0.7;
14
15   Display (P_2D);
16end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 68ae6fa8e6f779aebea97085bd75e082








Runtime output



(X =>  5.00000E-01)
(X =>  5.00000E-01, Y =>  7.00000E-01)







In this example, we're initializing P_2D using the information stored in
P_1D. By writing Point_1D (P_2D) on the left side of the
assignment, we specify that we want to limit our focus on the Point_1D
view of the P_2D object. Then, we assign P_1D to the
Point_1D view of the P_2D object. This assignment initializes the
X component of the P_2D object. The Point_2D specific
components are not changed by this assignment. (In other words, this is
equivalent to just writing P_2D.X := P_1D.X, as the Point_1D type
only has the X component.) Finally, in the next line, we initialize the
Y component with 0.7.



Using extension aggregates

Note that, in the assignment to P_1D, we use a record aggregate.
Extension aggregates are similar to record aggregates, but they include the
with keyword — for example: (Obj1 with Y => 0.5). This
allows us to assign to an object with information from another object
Obj1 of a parent type and, in the same expression, set the value of the
Y component of the type extension.

Let's rewrite the previous Show_Points procedure using extension
aggregates:


show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4   P_1D : Point_1D;
 5   P_2D : Point_2D;
 6begin
 7   P_1D := (X => 0.5);
 8   Display (P_1D);
 9
10   P_2D := (P_1D with Y => 0.7);
11   Display (P_2D);
12end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 4d03f6a565126b602d6f21fe5ee6dd27








Runtime output



(X =>  5.00000E-01)
(X =>  5.00000E-01, Y =>  7.00000E-01)







When we write P_2D := (P_1D with Y => 0.7), we're initializing
P_2D using:


	the information from the P_1D object — of Point_1D type,
which is an ancestor of the Point_2D type —, and


	the information from the record component association list for the
remaining components of the Point_2D type. (In this case, the only
remaining component of the Point_2D type is Y.)




We could also specify the type of the extension aggregate. For example, in the
previous assignment to P_2D, we could write Point_2D'(...) to
indicate that we expect the Point_2D type for the extension aggregate.

--  Explicitly state that the type of the
--  extension aggregate is Point_2D:

P_2D := Point_2D'(P_1D with Y => 0.7);





Also, we don't have to use named association in extension aggregates. We
could just use positional association instead. Therefore, we could simplify the
assignment to P_2D in the previous example by just writing:

P_2D := (P_1D with 0.7);







More extension aggregates

We can use extension aggregates for descendants of the Point_2D type as
well. For example, let's extend our previous code example by declaring an
object of Point_3D type (called P_3D) and use extension
aggregates in assignments to this object:


show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4   P_1D : Point_1D;
 5   P_2D : Point_2D;
 6   P_3D : Point_3D;
 7begin
 8   P_1D := (X => 0.5);
 9   Display (P_1D);
10
11   P_2D := (P_1D with Y => 0.7);
12   Display (P_2D);
13
14   P_3D := (P_2D with Z => 0.3);
15   Display (P_3D);
16
17   P_3D := (P_1D with Y | Z => 0.1);
18   Display (P_3D);
19end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 2ec6831557c43f697bffce8496962b53








Runtime output



(X =>  5.00000E-01)
(X =>  5.00000E-01, Y =>  7.00000E-01)
(X =>  5.00000E-01, Y =>  7.00000E-01, Z =>  3.00000E-01)
(X =>  5.00000E-01, Y =>  1.00000E-01, Z =>  1.00000E-01)







In the first assignment to P_3D in the example above, we're
initializing this object with information from P_2D and specifying
the value of the Z component. Then, in the next assignment to the
P_3D object, we're using an aggregate with information from P_1
and specifying values for the Y and Z components. (Just as a
reminder, we can write Y | Z => 0.1 to assign 0.1 to both Y and
Z components.)



with others

Other versions of extension aggregates are possible as well. For example, we
can combine keywords and write with others to focus on all remaining
components of an extension aggregate.


show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4   P_1D : Point_1D;
 5   P_2D : Point_2D;
 6   P_3D : Point_3D;
 7begin
 8   P_1D := (X => 0.5);
 9   P_2D := (P_1D with Y => 0.7);
10
11   --  Initialize P_3D with P_1D and set other
12   --  components to 0.6.
13   --
14   P_3D := (P_1D with others => 0.6);
15   Display (P_3D);
16
17   --  Initialize P_3D with P_2D, and other
18   --  components with their default value.
19   --
20   P_3D := (P_2D with others => <>);
21   Display (P_3D);
22end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 0594586fc59ead106258cef8682927e9








Runtime output



(X =>  5.00000E-01, Y =>  6.00000E-01, Z =>  6.00000E-01)
(X =>  5.00000E-01, Y =>  7.00000E-01, Z =>  5.93540E-39)







In this example, the first assignment to P_3D has an aggregate with
information from P_1D, while the remaining components — in this
case, Y and Z — are just set to 0.6.

Continuing with this example, in the next assignment to P_3D, we're
using information from P_2 in the extension aggregate. This covers the
Point_2D part of the P_3D object — components X and
Y, to be more specific. The Point_3D specific components of
P_3D — component Z in this case — receive their
corresponding default value. In this specific case, however, we haven't
specified a default value for component Z in the declaration of the
Point_3D type, so we cannot rely on any specific value being assigned to
that component when using others => <>.



with null record

We can also use extension aggregates with null records. Let's focus on the
P_3D_Ext object of Point_3D_Ext type. This object is declared in
the Show_Points procedure of the next code example.


points-extensions.ads

1package Points.Extensions is
2
3   type Point_3D_Ext is new
4     Point_3D with null record;
5
6end Points.Extensions;








show_points.adb

 1with Points;            use Points;
 2with Points.Extensions; use Points.Extensions;
 3
 4procedure Show_Points is
 5   P_3D     : Point_3D;
 6   P_3D_Ext : Point_3D_Ext;
 7begin
 8   P_3D := (X => 0.0, Y => 0.5, Z => 0.4);
 9
10   P_3D_Ext := (P_3D with null record);
11   Display (P_3D_Ext);
12end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: 8ec3ddb3a1f2a6e550ac4d622e97124c








Runtime output



(X =>  0.00000E+00, Y =>  5.00000E-01, Z =>  4.00000E-01)







The P_3D_Ext object is of Point_3D_Ext type, which is declared in
the Points.Extensions package and derived from the Point_3D type.
Note that we're not extending Point_3D_Ext with new components, but
using a null record instead in the declaration. Therefore, as the
Point_3D_Ext type doesn't own any new components, we just write
(P_3D with null record) to initialize the P_3D_Ext object.



Extension aggregates and descendent types

In the examples above, we've been initializing objects of descendent types by
using objects of ascending types in extension aggregates. We could, however, do
the opposite and initialize objects of ascending types using objects of
descendent type in extension aggregates. Consider this code example:


show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4   P_2D : Point_2D;
 5   P_3D : Point_3D;
 6begin
 7   P_3D := (X => 0.5, Y => 0.7, Z => 0.3);
 8   Display (P_3D);
 9
10   P_2D := (Point_1D (P_3D) with Y => 0.3);
11   Display (P_2D);
12end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Extension_Aggregates.Extension_Aggregate_Points
MD5: ae5e88a36c58b1eb495d5ba8752e50e7








Runtime output



(X =>  5.00000E-01, Y =>  7.00000E-01, Z =>  3.00000E-01)
(X =>  5.00000E-01, Y =>  3.00000E-01)







Here, we're using Point_1D (P_3D) to select the Point_1D view of
an object of Point_3D type. At this point, we have specified the
Point_1D part of the aggregate, so we still have to specify the
remaining components of the Point_2D type — the Y
component, to be more specific. When we do that, we get the appropriate
aggregate for the Point_2D type. In summary, by carefully selecting the
appropriate view, we're able to initialize an object of ascending type
(Point_2D), which contains less components, using an object of a
descendent type (Point_3D), which contains more components.




Delta Aggregates


Note

This feature was introduced in Ada 2022.



Previously, we've discussed
extension aggregates, which are used to
assign an object Obj_From of a tagged type to an object Obj_To of
a descendent type.

We may want also to assign an object Obj_From of to an object
Obj_To of the same type, but change some of the components in this
assignment. To do this, we use delta aggregates.


Delta Aggregates for Tagged Records

Let's reuse the Points package from a previous example:


points.ads

 1package Points is
 2
 3   type Point_1D is tagged record
 4      X : Float;
 5   end record;
 6
 7   type Point_2D is new Point_1D with record
 8      Y : Float;
 9   end record;
10
11   type Point_3D is new Point_2D with record
12      Z : Float;
13   end record;
14
15   procedure Display (P : Point_3D);
16
17end Points;








points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5   procedure Display (P : Point_3D) is
 6   begin
 7      Put_Line ("(X => " & P.X'Image
 8                & ", Y => " & P.Y'Image
 9                & ", Z => " & P.Z'Image & ")");
10   end Display;
11
12end Points;








show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4   P1, P2, P3 : Point_3D;
 5begin
 6   P1 := (X => 0.5, Y => 0.7, Z => 0.3);
 7   Display (P1);
 8
 9   P2 := (P1 with delta X => 1.0);
10   Display (P2);
11
12   P3 := (P1 with delta X => 0.2, Y => 0.3);
13   Display (P3);
14end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Tagged
MD5: 23e9f53d626e32fc0524abfa0a437dbf








Runtime output



(X =>  5.00000E-01, Y =>  7.00000E-01, Z =>  3.00000E-01)
(X =>  1.00000E+00, Y =>  7.00000E-01, Z =>  3.00000E-01)
(X =>  2.00000E-01, Y =>  3.00000E-01, Z =>  3.00000E-01)







Here, we assign P1 to P2, but change the X component.
Also, we assign  P1 to P3, but change the X and Y
components.

We can use class-wide types with delta aggregates. Consider this example:


show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4
 5   P_3D : Point_3D;
 6
 7   function Reset (P_2D : Point_2D'Class)
 8                   return Point_2D'Class is
 9     ((P_2D with delta X | Y => 0.0));
10
11begin
12   P_3D := (X => 0.1, Y => 0.2, Z => 0.3);
13   Display (P_3D);
14
15   P_3D := Point_3D (Reset (P_3D));
16   Display (P_3D);
17
18end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Tagged
MD5: dca144fe420dd37e224d089458f9e8a8








Runtime output



(X =>  1.00000E-01, Y =>  2.00000E-01, Z =>  3.00000E-01)
(X =>  0.00000E+00, Y =>  0.00000E+00, Z =>  3.00000E-01)







In this example, the Reset function returns an object of
Point_2D'Class where all components of Point_2D'Class type are
zero. We call the Reset function for the P_3D object of
Point_3D type, so that only the Z component remains untouched.

Note that we use the syntax X | Y in the body of the Reset
function and assign the same value to both components.


For further reading...

We could have implemented Reset as a procedure — in this case,
without using delta aggregates:


show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4
 5   P_3D : Point_3D;
 6
 7   procedure Reset
 8     (P_2D : in out Point_2D'Class) is
 9   begin
10      Point_2D (P_2D) := (others => 0.0);
11   end Reset;
12
13begin
14   P_3D := (X => 0.1, Y => 0.2, Z => 0.3);
15   Display (P_3D);
16
17   Reset (P_3D);
18   Display (P_3D);
19
20end Show_Points;











Delta Aggregates for Non-Tagged Records

The examples above use tagged types. We can also use delta aggregates with
non-tagged types. Let's rewrite the Points package and convert
Point_3D to a non-tagged record type.


points.ads

 1package Points is
 2
 3   type Point_3D is record
 4      X : Float;
 5      Y : Float;
 6      Z : Float;
 7   end record;
 8
 9   procedure Display (P : Point_3D);
10
11end Points;








points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5   procedure Display (P : Point_3D) is
 6   begin
 7      Put_Line ("(X => " & P.X'Image
 8                & ", Y => " & P.Y'Image
 9                & ", Z => " & P.Z'Image & ")");
10   end Display;
11
12end Points;








show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4   P1, P2, P3 : Point_3D;
 5begin
 6   P1 := (X => 0.5, Y => 0.7, Z => 0.3);
 7   Display (P1);
 8
 9   P2 := (P1 with delta X => 1.0);
10   Display (P2);
11
12   P3 := (P1 with delta X => 0.2, Y => 0.3);
13   Display (P3);
14end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Non_Tagged
MD5: 1f12f33ac0a84919978c56d04f479e35








Runtime output



(X =>  5.00000E-01, Y =>  7.00000E-01, Z =>  3.00000E-01)
(X =>  1.00000E+00, Y =>  7.00000E-01, Z =>  3.00000E-01)
(X =>  2.00000E-01, Y =>  3.00000E-01, Z =>  3.00000E-01)







In this example, Point_3D is a non-tagged type. Note that we haven't
changed anything in the Show_Points procedure: it still works as it did
with tagged types.



Delta Aggregates for Arrays

We can use delta aggregates for arrays. Let's change the declaration of
Point_3D and use an array to represent a 3-dimensional point:


points.ads

 1package Points is
 2
 3   type Float_Array is
 4     array (Positive range <>) of Float;
 5
 6   type Point_3D is new Float_Array (1 .. 3);
 7
 8   procedure Display (P : Point_3D);
 9
10end Points;








points.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Points is
 4
 5   procedure Display (P : Point_3D) is
 6   begin
 7      Put ("(");
 8      for I in P'Range loop
 9         Put (I'Image
10              & " => "
11              & P (I)'Image);
12      end loop;
13      Put_Line (")");
14   end Display;
15
16end Points;








show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4   P1, P2, P3 : Point_3D;
 5begin
 6   P1 := [0.5, 0.7, 0.3];
 7   Display (P1);
 8
 9   P2 := [P1 with delta 1 => 1.0];
10   Display (P2);
11
12   P3 := [P1 with delta 1 => 0.2, 2 => 0.3];
13   --  Alternatively:
14   --  P3 := [P1 with delta 1 .. 2 => 0.2, 0.3];
15
16   Display (P3);
17end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Array
MD5: 06293882e5dd020f56fbced6bc03ccf0








Runtime output



( 1 =>  5.00000E-01 2 =>  7.00000E-01 3 =>  3.00000E-01)
( 1 =>  1.00000E+00 2 =>  7.00000E-01 3 =>  3.00000E-01)
( 1 =>  2.00000E-01 2 =>  3.00000E-01 3 =>  3.00000E-01)







The implementation of Show_Points in this example is very similar to the
version where use a record type. In this case, we:


	assign P1 to P2, but change the first component, and


	we assign  P1 to P3, but change the first and second
components.





Using slices

In the assignment to P3, we can either specify each component of the
delta individually or use a slice: both forms are equivalent. Also, we can use
slices to assign the same number to multiple components:


show_points.adb

 1with Points; use Points;
 2
 3procedure Show_Points is
 4   P1, P3 : Point_3D;
 5begin
 6   P1 := [0.5, 0.7, 0.3];
 7   Display (P1);
 8
 9   P3 := [P1 with delta
10            P3'First + 1 .. P3'Last => 0.0];
11   Display (P3);
12end Show_Points;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Array
MD5: 0a00e17b2d803f23edc728969d663c59








Runtime output



( 1 =>  5.00000E-01 2 =>  7.00000E-01 3 =>  3.00000E-01)
( 1 =>  5.00000E-01 2 =>  0.00000E+00 3 =>  0.00000E+00)







In this example, we're assigning P1 to P3, but resetting all
components of the array starting by the second one.



Multiple components

We can also assign multiple components or slices:


float_arrays.ads

1package Float_Arrays is
2
3   type Float_Array is
4     array (Positive range <>) of Float;
5
6   procedure Display (P : Float_Array);
7
8end Float_Arrays;








float_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Float_Arrays is
 4
 5   procedure Display (P : Float_Array) is
 6   begin
 7
 8      Put ("(");
 9      for I in P'Range loop
10         Put (I'Image
11              & " => "
12              & P (I)'Image);
13      end loop;
14      Put_Line (")");
15
16   end Display;
17
18end Float_Arrays;








show_multiple_delta_slices.adb

 1with Float_Arrays; use Float_Arrays;
 2
 3procedure Show_Multiple_Delta_Slices is
 4
 5   P1, P2 : Float_Array (1 .. 5);
 6
 7begin
 8   P1 := [1.0, 2.0, 3.0, 4.0, 5.0];
 9   Display (P1);
10
11   P2 := [P1 with delta
12            P2'First + 1 .. P2'Last - 2 => 0.0,
13            P2'Last - 1  .. P2'Last => 0.2];
14   Display (P2);
15end Show_Multiple_Delta_Slices;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Aggregates.Delta_Aggregates.Delta_Aggregates_Array
MD5: 37063cd1c6cd46522d8e5b0df7b5741b








Runtime output



( 1 =>  1.00000E+00 2 =>  2.00000E+00 3 =>  3.00000E+00 4 =>  4.00000E+00 5 =>  5.00000E+00)
( 1 =>  1.00000E+00 2 =>  0.00000E+00 3 =>  0.00000E+00 4 =>  2.00000E-01 5 =>  2.00000E-01)







In this example, we have two arrays P1 and P2 of
Float_Array type. We assign P1 to P2, but change:


	the second to the last-but-two components to 0.0, and


	the last-but-one and last components to 0.2.
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Arrays


Array constraints

Array constraints are important in the declaration of an array because they
define the total size of the array. In fact, arrays must always be constrained.
In this section, we start our discussion with unconstrained array types, and
then continue with constrained arrays and arrays types. Finally, we discuss
the differences between unconstrained arrays and vectors.
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	3.6 Array Types[#1]







Unconstrained array types

In the
Introduction to Ada course[#2],
we've seen that we can declare array types whose bounds are not fixed: in that
case, the bounds are provided when creating objects of those types. For
example:


measurement_defs.ads

1package Measurement_Defs is
2
3   type Measurements is
4     array (Positive range <>) of Float;
5   --       ^ Bounds are of type Positive,
6   --         but not known at this point.
7
8end Measurement_Defs;








show_measurements.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2
 3with Measurement_Defs; use Measurement_Defs;
 4
 5procedure Show_Measurements is
 6   M : Measurements (1 .. 10);
 7   --                ^ Providing bounds here!
 8begin
 9   Put_Line ("First index: " & M'First'Image);
10   Put_Line ("Last index:  " & M'Last'Image);
11end Show_Measurements;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Array_Constraints.Unconstrained_Array_Type
MD5: a5cdc74dd61e36476431cf675452d1d5








Build output



show_measurements.adb:6:04: warning: variable "M" is read but never assigned [-gnatwv]








Runtime output



First index:  1
Last index:   10







In this example, the Measurements array type from the
Measurement_Defs package is unconstrained. In the
Show_Measurements procedure, we declare a constrained object (M)
of this type.



Constrained arrays

The Introduction to Ada course[#3]
highlights the fact that the bounds are fixed once an object is declared:


Although different instances of the same unconstrained array type can
have different bounds, a specific instance has the same bounds
throughout its lifetime. This allows Ada to implement unconstrained
arrays efficiently; instances can be stored on the stack and do not
require heap allocation as in languages like Java.




In the Show_Measurements procedure above, once we declare M, its
bounds are fixed for the whole lifetime of M. We cannot add another
component to this array. In other words, M will have 10 components for
its whole lifetime:

M : Measurements (1 .. 10);
--                ^^^^^^^
--  Bounds cannot be changed!







Constrained array types

Note that we could declare constrained array types. Let's rework the previous
example:


measurement_defs.ads

1package Measurement_Defs is
2
3   type Measurements is
4     array (1 .. 10) of Float;
5   --       ^ Bounds are of known and fixed.
6
7end Measurement_Defs;








show_measurements.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2
 3with Measurement_Defs; use Measurement_Defs;
 4
 5procedure Show_Measurements is
 6   M : Measurements;
 7   --              ^ We cannot change the
 8   --                bounds here!
 9begin
10   Put_Line ("First index: " & M'First'Image);
11   Put_Line ("Last index:  " & M'Last'Image);
12end Show_Measurements;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Array_Constraints.Constrained_Array_Type
MD5: 4741986fdf4dab731baa001b6e60c345








Build output



show_measurements.adb:6:04: warning: variable "M" is read but never assigned [-gnatwv]








Runtime output



First index:  1
Last index:   10







In this case, the bounds of the Measurements type are fixed. Now, we
cannot specify the bounds (or change them) in the declaration of the M
array, as they have already been defined in the type declaration.


Unconstrained Arrays vs. Vectors

If you need, however, the flexibility of increasing the length of an array, you
could use the language-defined Vector type instead. This is how we could
rewrite the previous example using vectors:


measurement_defs.ads

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Containers.Vectors;
 3
 4package Measurement_Defs is
 5
 6   package Vectors is new Ada.Containers.Vectors
 7     (Index_Type   => Positive,
 8      Element_Type => Float);
 9
10   subtype Measurements is Vectors.Vector;
11
12end Measurement_Defs;








show_measurements.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2
 3with Measurement_Defs; use Measurement_Defs;
 4
 5procedure Show_Measurements is
 6   use Measurement_Defs.Vectors;
 7
 8   M : Measurements := To_Vector (10);
 9   --                  ^ Creating 10-element
10   --                    vector.
11begin
12   Put_Line ("First index: "
13             & M.First_Index'Image);
14   Put_Line ("Last index:  "
15             & M.Last_Index'Image);
16
17   Put_Line ("Adding element...");
18   M.Append (1.0);
19
20   Put_Line ("First index: "
21             & M.First_Index'Image);
22   Put_Line ("Last index:  "
23             & M.Last_Index'Image);
24end Show_Measurements;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Array_Constraints.Unconstrained_Array_Type_Vs_Vector
MD5: afec7a4b898392be4dd1f60e1519da88








Runtime output



First index:  1
Last index:   10
Adding element...
First index:  1
Last index:   11







In the declaration of M in this example, we're creating a 10-element
vector by calling To_Vector and specifying the element count. Later on,
with the call to Append, we're increasing the length of the M to
11 elements.

As you might expect, the flexibility of vectors comes with a price: every time
we add an element that doesn't fit in the current capacity of the vector, the
container has to reallocate memory in the background due to that new element.
Therefore, arrays are more efficient, as the memory allocation only happens
once for each object.
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	3.6 Array Types[#4]


	A.18.2 The Generic Package Containers.Vectors[#5]










Multidimensional Arrays

So far, we've discussed unidimensional arrays, since they are very common in
Ada. However, Ada also supports multidimensional arrays using the same
facilities as for unidimensional arrays. For example, we can use the
First, Last, Range and Length attributes for each
dimension of a multidimensional array. This section presents more details on
this topic.

To create a multidimensional array, we simply separate the ranges of each
dimension with a comma. The following example presents the one-dimensional
array A1, the two-dimensional array A2 and the three-dimensional
array A3:


multidimensional_arrays_decl.ads

 1package Multidimensional_Arrays_Decl is
 2
 3   A1 : array (1 .. 10) of Float;
 4   A2 : array (1 .. 5, 1 .. 10) of Float;
 5   --          ^ first dimension
 6   --                  ^ second dimension
 7   A3 : array (1 .. 2, 1 .. 5, 1 .. 10) of Float;
 8   --          ^ first dimension
 9   --                  ^ second dimension
10   --                          ^ third dimension
11end Multidimensional_Arrays_Decl;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.Multidimensional_Arrays
MD5: 928243b293c67a078d729c3cac68bb92







The two-dimensional array A2 has 5 components in the first dimension and
10 components in the second dimension. The three-dimensional array A3
has 2 components in the first dimension, 5 components in the second dimension,
and 10 components in the third dimension. Note that the ranges we've selected
for A1, A2 and A3 are completely arbitrary. You may select
ranges for each dimension that are the most appropriate in the context of your
application. Also, the number of dimensions is not limited to three, so you
could declare higher-dimensional arrays if needed.

We can use the Length attribute to retrieve the length of each
dimension. We use an integer value in parentheses to specify which dimension
we're referring to. For example, if we write A'Length (2), we're
referring to the length of the second dimension of a multidimensional array
A. Note that A'Length is equivalent to A'Length (1). The
same equivalence applies to other array-related attributes such as
First, Last and Range.

Let's use the Length attribute for the arrays we declared in the
Multidimensional_Arrays_Decl package:


show_multidimensional_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Multidimensional_Arrays_Decl;
 4use Multidimensional_Arrays_Decl;
 5
 6procedure Show_Multidimensional_Arrays is
 7begin
 8   Put_Line ("A1'Length:     "
 9             & A1'Length'Image);
10   Put_Line ("A1'Length (1): "
11             & A1'Length (1)'Image);
12   Put_Line ("A2'Length (1): "
13             & A2'Length (1)'Image);
14   Put_Line ("A2'Length (2): "
15             & A2'Length (2)'Image);
16   Put_Line ("A3'Length (1): "
17             & A3'Length (1)'Image);
18   Put_Line ("A3'Length (2): "
19             & A3'Length (2)'Image);
20   Put_Line ("A3'Length (3): "
21             & A3'Length (3)'Image);
22end Show_Multidimensional_Arrays;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.Multidimensional_Arrays
MD5: 70b9b8df7e46302b92613fa484ef71ca








Runtime output



A1'Length:      10
A1'Length (1):  10
A2'Length (1):  5
A2'Length (2):  10
A3'Length (1):  2
A3'Length (2):  5
A3'Length (3):  10







As this simple example shows, we can easily retrieve the length of each
dimension. Also, as we've just mentioned, A1'Length is equal to
A1'Length (1).

Let's consider an application where we make hourly measurements for the first
12 hours of the day, on each day of the week. We can create a two-dimensional
array type called Measurements to store this data. Also, we can have
three procedures for this array:


	Show_Indices, which presents the indices (days and hours) of the
two-dimensional array;


	Show_Values, which presents the values stored in the array; and


	Reset, which resets each value of the array.




This is the complete code for this application:


measurement_defs.ads

 1package Measurement_Defs is
 2
 3   type Days is
 4     (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
 5
 6   type Hours is range 0 .. 11;
 7
 8   subtype Measurement is Float;
 9
10   type Measurements is
11     array (Days, Hours) of Measurement;
12
13   procedure Show_Indices (M : Measurements);
14
15   procedure Show_Values (M : Measurements);
16
17   procedure Reset (M : out Measurements);
18
19end Measurement_Defs;








measurement_defs.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2
 3package body Measurement_Defs is
 4
 5   procedure Show_Indices (M : Measurements) is
 6   begin
 7      Put_Line ("---- Indices ----");
 8
 9      for D in M'Range (1) loop
10         Put (D'Image & " ");
11
12         for H in M'First (2) ..
13                  M'Last (2) - 1
14         loop
15            Put (H'Image & " ");
16         end loop;
17         Put_Line (M'Last (2)'Image);
18      end loop;
19   end Show_Indices;
20
21   procedure Show_Values (M : Measurements) is
22      package H_IO is
23        new Ada.Text_IO.Integer_IO (Hours);
24      package M_IO is
25        new Ada.Text_IO.Float_IO (Measurement);
26
27        procedure Set_IO_Defaults is
28        begin
29           H_IO.Default_Width := 5;
30
31           M_IO.Default_Fore  := 1;
32           M_IO.Default_Aft   := 2;
33           M_IO.Default_Exp   := 0;
34        end Set_IO_Defaults;
35   begin
36      Set_IO_Defaults;
37
38      Put_Line ("---- Values ----");
39      Put ("   ");
40      for H in M'Range (2) loop
41         H_IO.Put (H);
42      end loop;
43      New_Line;
44
45      for D in M'Range (1) loop
46         Put (D'Image & " ");
47
48         for H in M'Range (2) loop
49            M_IO.Put (M (D, H));
50            Put (" ");
51         end loop;
52         New_Line;
53      end loop;
54   end Show_Values;
55
56   procedure Reset (M : out Measurements) is
57   begin
58      M := (others => (others => 0.0));
59   end Reset;
60
61end Measurement_Defs;








show_measurements.adb

1with Measurement_Defs; use Measurement_Defs;
2
3procedure Show_Measurements is
4   M : Measurements;
5begin
6   Reset (M);
7   Show_Indices (M);
8   Show_Values (M);
9end Show_Measurements;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.Multidimensional_Measurements
MD5: bcffa3913007bd9152149ad9616842b8








Runtime output



---- Indices ----
MON  0  1  2  3  4  5  6  7  8  9  10  11
TUE  0  1  2  3  4  5  6  7  8  9  10  11
WED  0  1  2  3  4  5  6  7  8  9  10  11
THU  0  1  2  3  4  5  6  7  8  9  10  11
FRI  0  1  2  3  4  5  6  7  8  9  10  11
SAT  0  1  2  3  4  5  6  7  8  9  10  11
SUN  0  1  2  3  4  5  6  7  8  9  10  11
---- Values ----
       0    1    2    3    4    5    6    7    8    9   10   11
MON 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
TUE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
WED 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
THU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
FRI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SAT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SUN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 







We recommend that you spend some time analyzing this example. Also, we'd like
to highlight the following aspects:


	We access a value from a multidimensional array by using commas to separate
the index values within the parentheses. For example:
M (D, H) allows us to access the value on day D and hour
H from the multidimensional array M.


	To loop over the multidimensional array M, we write
for D in M'Range (1) loop and for H in M'Range (2) loop for
the first and second dimensions, respectively.


	To reset all values of the multidimensional array, we use an aggregate with
this form: (others => (others => 0.0)).
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	3.6 Array Types[#6]


	3.6.2 Operations of Array Types[#7]







Unconstrained Multidimensional Arrays

Previously, we've discussed unconstrained arrays for the unidimensional case.
It's possible to declare unconstrained multidimensional arrays as well. For
example:


multidimensional_arrays_decl.ads

 1package Multidimensional_Arrays_Decl is
 2
 3   type F1 is array (Positive range <>) of Float;
 4   type F2 is array (Positive range <>,
 5                     Positive range <>) of Float;
 6   type F3 is array (Positive range <>,
 7                     Positive range <>,
 8                     Positive range <>) of Float;
 9
10end Multidimensional_Arrays_Decl;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.Unconstrained_Multidimensional_Arrays
MD5: 8637e93db355fddafa3ffa5ce453a0e1







Here, we're declaring the one-dimensional type F1, the two-dimensional
type F2 and the three-dimensional type F3.

As is the case with unidimensional arrays, we must specify the bounds when
declaring objects of unconstrained multidimensional array types:


show_multidimensional_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Multidimensional_Arrays_Decl;
 4use  Multidimensional_Arrays_Decl;
 5
 6procedure Show_Multidimensional_Arrays is
 7   A1 : F1 (1 .. 2);
 8   A2 : F2 (1 .. 4, 10 .. 20);
 9   A3 : F3 (2 .. 3, 1 .. 5, 1 .. 2);
10begin
11   Put_Line ("A1'Length (1): "
12             & A1'Length (1)'Image);
13   Put_Line ("A2'Length (1): "
14             & A2'Length (1)'Image);
15   Put_Line ("A2'Length (2): "
16             & A2'Length (2)'Image);
17   Put_Line ("A3'Length (1): "
18             & A3'Length (1)'Image);
19   Put_Line ("A3'Length (2): "
20             & A3'Length (2)'Image);
21   Put_Line ("A3'Length (3): "
22             & A3'Length (3)'Image);
23end Show_Multidimensional_Arrays;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Multidimensional_Arrays.Unconstrained_Multidimensional_Arrays
MD5: 9fb007abbfe238345d80cb315bb834c9








Build output



show_multidimensional_arrays.adb:7:04: warning: variable "A1" is read but never assigned [-gnatwv]
show_multidimensional_arrays.adb:8:04: warning: variable "A2" is read but never assigned [-gnatwv]
show_multidimensional_arrays.adb:9:04: warning: variable "A3" is read but never assigned [-gnatwv]








Runtime output



A1'Length (1):  2
A2'Length (1):  4
A2'Length (2):  11
A3'Length (1):  2
A3'Length (2):  5
A3'Length (3):  2









Arrays of arrays

It's important to distinguish between multidimensional arrays and arrays of
arrays. Both are supported in Ada, but they're very distinct from each other.
We can create an array of an array by first specifying a one-dimensional array
type T1, and then specifying another one-dimensional array type
T2 where each component of T2 is of T1 type:


array_of_arrays_decl.ads

 1package Array_Of_Arrays_Decl is
 2
 3   type T1 is
 4     array (Positive range <>) of Float;
 5
 6   type T2 is
 7     array (Positive range <>) of T1 (1 .. 10);
 8   --                                 ^^^^^^^
 9   --                          bounds must be set!
10
11end Array_Of_Arrays_Decl;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Array_Of_Arrays.Array_Of_Arrays
MD5: fd67739bb21f202615180aa02f5284aa







Note that, in the declaration of T2, we must set the bounds for the
T1 type. This is a major difference to multidimensional arrays, which
allow for unconstrained ranges in multiple dimensions.

We can rewrite the previous application for measurements using arrays of
arrays. This is the adapted code:


measurement_defs.ads

 1package Measurement_Defs is
 2
 3   type Days is
 4     (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
 5
 6   type Hours is range 0 .. 11;
 7
 8   subtype Measurement is Float;
 9
10   type Hourly_Measurements is
11     array (Hours) of Measurement;
12
13   type Measurements is
14     array (Days) of Hourly_Measurements;
15
16   procedure Show_Indices (M : Measurements);
17
18   procedure Show_Values (M : Measurements);
19
20   procedure Reset (M : out Measurements);
21
22end Measurement_Defs;








measurement_defs.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2
 3package body Measurement_Defs is
 4
 5   procedure Show_Indices (M : Measurements) is
 6   begin
 7      Put_Line ("---- Indices ----");
 8
 9      for D in M'Range loop
10         Put (D'Image & " ");
11
12         for H in M (D)'First ..
13                  M (D)'Last - 1
14         loop
15            Put (H'Image & " ");
16         end loop;
17         Put_Line (M (D)'Last'Image);
18      end loop;
19   end Show_Indices;
20
21   procedure Show_Values (M : Measurements) is
22      package H_IO is
23        new Ada.Text_IO.Integer_IO (Hours);
24      package M_IO is
25        new Ada.Text_IO.Float_IO (Measurement);
26
27        procedure Set_IO_Defaults is
28        begin
29           H_IO.Default_Width := 5;
30
31           M_IO.Default_Fore  := 1;
32           M_IO.Default_Aft   := 2;
33           M_IO.Default_Exp   := 0;
34        end Set_IO_Defaults;
35   begin
36      Set_IO_Defaults;
37
38      Put_Line ("---- Values ----");
39      Put ("   ");
40      for H in M (M'First)'Range loop
41         H_IO.Put (H);
42      end loop;
43      New_Line;
44
45      for D in M'Range loop
46         Put (D'Image & " ");
47
48         for H in M (D)'Range loop
49            M_IO.Put (M (D) (H));
50            Put (" ");
51         end loop;
52         New_Line;
53      end loop;
54   end Show_Values;
55
56   procedure Reset (M : out Measurements) is
57   begin
58      M := (others => (others => 0.0));
59   end Reset;
60
61end Measurement_Defs;








show_measurements.adb

1with Measurement_Defs; use Measurement_Defs;
2
3procedure Show_Measurements is
4   M : Measurements;
5begin
6   Reset (M);
7   Show_Indices (M);
8   Show_Values (M);
9end Show_Measurements;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Array_Of_Arrays.Multidimensional_Measurements
MD5: 5cb66bbb1890787b7c023406b2cafb4d








Runtime output



---- Indices ----
MON  0  1  2  3  4  5  6  7  8  9  10  11
TUE  0  1  2  3  4  5  6  7  8  9  10  11
WED  0  1  2  3  4  5  6  7  8  9  10  11
THU  0  1  2  3  4  5  6  7  8  9  10  11
FRI  0  1  2  3  4  5  6  7  8  9  10  11
SAT  0  1  2  3  4  5  6  7  8  9  10  11
SUN  0  1  2  3  4  5  6  7  8  9  10  11
---- Values ----
       0    1    2    3    4    5    6    7    8    9   10   11
MON 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
TUE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
WED 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
THU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
FRI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SAT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SUN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 







Again, we recommend that you spend some time analyzing this example and
comparing it to the previous version that uses multidimensional arrays. Also,
we'd like to highlight the following aspects:


	We access a value from an array of arrays by specifying the index of each
array separately. For example: M (D) (H) allows us to access the value
on day D and hour H from the array of arrays M.


	To loop over an array of arrays M, we write
for D in M'Range loop for the first level of M and
for H in M (D)'Range loop for the second level of M.


	Resetting all values of an array of arrays is very similar to how we do it
for multidimensional arrays. In fact, we can still use an aggregate with this
form: (others => (others => 0.0)).







Derived array types and array subtypes


Derived array types

As expected, we can derive from array types by declaring a new type. Let's see
a couple of examples based on the Measurement_Defs package from previous
sections:


measurement_defs.ads

 1package Measurement_Defs is
 2
 3   type Measurements is
 4     array (Positive range <>) of Float;
 5
 6   --
 7   --  New array type:
 8   --
 9   type Measurements_Derived is
10     new Measurements;
11
12   --
13   --  New array type with
14   --  default component value:
15   --
16   type Measurements_Def30 is
17     new Measurements
18       with Default_Component_Value => 30.0;
19
20   --
21   --  New array type with constraints:
22   --
23   type Measurements_10 is
24     new Measurements (1 .. 10);
25
26end Measurement_Defs;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Derived_Arrays_And_Subtypes.Derived_Arrays
MD5: aefef9b9a844ad820d7f16546b8ffa64







In this example, we're deriving Measurements_Derived from the
Measurements type. In the case of the Measurements_Def30 type,
we're not only deriving from the Measurements type, but also setting
the default component value to 30.0.
Finally, in the case of the Measurements_10, we're deriving from the
Measurements type and
constraining the array type in the
range from 1 to 10.

Let's use these types in a test application:


show_measurements.adb

 1with Measurement_Defs; use Measurement_Defs;
 2
 3procedure Show_Measurements is
 4   M1, M2  : Measurements (1 .. 10)
 5               := (others => 0.0);
 6
 7   MD      : Measurements_Derived (1 .. 10);
 8   MD2     : Measurements_Derived (1 .. 40);
 9   MD10    : Measurements_10;
10begin
11   M1   := M2;
12   --  ^^^^^^
13   --  Assignment of arrays of
14   --  same type.
15
16   MD   := Measurements_Derived (M1);
17   --      ^^^^^^^^^^^^^^^^^^^^^^^^^
18   --  Conversion to derived type for
19   --  the assignment.
20
21   MD10 := Measurements_10 (M1);
22   --      ^^^^^^^^^^^^^^^^^^^^
23   --  Conversion to derived type for
24   --  the assignment.
25
26   MD10 := Measurements_10 (MD);
27   MD10 := Measurements_10 (MD2 (1 .. 10));
28end Show_Measurements;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Derived_Arrays_And_Subtypes.Derived_Arrays
MD5: ce37a9c17eb9e1bb3931cca82852b54a








Build output



show_measurements.adb:8:04: warning: variable "MD2" is read but never assigned [-gnatwv]







As illustrated by this example, we can assign objects of different array types,
provided that we perform the appropriate type conversions and make sure that
the bounds match.



Array subtypes

Naturally, we can also declare subtypes of array types. For example:


measurement_defs.ads

 1package Measurement_Defs is
 2
 3   type Measurements is
 4     array (Positive range <>) of Float;
 5
 6   --
 7   --  Simple subtype declaration:
 8   --
 9   subtype Measurements_Sub is Measurements;
10
11   --
12   --  Subtype with constraints:
13   --
14   subtype Measurements_10 is
15     Measurements (1 .. 10);
16
17   --
18   --  Subtype with dynamic predicate
19   --  (array can only have 20 components
20   --  at most):
21   --
22   subtype Measurements_Max_20 is Measurements
23       with Dynamic_Predicate =>
24              Measurements_Max_20'Length <= 20;
25
26   --
27   --  Subtype with constraints and
28   --  dynamic predicate (first element
29   --  must be 2.0).
30   --
31   subtype Measurements_First_Two is
32     Measurements (1 .. 10)
33       with Dynamic_Predicate =>
34              Measurements_First_Two (1) = 2.0;
35
36end Measurement_Defs;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Derived_Arrays_And_Subtypes.Array_Subtypes
MD5: fa03c836111aa2df223a38a5d04d18bc







Here, we're declaring subtypes of the Measurements type. For example,
Measurements_Sub is a simple subtype of Measurements type. In
the case of the Measurements_10 subtype, we're constraining the type to
a range from 1 to 10.

For the Measurements_Max_20 subtype, we're specifying — via a
dynamic predicate — that arrays of this subtype can only have 20
components at most. Finally, for the Measurements_First_Two subtype,
we're constraining the type to a range from 1 to 10 and requiring that the
first component must have a value of 2.0.

Note that we cannot set the default component value for array subtypes —
only type declarations are allowed to use that facility.

Let's use these subtypes in a test application:


show_measurements.adb

 1with Measurement_Defs; use Measurement_Defs;
 2
 3procedure Show_Measurements is
 4   M1, M2  : Measurements (1 .. 10)
 5               := (others => 0.0);
 6   MS      : Measurements_Sub (1 .. 10);
 7   MD10    : Measurements_10;
 8   M_Max20 : Measurements_Max_20 (1 .. 40);
 9   M_F2    : Measurements_First_Two;
10begin
11   MS       := M1;
12   MD10     := M1;
13
14   M_Max20  := (others => 0.0);  --  ERROR!
15
16   MD10 (1) := 4.0;
17   M_F2     := MD10;             --  ERROR!
18end Show_Measurements;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Arrays.Derived_Arrays_And_Subtypes.Array_Subtypes
MD5: 003ddaab65d8c163302811abd7889745








Runtime output




raised ADA.ASSERTIONS.ASSERTION_ERROR : Dynamic_Predicate failed at show_measurements.adb:14







As expected, assignments to objects with different subtypes — but with
the same parent type — work fine without conversion. The assignment to
M_Max_20 fails because of the predicate failure: the predicate requires
that the length be 20 at most, and it's 40 in this case. Also, the
assignment to M_F2 fails because the predicate requires that the first
element must be set to 2.0, and MD10 (1) has the value 4.0.




Footnotes



[#1]
http://www.ada-auth.org/standards/22rm/html/RM-3-6.html



[#2]
https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-unconstrained-array-types



[#3]
https://learn.adacore.com/courses/intro-to-ada/chapters/arrays.html#intro-ada-unconstrained-array-type-instance-bound



[#4]
http://www.ada-auth.org/standards/22rm/html/RM-3-6.html



[#5]
http://www.ada-auth.org/standards/22rm/html/RM-A-18-2.html



[#6]
http://www.ada-auth.org/standards/22rm/html/RM-3-6.html



[#7]
http://www.ada-auth.org/standards/22rm/html/RM-3-6-2.html
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Character and String Literals

So far, we're already seen many examples of string literals — both in
the Introduction to Ada[#1] course and in the
present course. In this section, we define them once more and discuss a couple
of details about them.


Character Literals

A character literal is simply a character between apostrophes (or
single quotation marks). For example:


show_character_literals.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show_Character_Literals is
4   C   : Character := 'a';
5   --                 ^^^
6   --           Character literal
7begin
8   Put_Line ("Character : " & C);
9end Show_Character_Literals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Character_String_Literals.Character_Literals
MD5: e9bf0dee97b4c6d52937316e7f285f48








Runtime output



Character : a







In this example, we initialize the character variable C with the
character literal 'a'.



String Literals

A string literal is simply a collection of characters between quotation marks.
For example:


show_simple_string_literals.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_String_Literals is
 4   S1 : String := "Hello";
 5   --             ^^^^^^^
 6   --         String literal
 7
 8   S2 : String := "World";
 9   --             ^^^^^^^
10   --           String literal
11begin
12   Put_Line (S1 & " " & S2);
13end Show_Simple_String_Literals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Character_String_Literals.Simple_String_Literals
MD5: a19bfa1ab6048f8cad9858d57b9f21e1








Runtime output



Hello World







In this example, "Hello" and "World" are string literals.


String literals with quotation

If you want to include a quotation mark in a string literal, you have to write
"" (inside that string literal):


show_string_literals_with_quotes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_String_Literals_With_Quotes is
 4   S1 : String := "Hello";
 5   S2 : String := "World";
 6begin
 7   Put_Line ("  "" " & S1
 8   --           ^^
 9   --       Quotation marks
10             & " " & S2 & " ""  ");
11   --                       ^^
12   --       Quotation marks
13
14   Put_Line ("""Hello World!""");
15   --         ^^            ^^
16   --          Quotation marks
17
18   Put_Line ("""""");
19   --         ^^^^
20   --    Quotation marks
21end Show_String_Literals_With_Quotes;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Character_String_Literals.String_Literals_With_Quotes
MD5: 97752e289b5f58f98920407f5dedc1fb








Runtime output



  " Hello World "  
"Hello World!"
""







In this example, we display " Hello World " to the user by adding
quotation marks to the concatenated strings in the call to Put_Line.

Note that the three quotation marks at the beginning of
"""Hello World!""" consist of the quotation mark that indicate the
beginning of the string literal and the two quotation marks that represent a
single quotation mark inside the string literal. (The same thing happens at the
end of this string literal, but in reverse.) This string literal is displayed
as "Hello World!" to the user.

Finally, the string literal """""" is displayed as "" to the
user.



Empty string literals

An empty string is represented by quotation marks without characters in
between: "". For example:


show_empty_string_literals.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Empty_String_Literals is
 4   S1 : String          := "";
 5   S2 : String (1 .. 0) := "";
 6begin
 7   Put_Line (S1);
 8   Put_Line (S2);
 9   Put_Line ("");
10end Show_Empty_String_Literals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Character_String_Literals.Empty_String_Literals
MD5: f2f7c47784f1053665db9499cb6b53d8








Runtime output













Note that an empty string is an array of characters without any components.
This is made explicit by the declaration of S2. Here, by using the range
1 .. 0, we're declaring an empty array.


In other languages

In C, an empty string still contains a single character: the null character
(\0). In Ada, however, an empty string doesn't have any characters.
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	2.5 Character Literals[#2]


	2.6 String Literals[#3]










Wide and Wide-Wide Strings

We've seen many source-code examples so far that includes strings. In most of
them, we were using the standard string type: String. This type is
useful for the common use-case of displaying messages or dealing with
information in plain English. Here, we define "plain English" as the use of the
language that avoids French accents or German umlaut, for example, and doesn't
make use of any characters in non-Latin alphabets.

There are two additional string types in Ada: Wide_String, and
Wide_Wide_String. These types are particularly important when dealing
with textual information in non-standard English, or in various other
languages, non-Latin alphabets and special symbols.

These string types use different bit widths for their characters. This becomes
more apparent when looking at the type definitions:

type String is
  array (Positive range <>) of Character;

type Wide_String is
  array (Positive range <>) of Wide_Character;

type Wide_Wide_String is
  array (Positive range <>) of
    Wide_Wide_Character;





The following table shows the typical bit-width of each character of the
string types:



	Character Type

	Width







	Character

	8 bits



	Wide_Character

	16 bits



	Wide_Wide_Character

	32 bits






We can see that when running this example:


show_wide_char_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Wide_Char_Types is
 4begin
 5   Put_Line ("Character'Size:           "
 6             & Integer'Image
 7                 (Character'Size));
 8   Put_Line ("Wide_Character'Size:      "
 9             & Integer'Image
10                 (Wide_Character'Size));
11   Put_Line ("Wide_Wide_Character'Size: "
12             & Integer'Image
13                 (Wide_Wide_Character'Size));
14end Show_Wide_Char_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Wide_Char_Types
MD5: a0e9fb9e8d43e9fa707dc8c57f7562f8








Runtime output



Character'Size:            8
Wide_Character'Size:       16
Wide_Wide_Character'Size:  32







Let's look at another example, this time using wide strings:


show_wide_string_types.adb

 1with Ada.Text_IO;
 2with Ada.Wide_Text_IO;
 3with Ada.Wide_Wide_Text_IO;
 4
 5procedure Show_Wide_String_Types is
 6   package TI   renames Ada.Text_IO;
 7   package WTI  renames Ada.Wide_Text_IO;
 8   package WWTI renames Ada.Wide_Wide_Text_IO;
 9
10   S   : constant String           := "hello";
11   WS  : constant Wide_String      := "hello";
12   WWS : constant Wide_Wide_String := "hello";
13begin
14   TI.Put_Line ("String:           " & S);
15   TI.Put_Line ("Length:           "
16                & Integer'Image (S'Length));
17   TI.Put_Line ("Size:             "
18                & Integer'Image (S'Size));
19   TI.Put_Line ("Component_Size:   "
20                & Integer'Image
21                    (S'Component_Size));
22   TI.Put_Line ("------------------------");
23
24   WTI.Put_Line ("Wide string:      " & WS);
25   TI.Put_Line ("Length:           "
26                & Integer'Image (WS'Length));
27   TI.Put_Line ("Size:             "
28                & Integer'Image (WS'Size));
29   TI.Put_Line ("Component_Size:   "
30                & Integer'Image
31                    (WS'Component_Size));
32   TI.Put_Line ("------------------------");
33
34   WWTI.Put_Line ("Wide-wide string: " & WWS);
35   TI.Put_Line ("Length:           "
36                & Integer'Image (WWS'Length));
37   TI.Put_Line ("Size:             "
38                & Integer'Image (WWS'Size));
39   TI.Put_Line ("Component_Size:   "
40                & Integer'Image
41                    (WWS'Component_Size));
42   TI.Put_Line ("------------------------");
43end Show_Wide_String_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Wide_String_Types
MD5: 137816c6fd78add34287a72e45cf4fb7








Runtime output



String:           hello
Length:            5
Size:              40
Component_Size:    8
------------------------
Wide string:      hello
Length:            5
Size:              80
Component_Size:    16
------------------------
Wide-wide string: hello
Length:            5
Size:              160
Component_Size:    32
------------------------







Here, all strings (S, WS and WWS) have the same length of
5 characters. However, the size of each character is different — thus,
each string has a different overall size.

The recommendation is to use the String type when the textual
information you're processing is in standard English. In case any kind of
internationalization is needed, using Wide_Wide_String is probably the
best choice, as it covers all possible use-cases.
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	3.6.3 String Types[#4]







Text I/O

Note that, in the previous example, we were using different versions of the
Ada.Text_IO package depending on the string type we were using:


	Ada.Text_IO for objects of String type,


	Ada.Wide_Text_IO for objects of Wide_String type,


	Ada.Wide_Wide_Text_IO for objects of Wide_Wide_String type.




In that example, we were also using package renaming to differentiate among
those packages.

Similarly, there are different versions of text I/O packages for individual
types. For example, if we want to display the value of a Long_Integer
variable based on the Wide_Wide_String type, we can select the
Ada.Long_Integer_Wide_Wide_Text_IO package. In fact, the list of
packages resulting from the combination of those types is quite long:



	Scalar Type

	Text I/O Packages







	Integer

	
	Ada.Integer_Text_IO


	Ada.Integer_Wide_Text_IO


	Ada.Integer_Wide_Wide_Text_IO







	Long_Integer

	
	Ada.Long_Integer_Text_IO


	Ada.Long_Integer_Wide_Text_IO


	Ada.Long_Integer_Wide_Wide_Text_IO







	Long_Long_Integer

	
	Ada.Long_Long_Integer_Text_IO


	Ada.Long_Long_Integer_Wide_Text_IO


	Ada.Long_Long_Integer_Wide_Wide_Text_IO







	Float

	
	Ada.Float_Text_IO


	Ada.Float_Wide_Text_IO


	Ada.Float_Wide_Wide_Text_IO







	Long_Float

	
	Ada.Long_Float_Text_IO


	Ada.Long_Float_Wide_Text_IO


	Ada.Long_Float_Wide_Wide_Text_IO







	Long_Long_Float

	
	Ada.Long_Long_Float_Text_IO


	Ada.Long_Long_Float_Wide_Text_IO


	Ada.Long_Long_Float_Wide_Wide_Text_IO










Also, there are different versions of the generic packages Integer_IO
and Float_IO:



	Scalar Type

	Text I/O Packages







	Integer types

	
	Ada.Text_IO.Integer_IO


	Ada.Wide_Text_IO.Integer_IO


	Ada.Wide_Wide_Text_IO.Integer_IO







	Real types

	
	Ada.Text_IO.Float_IO


	Ada.Wide_Text_IO.Float_IO


	Ada.Wide_Wide_Text_IO.Float_IO
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	A.10 Text Input-Output[#5]


	A.10.1 The Package Text_IO[#6]


	A.10.8 Input-Output for Integer Types[#7]


	A.10.9 Input-Output for Real Types[#8]


	A.11 Wide Text Input-Output and Wide Wide Text Input-Output[#9]








Wide and Wide-Wide String Handling

As we've just seen, we have different versions of the Ada.Text_IO
package. The same applies to string handling packages. As we've seen in the
Introduction to Ada course[#10],
we can use the Ada.Strings.Fixed and Ada.Strings.Maps packages
for string handling. For other formats, we have these packages:


	Ada.Strings.Wide_Fixed,


	Ada.Strings.Wide_Wide_Fixed,


	Ada.Strings.Wide_Maps,


	Ada.Strings.Wide_Wide_Maps.




Let's look at
this example[#11] from the
Introduction to Ada course, which we adapted for wide-wide strings:


show_find_words.adb

 1with Ada.Strings; use Ada.Strings;
 2
 3with Ada.Strings.Wide_Wide_Fixed;
 4use  Ada.Strings.Wide_Wide_Fixed;
 5
 6with Ada.Strings.Wide_Wide_Maps;
 7use  Ada.Strings.Wide_Wide_Maps;
 8
 9with Ada.Wide_Wide_Text_IO;
10use  Ada.Wide_Wide_Text_IO;
11
12procedure Show_Find_Words is
13
14   S   : constant Wide_Wide_String :=
15           "Hello" & 3 * " World";
16   F   : Positive;
17   L   : Natural;
18   I   : Natural := 1;
19
20   Whitespace : constant
21     Wide_Wide_Character_Set :=
22       To_Set (' ');
23begin
24   Put_Line ("String: " & S);
25   Put_Line ("String length: "
26             & Integer'Wide_Wide_Image
27                 (S'Length));
28
29   while I in S'Range loop
30      Find_Token
31        (Source  => S,
32         Set     => Whitespace,
33         From    => I,
34         Test    => Outside,
35         First   => F,
36         Last    => L);
37
38      exit when L = 0;
39
40      Put_Line ("Found word instance at position "
41                & F'Wide_Wide_Image
42                & ": '" & S (F .. L) & "'");
43
44      I := L + 1;
45   end loop;
46
47end Show_Find_Words;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Wide_Wide_String_Handling
MD5: 3b5a4d61e6dc5bd16e85f85580ad82ae








Runtime output



String: Hello World World World
String length:  23
Found word instance at position  1: 'Hello'
Found word instance at position  7: 'World'
Found word instance at position  13: 'World'
Found word instance at position  19: 'World'







In this example, we're using the Find_Token procedure to find the words
from the phrase stored in the S constant. All the operations we're using
here are similar to the ones for String type, but making use of the
Wide_Wide_String type instead. (We talk about the Wide_Wide_Image
attribute later on.)
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	A.4.6 String-Handling Sets and Mappings[#12]


	A.4.7 Wide_String Handling[#13]


	A.4.8 Wide_Wide_String Handling[#14]








Bounded and Unbounded Wide and Wide-Wide Strings

We've seen in the Introduction to Ada course
that other kinds of String types are available. For example, we can
use bounded[#15] and
unbounded strings[#16] — those correspond
to the Bounded_String and Unbounded_String types.

Those kinds of string types are available for Wide_String, and
Wide_Wide_String. The following table shows the available types and
corresponding packages:



	Type

	Package







	Bounded_Wide_String

	Ada.Strings.Wide_Bounded



	Bounded_Wide_Wide_String

	Ada.Strings.Wide_Wide_Bounded



	Unbounded_Wide_String

	Ada.Strings.Wide_Unbounded



	Unbounded_Wide_Wide_String

	Ada.Strings.Wide_Wide_Unbounded






The same applies to text I/O for those strings. For the standard case, we have
Ada.Text_IO.Bounded_IO for the Bounded_String type and
Ada.Text_IO.Unbounded_IO for the Unbounded_String type.

For wider string types, we have:



	Type

	Text I/O Package







	Bounded_Wide_String

	Ada.Wide_Text_IO.Wide_Bounded_IO



	Bounded_Wide_Wide_String

	Ada.Wide_Wide_Text_IO.Wide_Wide_Bounded_IO



	Unbounded_Wide_String

	Ada.Wide_Text_IO.Wide_Unbounded_IO



	Unbounded_Wide_Wide_String

	Ada.Wide_Wide_Text_IO.Wide_Wide_Unbounded_IO






Let's look at a simple example:


show_unbounded_wide_wide_string.adb

 1with Ada.Strings.Wide_Wide_Unbounded;
 2use  Ada.Strings.Wide_Wide_Unbounded;
 3
 4with Ada.Wide_Wide_Text_IO.Wide_Wide_Unbounded_IO;
 5use  Ada.Wide_Wide_Text_IO.Wide_Wide_Unbounded_IO;
 6
 7procedure Show_Unbounded_Wide_Wide_String is
 8   S : Unbounded_Wide_Wide_String
 9     := To_Unbounded_Wide_Wide_String ("Hello");
10begin
11   S := S & Wide_Wide_String'(" hello");
12   Put_Line ("Unbounded wide-wide string: " & S);
13end Show_Unbounded_Wide_Wide_String;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Wide_Wide-Wide_Strings.Unbounded_Wide_Wide_String
MD5: 0d369270e2408b3f1cc8284c13fca806








Runtime output



Unbounded wide-wide string: Hello hello







In this example, we're declaring a variable S and initializing it with
the word "Hello." Then, we're concatenating it with " hello" and displaying it.
All the operations we're using here are similar to the ones for
Unbounded_String type, but they've been adapted for the
Unbounded_Wide_Wide_String type.
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	A.4.7 Wide_String Handling[#17]


	A.4.8 Wide_Wide_String Handling[#18]


	A.11 Wide Text Input-Output and Wide Wide Text Input-Output[#19]









String Encoding

Unicode is one of the most widespread standards for encoding writing
systems other than the Latin alphabet. It defines a format called
Unicode Transformation Format (UTF)[#20]
in various versions, which vary
according to the underlying precision, support for backwards-compatibility
and other requirements.
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	A.4.11 String Encoding[#21]







UTF-8 encoding and decoding

A common UTF format is UTF-8, which encodes strings using up to four
(8-bit) bytes and is backwards-compatible with the ASCII format. While
encoding of ASCII characters requires only one byte, Chinese characters
require three bytes, for example.

In Ada applications, UTF-8 strings are indicated by using the
UTF_8_String from the Ada.Strings.UTF_Encoding package.
In order to encode from and to UTF-8 strings, we can use the Encode
and Decode functions. Those functions are specified in the child
packages of the Ada.Strings.UTF_Encoding package. We select the appropriate
child package depending on the string type we're using, as you can see in the
following table:



	Child Package of
Ada.Strings.UTF_Encoding

	Convert from / to





	.Strings

	String type



	.Wide_Strings

	Wide_String type



	.Wide_Wide_Strings

	Wide_Wide_String type






Let's look at an example:


show_ww_utf_string.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use  Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 7use  Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 8
 9with Ada.Strings.Wide_Wide_Unbounded;
10use  Ada.Strings.Wide_Wide_Unbounded;
11
12procedure Show_WW_UTF_String is
13
14   function To_UWWS
15     (Source : Wide_Wide_String)
16      return Unbounded_Wide_Wide_String
17        renames To_Unbounded_Wide_Wide_String;
18
19   function To_WWS
20     (Source : Unbounded_Wide_Wide_String)
21      return Wide_Wide_String
22        renames To_Wide_Wide_String;
23
24   Hello_World_Arabic : constant
25     UTF_8_String := "مرحبا يا عالم";
26   WWS_Hello_World_Arabic : constant
27     Wide_Wide_String :=
28       Decode (Hello_World_Arabic);
29
30   UWWS : Unbounded_Wide_Wide_String;
31begin
32   UWWS := "Hello World: "
33           & To_UWWS (WWS_Hello_World_Arabic);
34
35   Show_WW_String : declare
36      WWS : constant Wide_Wide_String :=
37              To_WWS (UWWS);
38   begin
39      Put_Line ("Wide_Wide_String Length: "
40                & WWS'Length'Image);
41      Put_Line ("Wide_Wide_String Size:   "
42                & WWS'Size'Image);
43   end Show_WW_String;
44
45   Put_Line
46     ("---------------------------------------");
47   Put_Line
48     ("Converting Wide_Wide_String to UTF-8...");
49
50   Show_UTF_8_String : declare
51      S_UTF_8 : constant UTF_8_String :=
52                  Encode (To_WWS (UWWS));
53   begin
54      Put_Line ("UTF-8 String:        "
55                & S_UTF_8);
56      Put_Line ("UTF-8 String Length: "
57                & S_UTF_8'Length'Image);
58      Put_Line ("UTF-8 String Size:   "
59                & S_UTF_8'Size'Image);
60   end Show_UTF_8_String;
61
62end Show_WW_UTF_String;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WW_UTF_String
MD5: cecfb420bb804f42e7a65b793abcbef5








Runtime output



Wide_Wide_String Length:  26
Wide_Wide_String Size:    832
---------------------------------------
Converting Wide_Wide_String to UTF-8...
UTF-8 String:        Hello World: مرحبا يا عالم
UTF-8 String Length:  37
UTF-8 String Size:    296







In this application, we start by storing a string in Arabic in the
Hello_World_Arabic constant. We then use the Decode function to
convert that string from UTF_8_String type to Wide_Wide_String
type — we store it in the WWS_Hello_World_Arabic constant.

We use a variable of type Unbounded_Wide_Wide_String (UWWS) to
manipulate strings: we append the string in Arabic to the "Hello World: "
string and store it in UWWS.

In the Show_WW_String block, we convert the string — stored in
UWWS — from the Unbounded_Wide_Wide_String type to the
Wide_Wide_String type and display the length and size of the string. We
do something similar in the Show_UTF_8_String block, but there, we
convert to the UTF_8_String type.

Also, in the Show_UTF_8_String block, we use the Encode function
to convert that string from Wide_Wide_String type to then
UTF_8_String type — we store it in the S_UTF_8 constant.



UTF-8 size and length

As you can see when running the last code example from the previous subsection,
we have different sizes and lengths depending on the string type:



	String type

	Size

	Length





	Wide_Wide_String

	832

	26



	UTF_8_String

	296

	37






The size needed for storing the string when using the Wide_Wide_String
type is bigger than the one when using the UTF_8_String type. This is
expected, as the Wide_Wide_String uses 32-bit characters, while the
UTF_8_String type uses 8-bit codes to store the string in a more
efficient way (memory-wise).

The length of the string using the Wide_Wide_String type is equivalent
to the number of symbols we have in the original string: 26 characters /
symbols. When using UTF-8, however, we may need more 8-bit codes to
represent one symbol from the original string, so we may end up with a length
value that is bigger than the actual number of symbols from the original string
— as it is the case in this source-code example.

This difference in sizes might not always be the case. In fact, the sizes
match when encoding a symbol in UTF-8 that requires four 8-bit codes. For
example:


show_utf_8.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use  Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 7use  Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 8
 9procedure Show_UTF_8 is
10
11   Symbol_UTF_8 : constant UTF_8_String := "𝚡";
12   Symbol_WWS   : constant Wide_Wide_String :=
13                    Decode (Symbol_UTF_8);
14
15begin
16   Put_Line ("Wide_Wide_String Length: "
17             & Symbol_WWS'Length'Image);
18   Put_Line ("Wide_Wide_String Size:   "
19             & Symbol_WWS'Size'Image);
20   Put_Line ("UTF-8 String Length:     "
21             & Symbol_UTF_8'Length'Image);
22   Put_Line ("UTF-8 String Size:       "
23             & Symbol_UTF_8'Size'Image);
24   New_Line;
25   Put_Line ("UTF-8 String:            "
26             & Symbol_UTF_8);
27end Show_UTF_8;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8
MD5: 67653dfd377f04b32421cf09b25939fe








Runtime output



Wide_Wide_String Length:  1
Wide_Wide_String Size:    32
UTF-8 String Length:      4
UTF-8 String Size:        32

UTF-8 String:            𝚡







In this case, both strings — using the Wide_Wide_String type or
the UTF_8_String type — have the same size: 32 bits. (Here, we're
using the 𝚡 symbol from the
Mathematical Alphanumeric Symbols block[#22],
not the standard "x" from the
Basic Latin block[#23].)



UTF-16 encoding and decoding

So far, we've discussed the UTF-8 encoding scheme. However, other encoding
schemes exist and are supported as well. In fact, the
Ada.Strings.UTF_Encoding package defines three encoding schemes:

type Encoding_Scheme is (UTF_8,
                         UTF_16BE,
                         UTF_16LE);





For example, instead of using UTF-8 encoding, we can use UTF-16 encoding
— either in the big-endian or in the little-endian version.
To convert between UTF-8 and UTF-16 encoding schemes, we can make use of the
conversion functions from the Ada.Strings.UTF_Encoding.Conversions
package.

To declare a UTF-16 encoded string, we can use one of the following data types:


	the 8-bit-character based UTF_String type, or


	the 16-bit-character based UTF_16_Wide_String type.




When using the 8-bit version, though, we have to specify the input and output
schemes when converting between UTF-8 and UTF-16 encoding schemes.

Let's see a code example that makes use of both UTF_String and
UTF_16_Wide_String types:


show_utf16_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use  Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Conversions;
 7use  Ada.Strings.UTF_Encoding.Conversions;
 8
 9procedure Show_UTF16_Types is
10   Symbols_UTF_8  : constant
11     UTF_8_String := "♥♫";
12
13   Symbols_UTF_16 : constant
14     UTF_16_Wide_String :=
15       Convert (Symbols_UTF_8);
16   --  ^ Calling Convert for UTF_8_String
17   --    to UTF_16_Wide_String conversion.
18
19   Symbols_UTF_16BE : constant
20     UTF_String :=
21       Convert (Item          => Symbols_UTF_8,
22                Input_Scheme  => UTF_8,
23                Output_Scheme => UTF_16BE);
24   --  ^ Calling Convert for UTF_8_String
25   --    to UTF_String conversion in UTF-16BE
26   --    encoding.
27begin
28   Put_Line ("UTF_8_String:          "
29             & Symbols_UTF_8);
30
31   Put_Line ("UTF_16_Wide_String:    "
32             & Convert (Symbols_UTF_16));
33   --          ^ Calling Convert for
34   --            the UTF_16_Wide_String to
35   --            UTF_8_String conversion.
36
37   Put_Line
38     ("UTF_String / UTF_16BE: "
39      & Convert
40          (Item          => Symbols_UTF_16BE,
41           Input_Scheme  => UTF_16BE,
42           Output_Scheme => UTF_8));
43end Show_UTF16_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_16_Types
MD5: 905e20e83a6199fdc91a6b15bb71bb01








Runtime output



UTF_8_String:          ♥♫
UTF_16_Wide_String:    ♥♫
UTF_String / UTF_16BE: ♥♫







In this example, we're declaring a UTF-8 encoded string and storing it in the
Symbols_UTF_8 constant. Then, we're calling the Convert
functions to convert between UTF-8 and UTF-16 encoding schemes. We're using two
versions of this function:


	the Convert function that returns an object of
UTF_16_Wide_String type for an input of UTF_8_String type, and


	the Convert function that returns an object of UTF_String
type for an input of UTF_8_String type.


	In this case, we need to specify the input and output schemes (see
Input_Scheme and Output_Scheme parameters in the code
example).








Previously, we've seen that the
Ada.Strings.UTF_Encoding.Wide_Wide_Strings package offers functions to
convert between UTF-8 and the Wide_Wide_String type. The same kind of
conversion functions exist for UTF-16 strings as well. Let's look at this code
example:


show_ww_utf16_string.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use  Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 7use  Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 8
 9with Ada.Strings.UTF_Encoding.Conversions;
10use  Ada.Strings.UTF_Encoding.Conversions;
11
12procedure Show_WW_UTF16_String is
13   Symbols_UTF_16 : constant
14     UTF_16_Wide_String :=
15       Wide_Character'Val (16#2665#) &
16       Wide_Character'Val (16#266B#);
17   --  ^ Calling Wide_Character'Val
18   --    to specify the UTF-16 BE code
19   --    for "♥" and "♫".
20
21   Symbols_WWS : constant
22     Wide_Wide_String :=
23       Decode (Symbols_UTF_16);
24   --  ^ Calling Decode for UTF_16_Wide_String
25   --    to Wide_Wide_String conversion.
26begin
27   Put_Line ("UTF_16_Wide_String: "
28             & Convert (Symbols_UTF_16));
29   --          ^ Calling Convert for the
30   --            UTF_16_Wide_String to
31   --            UTF_8_String conversion.
32
33   Put_Line ("Wide_Wide_String:   "
34             & Encode (Symbols_WWS));
35   --          ^ Calling Encode for the
36   --            Wide_Wide_String to
37   --            UTF_8_String conversion.
38end Show_WW_UTF16_String;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WW_UTF_16_String
MD5: 900af8f5c6aad7303c3e49c1c4a68d73








Runtime output



UTF_16_Wide_String: ♥♫
Wide_Wide_String:   ♥♫







In this example, we're calling the Wide_Character'Val function to
specify the UTF-16 BE code of the "♥" and "♫" symbols. We're then using
the Decode function to convert between the UTF_16_Wide_String and
the Wide_Wide_String types.




UTF-8 applications

In this section, we take a further look into UTF-8 encoding and some real-world
applications. First, we discuss the use of UTF-8 encoding in source-code files.
Then, we talk about parsing UTF-8 files using wide-wide strings.


UTF-8 encoding in source-code files

In the past, it was common to use different character sets in text files when
writing in different (human) languages. By default, Ada source-code files are
expected to use the Latin-1 coding, which is a 8-bit character set.

Nowadays, however, using UTF-8 coding for text files — including
source-code files — is very common. If your Ada code only uses standard
ASCII characters, but you're saving it in a UTF-8 coded file, there's no need
to worry about character sets, as UTF-8 is backwards compatible with ASCII.

However, you might want to use Unicode symbols in your Ada source code to
declare constants — as we did in the previous sections — and store
the source code in a UTF-8 coded file. In this case, you need be careful about
how this file is parsed by the compiler.

Let's look at this source-code example:


show_utf_8_strings.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use  Ada.Strings.UTF_Encoding;
 5
 6procedure Show_UTF_8_Strings is
 7
 8    Symbols_UTF_8 : constant
 9      UTF_8_String := "♥♫";
10
11begin
12    Put_Line ("UTF_8_String: "
13              & Symbols_UTF_8);
14
15    Put_Line ("Length:       "
16              & Symbols_UTF_8'Length'Image);
17
18end Show_UTF_8_Strings;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8_Strings
MD5: fd1aaff161a33365d15adca5bea7b277








Runtime output



UTF_8_String: ♥♫
Length:        6







Here, we're using Unicode symbols to initialize the Symbols_UTF_8
constant of UTF_8_String type.

Now, let's assume this source-code example is stored in a UTF-8 coded file.
Because the "♥♫" string makes use of non-ASCII Unicode symbols,
representing this string in UTF-8 format will require more than 2 bytes.
In fact, each one of those Unicode symbols requires 2 bytes to be encoded in
UTF-8. (Keep in mind that Unicode symbols may require
between 1 to 4 bytes[#24] to be encoded in UTF-8 format.) Also,
in this case, the UTF-8 encoding process is using two additional bytes.
Therefore, the total length of the string is six, which matches what we see
when running the Show_UTF_8_Strings procedure. In other words, the
length of the Symbols_UTF_8 string doesn't refer to those two characters
("♥♫") that we were using in the constant declaration, but the length of
the encoded bytes in its UTF-8 representation.

The UTF-8 format is very useful for storing and transmitting texts. However, if
we want to process Unicode symbols, it's probably better to use string types
with 32-bit characters — such as Wide_Wide_String. For example,
let's say we want to use the "♥♫" string again to initialize a constant
of Wide_Wide_String type:


show_wws_strings.adb

 1with Ada.Text_IO;
 2with Ada.Wide_Wide_Text_IO;
 3
 4procedure Show_WWS_Strings is
 5
 6   package TIO   renames Ada.Text_IO;
 7   package WWTIO renames Ada.Wide_Wide_Text_IO;
 8
 9   Symbols_WWS : constant
10     Wide_Wide_String := "♥♫";
11
12begin
13   WWTIO.Put_Line ("Wide_Wide_String: "
14                   & Symbols_WWS);
15
16   TIO.Put_Line ("Length:           "
17                 & Symbols_WWS'Length'Image);
18
19end Show_WWS_Strings;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WWS_Strings_W8
MD5: 1e5e38e62b412de48d3fa4271bb48bf1








Runtime output



Wide_Wide_String: ♥♫
Length:            2







In this case, as mentioned above, if we store this source code in a text file
using UTF-8 format, we need to ensure that the UTF-8 coded symbols are
correctly interpreted by the compiler when it parses the text file.
Otherwise, we might get unexpected behavior. (Interpreting the characters in
UTF-8 format as Latin-1 format is certainly an example of what we want to avoid
here.)


In the GNAT toolchain

You can use UTF-8 coding in your source-code file and initialize strings of
32-bit characters. However, as we just mentioned, you need to make sure
that the UTF-8 coded symbols are correctly interpreted by the compiler when
dealing with types such as Wide_Wide_String. For this case, GNAT
offers the -gnatW8 switch. Let's run the previous example using this
switch:


show_wws_strings.adb

 1with Ada.Text_IO;
 2with Ada.Wide_Wide_Text_IO;
 3
 4procedure Show_WWS_Strings is
 5
 6   package TIO   renames Ada.Text_IO;
 7   package WWTIO renames Ada.Wide_Wide_Text_IO;
 8
 9   Symbols_WWS : constant
10     Wide_Wide_String := "♥♫";
11
12begin
13   WWTIO.Put_Line ("Wide_Wide_String: "
14                   & Symbols_WWS);
15
16   TIO.Put_Line ("Length:           "
17                 & Symbols_WWS'Length'Image);
18
19end Show_WWS_Strings;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WWS_Strings_W8
MD5: 1e5e38e62b412de48d3fa4271bb48bf1








Runtime output



Wide_Wide_String: ♥♫
Length:            2







Because the Wide_Wide_String type has 32-bit characters. we expect
the length of the string to match the number of symbols that we're using.
Indeed, when running the Show_WWS_Strings procedure, we see that
the Symbols_WWS string has a length of two characters, which matches
the number of characters of the "♥♫" string.

When we use the -gnatW8 switch, GNAT converts the UTF-8-coded string
("♥♫") to UTF-32 format, so we get two 32-bit characters. It then
uses the UTF-32-coded string to initialize the Symbols_WWS string.

If we don't use the -gnatW8 switch, however, we get wrong results.
Let's look at the same example again without the switch:


show_wws_strings.adb

 1with Ada.Text_IO;
 2with Ada.Wide_Wide_Text_IO;
 3
 4procedure Show_WWS_Strings is
 5
 6   package TIO   renames Ada.Text_IO;
 7   package WWTIO renames Ada.Wide_Wide_Text_IO;
 8
 9   Symbols_WWS : constant
10     Wide_Wide_String := "♥♫";
11
12begin
13   WWTIO.Put_Line ("Wide_Wide_String: "
14                   & Symbols_WWS);
15
16   TIO.Put_Line ("Length:           "
17                 & Symbols_WWS'Length'Image);
18
19end Show_WWS_Strings;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.WWS_Strings_No_W8
MD5: 1e5e38e62b412de48d3fa4271bb48bf1








Runtime output



Wide_Wide_String: ♥♫
Length:            6







Now, the "♥♫" string is being interpreted as a string of six 8-bit
characters. (In other words, the UTF-8-coded string isn't converted to
the UTF-32 format.) Each of those 8-bit characters is then stored in a
32-bit character of the Wide_Wide_String type. This explains why
the Show_WWS_Strings procedure reports a length of 6 components for
the Symbols_WWS string.




Portability of UTF-8 in source-code files

In a previous code example, we were assuming that the format that we use for
the source-code file is UTF-8. This allows us to simply use Unicode symbols
directly in strings:

Symbol_UTF_8 : constant UTF_8_String := "★";





This approach, however, might not be portable. For example, if the compiler
uses a different string encoding for source-code files, it might interpret that
Unicode character as something else — or just throw a compilation error.

If you're afraid that format mismatches might happen in your compilation
environment, you may want to write strings in your code in a completely
portable fashion, which consists in entering the exact sequence of codes in
bytes — using the Character'Val function — for the symbols
you want to use.

We can reuse parts of the previous example and replace the UTF-8 character with
the corresponding UTF-8 code:


show_utf_8.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use  Ada.Strings.UTF_Encoding;
 5
 6procedure Show_UTF_8 is
 7
 8   Symbol_UTF_8 : constant
 9     UTF_8_String :=
10       Character'Val (16#e2#)
11       & Character'Val (16#98#)
12       & Character'Val (16#85#);
13
14begin
15   Put_Line ("UTF-8 String: "
16             & Symbol_UTF_8);
17end Show_UTF_8;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8
MD5: 8ff02bc1793c0c5ac1ff24f62941af73








Runtime output



UTF-8 String: ★







Here, we use a sequence of three calls to the Character'Val(code)
function for the UTF-8 code that corresponds to the "★" symbol.




Parsing UTF-8 files for Wide-Wide-String processing

A typical use-case is to parse a text file in UTF-8 format and use wide-wide
strings to process the lines of that file. Before we look at the implementation
that does that, let's first write a procedure that generate a text file in
UTF-8 format:


generate_utf_8_file.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use  Ada.Strings.UTF_Encoding;
 5
 6procedure Generate_UTF_8_File
 7  (Output_File_Name : String)
 8is
 9   F : File_Type;
10begin
11   Create (F, Out_File, Output_File_Name);
12   Put_Line (F, UTF_8_String'("♥♫"));
13   Put_Line
14     (F,
15      UTF_8_String'("مرحبا يا عالم"));
16   Close (F);
17end Generate_UTF_8_File;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8_File_Processing
MD5: 58c7591796bc1348796afa6db6f64d22







Procedure Generate_UTF_8_File writes two strings with non-Latin
characters into the UTF-8 file indicated by the Output_File_Name
parameter.

In addition, let's implement an auxiliary procedure to display the individual
characters of a wide-wide string:


put_line_utf_8_characters.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use  Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 7use  Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 8
 9procedure Put_Line_UTF_8_Characters
10  (WSS : Wide_Wide_String)
11is
12   procedure Put_Complete_UTF_8_String
13     (WSS : Wide_Wide_String)
14   is
15      S_UTF_8 : constant UTF_8_String :=
16                  Encode (WSS);
17   begin
18      Put_Line ("STRING: " & S_UTF_8);
19      Put_Line ("Length: "
20                & WSS'Length'Image
21                & " characters");
22      New_Line;
23   end Put_Complete_UTF_8_String;
24
25   --  This is a wrapper function of the
26   --  Encode function for the
27   --  Wide_Wide_Character type:
28   function Encode (Item : Wide_Wide_Character)
29                    return UTF_8_String
30    is
31       SC : constant Wide_Wide_String (1 .. 1)
32              := (1 => Item);
33       --  We need a 1-character string
34       --  for the call to Encode.
35   begin
36       return Encode (SC);
37   end Encode;
38
39   procedure Put_UTF_8_Characters
40     (WSS : Wide_Wide_String) is
41   begin
42      for I in WSS'Range loop
43         Put (I'Image & ": ");
44         Put (Encode (WSS (I)));
45         New_Line;
46      end loop;
47   end Put_UTF_8_Characters;
48
49begin
50    Put_Complete_UTF_8_String (WSS);
51    Put_UTF_8_Characters (WSS);
52    Put_Line ("--------------------");
53end Put_Line_UTF_8_Characters;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8_File_Processing
MD5: 14fae1f2b1d3795f3cef244f60082fcc







Finally, let's look at a code example that parses an UTF-8 file:


show_utf_8.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use  Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 7use  Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 8
 9with Generate_UTF_8_File;
10with Put_Line_UTF_8_Characters;
11
12procedure Show_UTF_8 is
13
14   File_Name : constant String :=
15                 "utf-8_test.txt";
16
17   procedure Read_UTF_8_File
18     (Input_File_Name : String)
19   is
20      F : File_Type;
21   begin
22      Open (F, In_File, Input_File_Name);
23
24      while not End_Of_File (F) loop
25         declare
26            S_UTF8 : constant UTF_8_String
27                       := Get_Line (F);
28            S      : constant Wide_Wide_String
29                       := Decode (S_UTF8);
30         begin
31            Put_Line_UTF_8_Characters (S);
32         end;
33      end loop;
34      Close (F);
35   end Read_UTF_8_File;
36
37begin
38   Generate_UTF_8_File (File_Name);
39   Read_UTF_8_File (File_Name);
40end Show_UTF_8;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8_File_Processing
MD5: 512ad5ac7c6d5936735f017bfe629aa3








Runtime output



STRING: ♥♫
Length:  2 characters

 1: ♥
 2: ♫
--------------------
STRING: مرحبا يا عالم
Length:  13 characters

 1: م
 2: ر
 3: ح
 4: ب
 5: ا
 6:  
 7: ي
 8: ا
 9:  
 10: ع
 11: ا
 12: ل
 13: م
--------------------







The Show_UTF_8 procedure first calls the Generate_UTF_8_File
procedure to generate a text file in UTF-8 format, and then calls the nested
Read_UTF_8_File procedure to read from that file — this is done by
reading the 8-bit UTF-8 encoded string and decoding it into a string of
Wide_Wide_String type.

(Note that we call the auxiliary Put_Line_UTF_8_Characters procedure to
display the characters of each line we read from the UTF-8 file.)

For completeness, we include the nested Read_Write_UTF_8_File procedure,
which not only reads each line from a UTF-8 file, but also writes it into
another UTF-8 file:


show_utf_8.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.UTF_Encoding;
 4use  Ada.Strings.UTF_Encoding;
 5
 6with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 7use  Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
 8
 9with Generate_UTF_8_File;
10with Put_Line_UTF_8_Characters;
11
12procedure Show_UTF_8 is
13
14   File_Name_In  : constant String :=
15                     "utf-8_test.txt";
16   File_Name_Out : constant String :=
17                     "utf-8_copy.txt";
18
19   procedure Read_Write_UTF_8_File
20     (Input_File_Name,
21     Output_File_Name : String)
22   is
23      F_In, F_Out : File_Type;
24   begin
25      Open (F_In, In_File, Input_File_Name);
26      Create (F_Out, Out_File, Output_File_Name);
27
28      while not End_Of_File (F_In) loop
29         declare
30            S : constant Wide_Wide_String :=
31                  Decode (Get_Line (F_In));
32         begin
33            Put_Line_UTF_8_Characters (S);
34            Put_Line (F_Out, Encode (S));
35         end;
36      end loop;
37
38      Close (F_In);
39      Close (F_Out);
40   end Read_Write_UTF_8_File;
41
42begin
43   Generate_UTF_8_File (File_Name_In);
44
45   Read_Write_UTF_8_File
46     (Input_File_Name  => File_Name_In,
47      Output_File_Name => File_Name_Out);
48end Show_UTF_8;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8_File_Processing
MD5: 8cd13e8a565266fa5dd854ff6a34524c








Runtime output



STRING: ♥♫
Length:  2 characters

 1: ♥
 2: ♫
--------------------
STRING: مرحبا يا عالم
Length:  13 characters

 1: م
 2: ر
 3: ح
 4: ب
 5: ا
 6:  
 7: ي
 8: ا
 9:  
 10: ع
 11: ا
 12: ل
 13: م
--------------------







In the nested Read_Write_UTF_8_File procedure, we see both Decode
and Encode functions being called to convert from and to the
UTF_8_String type, respectively.


In the GNAT toolchain

If we use the -gnatW8 switch, which we mentioned
in a previous section, the implementation
of Generate_UTF_8_File and Put_Line_UTF_8_Characters must be
adapted. In addition, we can simplify the implementation of the
Show_UTF_8 procedure, too. (Note, however, that the previous
implementation, which makes use of the Decode and Encode
functions, would work fine as well.)


put_line_utf_8_characters.adb

 1with Ada.Wide_Wide_Text_IO;
 2use  Ada.Wide_Wide_Text_IO;
 3
 4procedure Put_Line_UTF_8_Characters
 5  (WSS : Wide_Wide_String)
 6is
 7   procedure Put_Complete_UTF_8_String
 8     (WSS : Wide_Wide_String)
 9   is
10   begin
11      Put_Line ("STRING: " & WSS);
12      Put_Line ("Length: "
13                & WSS'Length'Wide_Wide_Image
14                & " characters");
15      New_Line;
16   end Put_Complete_UTF_8_String;
17
18   procedure Put_UTF_8_Characters
19     (WSS : Wide_Wide_String)
20   is
21   begin
22      for I in WSS'Range loop
23         Put (I'Wide_Wide_Image & ": ");
24         Put (WSS (I));
25         New_Line;
26      end loop;
27   end Put_UTF_8_Characters;
28
29begin
30    Put_Complete_UTF_8_String (WSS);
31    Put_UTF_8_Characters (WSS);
32    Put_Line ("--------------------");
33end Put_Line_UTF_8_Characters;








generate_utf_8_file.adb

 1with Ada.Wide_Wide_Text_IO;
 2use  Ada.Wide_Wide_Text_IO;
 3
 4procedure Generate_UTF_8_File
 5  (Output_File_Name : String)
 6is
 7   F : File_Type;
 8begin
 9   Create (F, Out_File, Output_File_Name);
10   Put_Line (F, "♥♫");
11   Put_Line (F, "مرحبا يا عالم");
12   Close (F);
13end Generate_UTF_8_File;








show_utf_8.adb

 1with Ada.Wide_Wide_Text_IO;
 2use  Ada.Wide_Wide_Text_IO;
 3
 4with Generate_UTF_8_File;
 5with Put_Line_UTF_8_Characters;
 6
 7procedure Show_UTF_8 is
 8
 9   File_Name_In  : constant String :=
10                     "utf-8_test.txt";
11   File_Name_Out : constant String :=
12                     "utf-8_copy.txt";
13
14   procedure Read_Write_UTF_8_File
15     (Input_File_Name,
16      Output_File_Name : String)
17   is
18      F_In, F_Out : File_Type;
19   begin
20      Open (F_In, In_File, Input_File_Name);
21      Create (F_Out, Out_File, Output_File_Name);
22
23      while not End_Of_File (F_In) loop
24         declare
25            S : constant Wide_Wide_String :=
26                  Get_Line (F_In);
27         begin
28            Put_Line_UTF_8_Characters (S);
29            Put_Line (F_Out, S);
30         end;
31      end loop;
32
33      Close (F_In);
34      Close (F_Out);
35   end Read_Write_UTF_8_File;
36
37begin
38   Generate_UTF_8_File (File_Name_In);
39
40   Read_Write_UTF_8_File
41     (Input_File_Name  => File_Name_In,
42      Output_File_Name => File_Name_Out);
43end Show_UTF_8;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.String_Encoding.UTF_8_File_Processing
MD5: 8eeed924f6d661a0a62ecb4d94be7027








Runtime output



STRING: ♥♫
Length:  2 characters

 1: ♥
 2: ♫
--------------------
STRING: مرحبا يا عالم
Length:  13 characters

 1: م
 2: ر
 3: ح
 4: ب
 5: ا
 6:  
 7: ي
 8: ا
 9:  
 10: ع
 11: ا
 12: ل
 13: م
--------------------







In this version of the code, we've removed all references to the
UTF_8_String type — as well as the Decode and
Encode functions that we were using to convert from and to this
type. In this case, all UTF-8 processing happens directly using strings of
Wide_Wide_Strings type.






Image attribute


Overview

In the Introduction to Ada[#25] course, we've
seen that the Image attribute returns a string that contains a textual
representation of an object. For example, we write Integer'Image (V) to
get a string for the integer variable V:


show_simple_image.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show_Simple_Image is
4   V : Integer;
5begin
6   V := 10;
7   Put_Line ("V: " & Integer'Image (V));
8end Show_Simple_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Simple_Image
MD5: e38f6f1a0808f12bd53c1f3cf4983353








Runtime output



V:  10







Naturally, we can use the Image attribute with other scalar types. For
example:


show_simple_image.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Image is
 4   type Status is (Unknown, Off, On);
 5
 6   V : Float;
 7   S : Status;
 8begin
 9   V := 10.0;
10   S := Unknown;
11
12   Put_Line ("V: " & Float'Image (V));
13   Put_Line ("S: " & Status'Image (S));
14end Show_Simple_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Simple_Image
MD5: d3369518b610b7bf6c8dcefdecdb0c44








Runtime output



V:  1.00000E+01
S: UNKNOWN







In this example, we retrieve a string representing the floating-point
variable V. Also, we use Status'Image (V) to retrieve a string representing the textual version of the Status.
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Type'Image and Obj'Image

We can also apply the Image attribute to an object directly:


show_simple_image.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Image is
 4   V : Integer;
 5begin
 6   V := 10;
 7   Put_Line ("V: " & V'Image);
 8
 9   --  Equivalent to:
10   --  Put_Line ("V: " & Integer'Image (V));
11end Show_Simple_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Simple_Image
MD5: c8b2e458de47b403568dd795b3d3fc24








Runtime output



V:  10







In this example, the Integer'Image (V) and V'Image forms are
equivalent.



Wider versions of Image

Although we've been talking only about the Image attribute, it's
important to mention that each of the wider versions of the string types also
has a corresponding Image attribute. In fact, this is the attribute for
each string type:



	Attribute

	Type of Returned String





	Image

	String



	Wide_Image

	Wide_String



	Wide_Wide_Image

	Wide_Wide_String






Let's see a simple example:


show_wide_wide_image.adb

 1with Ada.Wide_Wide_Text_IO;
 2use  Ada.Wide_Wide_Text_IO;
 3
 4procedure Show_Wide_Wide_Image is
 5   F : Float;
 6begin
 7   F := 100.0;
 8   Put_Line ("F = "
 9             & F'Wide_Wide_Image);
10end Show_Wide_Wide_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Wide_Wide_Image
MD5: ff542ef93286529343466c27935d5c21








Runtime output



F =  1.00000E+02







In this example, we use the Wide_Wide_Image attribute to retrieve a
string of Wide_Wide_String type for the floating-point variable
F.



Image attribute for non-scalar types


Note

This feature was introduced in Ada 2022.



In the previous code examples, we were using the Image attribute with
scalar types, but it isn't restricted to those types. In fact, we can also use
this attribute when dealing with non-scalar types. For example:


simple_records.ads

 1package Simple_Records is
 2
 3   type Rec is limited private;
 4
 5   type Rec_Access is access Rec;
 6
 7   function Init return Rec;
 8
 9   type Null_Rec is null record;
10
11private
12
13   type Rec is limited record
14      F : Float;
15      I : Integer;
16   end record;
17
18   function Init return Rec is
19      ((F => 10.0, I => 4));
20
21end Simple_Records;








show_non_scalar_image.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Unchecked_Deallocation;
 3
 4with Simple_Records;
 5use  Simple_Records;
 6
 7procedure Show_Non_Scalar_Image is
 8
 9   procedure Free is
10     new Ada.Unchecked_Deallocation
11       (Object => Rec,
12        Name   => Rec_Access);
13
14   R_A : Rec_Access :=
15     new Rec'(Init);
16
17   N_R : Null_Rec :=
18     (null record);
19begin
20   R_A := new Rec'(Init);
21   N_R := (null record);
22
23   Put_Line ("R_A:     " & R_A'Image);
24   Put_Line ("R_A.all: " & R_A.all'Image);
25   Put_Line ("N_R:     " & N_R'Image);
26
27   Free (R_A);
28   Put_Line ("R_A:     " & R_A'Image);
29end Show_Non_Scalar_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Non_Scalar_Image
MD5: eb48f3fbe69b70258bc26f467918717c








Runtime output



R_A:     (access 288b12c0)
R_A.all: 
(F =>  1.00000E+01,
 I =>  4)
N_R:     (NULL RECORD)
R_A:     null







In the Show_Non_Scalar_Image procedure from this example, we display the
access value of R_A and the contents of the dereferenced access object
(R_A.all). Also, we see the indication that N_R is a null record
and R_A is null after the call to Free.


Historically

Since Ada 2022, the Image attribute is available for all types.
Prior to this version of the language, it was only available for scalar
types. (For other kind of types, programmers had to use the Image
attribute for each component of a record, for example.)

In fact, prior to Ada 2022, the Image attribute was described in
the 3.5 Scalar Types[#27] section of the Ada Reference Manual, as
it was only applied to those types. Now, it is part of the new
Image Attributes[#28] section.



Let's see another example, this time with arrays:


show_array_image.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Array_Image is
 4
 5   type Float_Array is
 6     array (Positive range <>) of Float;
 7
 8   FA_3C   : Float_Array (1 .. 3);
 9   FA_Null : Float_Array (1 .. 0);
10
11begin
12   FA_3C   := [1.0, 3.0, 2.0];
13   FA_Null := [];
14
15   Put_Line ("FA_3C:   " & FA_3C'Image);
16   Put_Line ("FA_Null: " & FA_Null'Image);
17end Show_Array_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Array_Image
MD5: a24daba1d92a139ae8995bba5a81e0d6








Runtime output



FA_3C:   
[ 1.00000E+00,  3.00000E+00,  2.00000E+00]
FA_Null: 
[]







In this example, we display the values of the three components of the
FA_3C array. Also, we display the null array FA_Null.



Image attribute for tagged types

In addition to untagged types, we can also use the Image attribute with
tagged types. For example:


simple_records.ads

 1package Simple_Records is
 2
 3   type Rec is tagged limited private;
 4
 5   function Init return Rec;
 6
 7   type Rec_Child is new Rec with private;
 8
 9   overriding function Init return Rec_Child;
10
11private
12
13   type Status is (Unknown, Off, On);
14
15   type Rec is tagged limited record
16      F : Float;
17      I : Integer;
18   end record;
19
20   function Init return Rec is
21      ((F => 10.0, I => 4));
22
23   type Rec_Child is new Rec with record
24      Z : Status;
25   end record;
26
27   function Init return Rec_Child is
28      (Rec'(Init) with Z => Off);
29
30end Simple_Records;








show_tagged_image.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2
 3with Simple_Records; use Simple_Records;
 4
 5procedure Show_Tagged_Image is
 6   R       : constant Rec       := Init;
 7   R_Class : constant Rec'Class := Rec'(Init);
 8   R_C     : constant Rec_Child := Init;
 9begin
10   Put_Line ("R:       " & R'Image);
11   Put_Line ("R_Class: " & R_Class'Image);
12   Put_Line ("R_A:     " & R_C'Image);
13end Show_Tagged_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Tagged_Image
MD5: 496827d5f81f8b7bec3b1d4a104f550e








Runtime output



R:       
(F =>  1.00000E+01,
 I =>  4)
R_Class: SIMPLE_RECORDS.REC'
(F =>  1.00000E+01,
 I =>  4)
R_A:     
(F =>  1.00000E+01,
 I =>  4,
 Z => OFF)







In the Show_Tagged_Image procedure from this example, we display the
contents of the R object of Rec type and the R_Class
object of Rec'Class type. Also, we display the contents of the
R_C object of the Rec_Child type, which is derived from the
Rec type.



Image attribute for task and protected types

We can also apply the Image attribute to protected objects and tasks:


simple_tasking.ads

 1package Simple_Tasking is
 2
 3   protected type Protected_Float (I : Integer) is
 4
 5   private
 6      V : Float := Float (I);
 7   end Protected_Float;
 8
 9   protected type Protected_Null is
10   private
11   end Protected_Null;
12
13   task type T is
14      entry Start;
15   end T;
16
17end Simple_Tasking;








simple_tasking.adb

 1package body Simple_Tasking is
 2
 3   protected body Protected_Float is
 4
 5   end Protected_Float;
 6
 7   protected body Protected_Null is
 8
 9   end Protected_Null;
10
11   task body T is
12   begin
13      accept Start;
14   end T;
15
16end Simple_Tasking;








show_protected_task_image.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2
 3with Simple_Tasking; use Simple_Tasking;
 4
 5procedure Show_Protected_Task_Image is
 6
 7   PF : Protected_Float (0);
 8   PN : Protected_Null;
 9   T1 : T;
10
11begin
12   Put_Line ("PF: " & PF'Image);
13   Put_Line ("PN: " & PN'Image);
14   Put_Line ("T1: " & T1'Image);
15
16   T1.Start;
17end Show_Protected_Task_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Image_Attribute.Protected_Task_Image
MD5: feb14f17ba1cca0311420272ef91ab38








Runtime output



PF: (protected object)
PN: (protected object)
T1: (task t1_0000000019262090)







In this example, we display information about the protected object PF,
the componentless protected object PN and the task T1.




Put_Image aspect


Note

This feature was introduced in Ada 2022.




Overview

In the previous section, we discussed many details about the Image
attribute. In the code examples from that section, we've seen the default
behavior of this attribute: the string returned by the calls to Image
was always in the format defined by the Ada standard.

In some situations, however, we might want to customize the string that is
returned by the Image attribute of a type T. Ada allows us to do
that via the Put_Image aspect. This is what we have to do:


	Specify the Put_Image aspect for the type T and indicate a
procedure with a specific parameter profile — let's say, for example,
a procedure named P.


	Implement the procedure P and write the information we want to use
into a buffer (by calling the routines defined for Root_Buffer_Type,
such as the Put procedure).




We can see these steps performed in the code example below:


show_put_image.ads

 1with Ada.Strings.Text_Buffers;
 2
 3package Show_Put_Image is
 4
 5   type T is null record
 6     with Put_Image => Put_Image_T;
 7   --     ^ Custom version of Put_Image
 8
 9   use Ada.Strings.Text_Buffers;
10
11   procedure Put_Image_T
12     (Buffer : in out Root_Buffer_Type'Class;
13      Arg    :        T);
14
15end Show_Put_Image;








show_put_image.adb

 1package body Show_Put_Image is
 2
 3   procedure Put_Image_T
 4     (Buffer : in out Root_Buffer_Type'Class;
 5      Arg    :        T) is
 6      pragma Unreferenced (Arg);
 7   begin
 8      --  Call Put with customized
 9      --  information
10      Buffer.Put ("<custom info>");
11   end Put_Image_T;
12
13end Show_Put_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Simple_Put_Image
MD5: 45c55444f0e1825312b5eafe307ca58d







In the Show_Put_Image package, we use the Put_Image aspect in
the declaration of the T type. There, we indicate that the
Image attribute shall use the Put_Image_T procedure instead
of the default version.

In the body of the Put_Image_T procedure, we implement our custom
version of the Image attribute. We do that by calling the
Put procedure with the information we want to provide in the
Image attribute. Here, we access a buffer of Root_Buffer_Type
type, which is defined in the Ada.Strings.Text_Buffers package. (We
discuss more about this package
later on.)
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Complete Example of Put_Image

Let's see a complete example in which we use the Put_Image aspect and
write useful information to the buffer:


custom_numerics.ads

 1with Ada.Strings.Text_Buffers;
 2
 3package Custom_Numerics is
 4
 5   type Float_Integer is record
 6     F : Float   := 0.0;
 7     I : Integer := 0;
 8   end record
 9     with Dynamic_Predicate =>
10            Integer (Float_Integer.F) =
11              Float_Integer.I,
12          Put_Image         => Put_Float_Integer;
13   --     ^ Custom version of Put_Image
14
15   use Ada.Strings.Text_Buffers;
16
17   procedure Put_Float_Integer
18     (Buffer : in out Root_Buffer_Type'Class;
19      Arg    :        Float_Integer);
20
21end Custom_Numerics;








custom_numerics.adb

 1package body Custom_Numerics is
 2
 3   procedure Put_Float_Integer
 4     (Buffer : in out Root_Buffer_Type'Class;
 5      Arg    :        Float_Integer) is
 6   begin
 7      --  Call Wide_Wide_Put with customized
 8      --  information
 9      Buffer.Wide_Wide_Put
10        ("(F : "  & Arg.F'Wide_Wide_Image & ", "
11         & "I : " & Arg.I'Wide_Wide_Image & ")");
12   end Put_Float_Integer;
13
14end Custom_Numerics;








show_put_image.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2
 3with Custom_Numerics; use Custom_Numerics;
 4
 5procedure Show_Put_Image is
 6   V : Float_Integer;
 7begin
 8   V := (F => 100.2,
 9         I => 100);
10   Put_Line ("V = "
11             & V'Image);
12end Show_Put_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Put_Image_Custom_Numerics
MD5: 1dbb5fa612b5ca86facc3e93b47977e0








Runtime output



V = (F :  1.00200E+02, I :  100)







In the Custom_Numerics package of this example, we specify the
Put_Image aspect and indicate the Put_Float_Integer procedure.
In that procedure, we display the information of components F and
I. Then, in the Show_Put_Image procedure, we use the Image
attribute for the V variable and see the information in the exact format
we specified. (If you like to see the default version of the
Put_Image instead, you may comment out the Put_Image aspect part
in the declaration of Float_Integer.)



Relation to the Image attribute

Note that we cannot override the Image attribute directly —
there's no Image aspect that we could specify. However, as we've just
seen, we can do this indirectly by using our own version of the
Put_Image procedure for a type T.

The Image attribute of a type T makes use of the procedure
indicated in the Put_Image aspect. Let's say we have the following
declaration:

type T is null record
  with Put_Image => Put_Image_T;





When we then use the T'Image attribute in our code, the custom
Put_Image_T procedure is automatically called. This is a simplified
example of how the Image function is implemented:

function Image (V : T)
                return String is
   Buffer : Custom_Buffer;
   --       ^ of Root_Buffer_Type'Class
begin
   --  Calling Put_Image procedure
   --  for type T
   Put_Image_T (Buffer, V);

   --  Retrieving the text from the
   --  buffer as a string
   return Buffer.Get;
end Image;





In other words, the Image attribute basically:


	calls the Put_Image procedure specified in the Put_Image
aspect of type T's declaration and passes a buffer;




and


	retrieves the contents of the buffer as a string and returns it.




If the Put_Image aspect of type T isn't specified, the default
version is used. (We've seen the default version of various types
in the previous section about the Image
attribute.)



Put_Image and derived types

Types that were derived from untagged types (or null extensions) make use of
the Put_Image procedure that was specified for
their parent type — either a custom procedure indicated in the
Put_Image aspect or the default one. Naturally, if a derived type
has the Put_Image aspect, the procedure indicated in the aspect is used
instead. For example:


untagged_put_image.ads

 1with Ada.Strings.Text_Buffers;
 2
 3package Untagged_Put_Image is
 4
 5   use Ada.Strings.Text_Buffers;
 6
 7   type T is null record
 8     with Put_Image => Put_Image_T;
 9
10   procedure Put_Image_T
11     (Buffer : in out Root_Buffer_Type'Class;
12      Arg    :        T);
13
14   type T_Derived_1 is new T;
15
16   type T_Derived_2 is new T
17     with Put_Image => Put_Image_T_Derived_2;
18
19   procedure Put_Image_T_Derived_2
20     (Buffer : in out Root_Buffer_Type'Class;
21      Arg    :        T_Derived_2);
22
23end Untagged_Put_Image;








untagged_put_image.adb

 1package body Untagged_Put_Image is
 2
 3   procedure Put_Image_T
 4     (Buffer : in out Root_Buffer_Type'Class;
 5      Arg    :        T) is
 6      pragma Unreferenced (Arg);
 7   begin
 8      Buffer.Wide_Wide_Put ("Put_Image_T");
 9   end Put_Image_T;
10
11   procedure Put_Image_T_Derived_2
12     (Buffer : in out Root_Buffer_Type'Class;
13      Arg    :        T_Derived_2) is
14      pragma Unreferenced (Arg);
15   begin
16      Buffer.Wide_Wide_Put
17        ("Put_Image_T_Derived_2");
18   end Put_Image_T_Derived_2;
19
20end Untagged_Put_Image;








show_untagged_put_image.adb

 1with Ada.Text_IO;        use Ada.Text_IO;
 2
 3with Untagged_Put_Image; use Untagged_Put_Image;
 4
 5procedure Show_Untagged_Put_Image is
 6   Obj_T           : T;
 7   Obj_T_Derived_1 : T_Derived_1;
 8   Obj_T_Derived_2 : T_Derived_2;
 9begin
10   Put_Line ("T'Image :           "
11             & Obj_T'Image);
12   Put_Line ("T_Derived_1'Image : "
13             & Obj_T_Derived_1'Image);
14   Put_Line ("T_Derived_2'Image : "
15             & Obj_T_Derived_2'Image);
16end Show_Untagged_Put_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Untagged_Put_Image
MD5: acc0c17d45e6271cb582e65bfc8a2a98








Runtime output



T'Image :           Put_Image_T
T_Derived_1'Image : Put_Image_T
T_Derived_2'Image : Put_Image_T_Derived_2







In this example, we declare the type T and its derived types
T_Derived_1 and T_Derived_2. When running this code, we see that:


	T_Derived_1 makes use of the Put_Image_T procedure from its
parent.



	Note that, if we remove the Put_Image aspect from the declaration
of T, the default version of the Put_Image procedure is
used for both T and T_Derived_1 types.









	T_Derived_2 makes use of the Put_Image_T_Derived_2 procedure,
which was indicated in the Put_Image aspect of that type, instead of
its parent's procedure.






Put_Image and tagged types

Types that are derived from a tagged type may also inherit the Put_Image
aspect. However, there are a couple of small differences in comparison to
untagged types, as we can see in the following example:


tagged_put_image.ads

 1with Ada.Strings.Text_Buffers;
 2
 3package Tagged_Put_Image is
 4
 5   use Ada.Strings.Text_Buffers;
 6
 7   type T is tagged record
 8      I : Integer := 0;
 9   end record
10     with Put_Image => Put_Image_T;
11
12   procedure Put_Image_T
13     (Buffer : in out Root_Buffer_Type'Class;
14      Arg    :        T);
15
16   type T_Child_1 is new T with record
17      I1 : Integer;
18   end record;
19
20   type T_Child_2 is new T with null record;
21
22   type T_Child_3 is new T with record
23      I3 : Integer := 0;
24   end record
25     with Put_Image => Put_Image_T_Child_3;
26
27   procedure Put_Image_T_Child_3
28     (Buffer : in out Root_Buffer_Type'Class;
29      Arg    :        T_Child_3);
30
31end Tagged_Put_Image;








tagged_put_image.adb

 1package body Tagged_Put_Image is
 2
 3   procedure Put_Image_T
 4     (Buffer : in out Root_Buffer_Type'Class;
 5      Arg    :        T) is
 6      pragma Unreferenced (Arg);
 7   begin
 8      Buffer.Wide_Wide_Put ("Put_Image_T");
 9   end Put_Image_T;
10
11   procedure Put_Image_T_Child_3
12     (Buffer : in out Root_Buffer_Type'Class;
13      Arg    :        T_Child_3) is
14      pragma Unreferenced (Arg);
15   begin
16      Buffer.Wide_Wide_Put
17        ("Put_Image_T_Child_3");
18   end Put_Image_T_Child_3;
19
20end Tagged_Put_Image;








show_tagged_put_image.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2
 3with Tagged_Put_Image; use Tagged_Put_Image;
 4
 5procedure Show_Tagged_Put_Image is
 6   Obj_T         : T;
 7   Obj_T_Child_1 : T_Child_1;
 8   Obj_T_Child_2 : T_Child_2;
 9   Obj_T_Child_3 : T_Child_3;
10begin
11   Put_Line ("T'Image :         "
12             & Obj_T'Image);
13   Put_Line ("--------------------");
14   Put_Line ("T_Child_1'Image : "
15             & Obj_T_Child_1'Image);
16   Put_Line ("--------------------");
17   Put_Line ("T_Child_2'Image : "
18             & Obj_T_Child_2'Image);
19   Put_Line ("--------------------");
20   Put_Line ("T_Child_3'Image : "
21             & Obj_T_Child_3'Image);
22   Put_Line ("--------------------");
23   Put_Line ("T'Class'Image :   "
24             & T'Class (Obj_T_Child_1)'Image);
25end Show_Tagged_Put_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Put_Image.Tagged_Put_Image
MD5: b19214bbcbc8c0339ead744afffcdd68








Runtime output



T'Image :         Put_Image_T
--------------------
T_Child_1'Image : 
(Put_Image_T with I1 =>  0)
--------------------
T_Child_2'Image : 
(Put_Image_T)
--------------------
T_Child_3'Image : Put_Image_T_Child_3
--------------------
T'Class'Image :   TAGGED_PUT_IMAGE.T_CHILD_1'
(Put_Image_T with I1 =>  0)







In this example, we declare the type T and its derived types
T_Child_1, T_Child_2 and T_Child_3. When running this
code, we see that:


	for both T_Child_1 and T_Child_2, the parent's
Put_Image aspect (the Put_Image_T procedure) is called and its
information is combined with the information from the type extension;



	The information from the parent's Put_Image_T procedure is
presented in an aggregate syntax — in this case, this results in
(Put_Image_T).


	For the T_Child_1 type, the I1 component of the type
extension is displayed by calling a default version of the
Put_Image procedure for that component —
(Put_Image_T with I1 =>  0) is displayed.


	For the T_Child_2 type, no additional information is displayed
because this type has a null extension.









	for the T_Child_3 type, the Put_Image_T_Child_3 procedure,
which was indicated in the Put_Image aspect of the type, is used.




Finally, class-wide types (such as T'Class) include additional
information. Here, the tag of the specific derived type is displayed first
— in this case, the tag of the T_Child_1 type — and
then the actual information for the derived type is displayed.




Universal text buffer

In the previous section, we've seen that the
first parameter of the procedure indicated in the Put_Image aspect has
the Root_Buffer_Type'Class type, which is defined in the
Ada.Strings.Text_Buffers package. In this section, we talk more about
this type and additional procedures associated with this type.


Note

This feature was introduced in Ada 2022.




Overview

We use the Root_Buffer_Type'Class type to implement a universal text
buffer that is used to store and retrieve information about data types. Because
this text buffer isn't associated with specific data types, it is universal
— in the sense that we can really use it for any data type, regardless of
the characteristics of this type.

In theory, we could use Ada's universal text buffer to implement applications
that actually process text in some form — for example, when implementing
a text editor. However, in general, Ada programmers are only expected to make
use of the Root_Buffer_Type'Class type when implementing a procedure for
the Put_Image aspect. For this reason, we won't discuss any kind of
type derivation — or any other kind of usages of this type — in
this section. Instead, we'll just focus on additional subprograms from the
Ada.Strings.Text_Buffers package.
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	Universal Text Buffers[#30]








Additional procedures

In the previous section, we used the Put procedure — and the
related Wide_Put and Wide_Wide_Put procedures — from the
Ada.Strings.Text_Buffers package. In addition to these procedures, the
package also includes:


	the New_Line procedure, which writes a new line marker to the text
buffer;


	the Increase_Indent procedure, which increases the indentation in the
text buffer; and


	the Decrease_Indent procedure, which decreases the indentation in the
text buffer.




The Ada.Strings.Text_Buffers package also includes the
Current_Indent function, which retrieves the current indentation
counter.

Let's revisit an example from the previous section and use the procedures
mentioned above:


custom_numerics.ads

 1with Ada.Strings.Text_Buffers;
 2
 3package Custom_Numerics is
 4
 5   type Float_Integer is record
 6     F : Float;
 7     I : Integer;
 8   end record
 9     with Dynamic_Predicate =>
10            Integer (Float_Integer.F) =
11              Float_Integer.I,
12          Put_Image         => Put_Float_Integer;
13   --     ^ Custom version of Put_Image
14
15   use Ada.Strings.Text_Buffers;
16
17   procedure Put_Float_Integer
18     (Buffer : in out Root_Buffer_Type'Class;
19      Arg    :        Float_Integer);
20
21end Custom_Numerics;








custom_numerics.adb

 1package body Custom_Numerics is
 2
 3   procedure Put_Float_Integer
 4     (Buffer : in out Root_Buffer_Type'Class;
 5      Arg    :        Float_Integer) is
 6   begin
 7      Buffer.Wide_Wide_Put ("(");
 8      Buffer.New_Line;
 9
10      Buffer.Increase_Indent;
11
12      Buffer.Wide_Wide_Put
13        ("F : "
14         & Arg.F'Wide_Wide_Image);
15      Buffer.New_Line;
16
17      Buffer.Wide_Wide_Put
18        ("I : "
19        & Arg.I'Wide_Wide_Image);
20
21      Buffer.Decrease_Indent;
22      Buffer.New_Line;
23
24      Buffer.Wide_Wide_Put (")");
25   end Put_Float_Integer;
26
27end Custom_Numerics;








show_put_image.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2
 3with Custom_Numerics; use Custom_Numerics;
 4
 5procedure Show_Put_Image is
 6   V : Float_Integer;
 7begin
 8   V := (F => 100.2,
 9         I => 100);
10   Put_Line ("V = "
11             & V'Image);
12end Show_Put_Image;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Strings.Universal_Text_Buffer.Put_Image_Custom_Numerics
MD5: e976a2ade2ad4a10033924e19bc84159








Runtime output



V = (
   F :  1.00200E+02
   I :  100
)







In the body of the Put_Float_Integer procedure, we're using the
New_Line, Increase_Indent and Decrease_Indent procedures
to improve the format of the string returned by the Float_Integer'Image
attribute. Using these procedures, you can create any kind of output format
for your custom type.
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Numeric Literals


Classification

We've already discussed basic characteristics of numeric literals in the
Introduction to Ada course — although we haven't used this terminology
there. There are two kinds of numeric literals in Ada: integer literals and
real literals. They are distinguished by the absence or presence of a radix
point. For example:


real_integer_literals.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Real_Integer_Literals is
 4   Integer_Literal : constant := 365;
 5   Real_Literal    : constant := 365.2564;
 6begin
 7   Put_Line ("Integer Literal: "
 8             & Integer_Literal'Image);
 9   Put_Line ("Real Literal:    "
10             & Real_Literal'Image);
11end Real_Integer_Literals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Real_Integer_Literals
MD5: ba1cc348cad054f3ab86c05e051b40fa








Runtime output



Integer Literal:  365
Real Literal:     3.65256400000000000E+02







Another classification takes the use of a base indicator into account.
(Remember that, when writing a literal such as 2#1011#, the base is the
element before the first # sign.) So here we distinguish between decimal
literals and based literals. For example:


decimal_based_literals.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Decimal_Based_Literals is
 4
 5   package F_IO is new
 6     Ada.Text_IO.Float_IO (Float);
 7
 8   --
 9   --  DECIMAL LITERALS
10   --
11
12   Dec_Integer  : constant := 365;
13
14   Dec_Real     : constant := 365.2564;
15   Dec_Real_Exp : constant := 0.365_256_4e3;
16
17   --
18   --  BASED LITERALS
19   --
20
21   Based_Integer     : constant := 16#16D#;
22   Based_Integer_Exp : constant := 5#243#e1;
23
24   Based_Real        : constant :=
25     2#1_0110_1101.0100_0001_1010_0011_0111#;
26   Based_Real_Exp    : constant :=
27     7#1.031_153_643#e3;
28begin
29   F_IO.Default_Fore := 3;
30   F_IO.Default_Aft  := 4;
31   F_IO.Default_Exp  := 0;
32
33   Put_Line ("Dec_Integer:       "
34             & Dec_Integer'Image);
35
36   Put ("Dec_Real:           ");
37   F_IO.Put (Item => Dec_Real);
38   New_Line;
39
40   Put ("Dec_Real_Exp:       ");
41   F_IO.Put (Item => Dec_Real_Exp);
42   New_Line;
43
44   Put_Line ("Based_Integer:     "
45             & Based_Integer'Image);
46   Put_Line ("Based_Integer_Exp: "
47             & Based_Integer_Exp'Image);
48
49   Put ("Based_Real:         ");
50   F_IO.Put (Item => Based_Real);
51   New_Line;
52
53   Put ("Based_Real_Exp:     ");
54   F_IO.Put (Item => Based_Real_Exp);
55   New_Line;
56end Decimal_Based_Literals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Decimal_Based_Literals
MD5: bde8f422c3844826819348d18fb48a33








Runtime output



Dec_Integer:        365
Dec_Real:           365.2564
Dec_Real_Exp:       365.2564
Based_Integer:      365
Based_Integer_Exp:  365
Based_Real:         365.2564
Based_Real_Exp:     365.2564







Based literals use the base#number# format. Also, they aren't limited to
simple integer literals such as 16#16D#. In fact, we can use a radix
point or an exponent in based literals, as well as underscores. In addition, we
can use any base from 2 up to 16. We discuss these aspects further in the next
section.



Features and Flexibility


Note

This section was originally written by Franco Gasperoni and published as
Gem #7: The Beauty of Numeric Literals in Ada[#1].



Ada provides a simple and elegant way of expressing numeric literals. One of
those simple, yet powerful aspects is the ability to use underscores to
separate groups of digits. For example,
3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37510 is more
readable and less error prone to type than
3.14159265358979323846264338327950288419716939937510. Here's the
complete code:


ada_numeric_literals.adb

 1with Ada.Text_IO;
 2
 3 procedure Ada_Numeric_Literals is
 4    Pi   : constant :=
 5      3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37510;
 6
 7    Pi2  : constant :=
 8      3.14159265358979323846264338327950288419716939937510;
 9
10    Z    : constant := Pi - Pi2;
11    pragma Assert (Z = 0.0);
12
13    use Ada.Text_IO;
14 begin
15    Put_Line ("Z = " & Float'Image (Z));
16 end Ada_Numeric_Literals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Pi_Literals
MD5: 8f6516730fa98f08234b159488431aaf








Runtime output



Z =  0.00000E+00







Also, when using based literals, Ada allows any base from 2 to 16. Thus, we can
write the decimal number 136 in any one of the following notations:


ada_numeric_literals.adb

 1with Ada.Text_IO;
 2
 3procedure Ada_Numeric_Literals is
 4   Bin_136 : constant := 2#1000_1000#;
 5   Oct_136 : constant := 8#210#;
 6   Dec_136 : constant := 10#136#;
 7   Hex_136 : constant := 16#88#;
 8   pragma Assert (Bin_136 = 136);
 9   pragma Assert (Oct_136 = 136);
10   pragma Assert (Dec_136 = 136);
11   pragma Assert (Hex_136 = 136);
12
13   use Ada.Text_IO;
14
15begin
16   Put_Line ("Bin_136 = "
17             & Integer'Image (Bin_136));
18   Put_Line ("Oct_136 = "
19             & Integer'Image (Oct_136));
20   Put_Line ("Dec_136 = "
21             & Integer'Image (Dec_136));
22   Put_Line ("Hex_136 = "
23             & Integer'Image (Hex_136));
24end Ada_Numeric_Literals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Based_Literals
MD5: 0959ec5e4aafcde245c5a15597ac9b7e








Runtime output



Bin_136 =  136
Oct_136 =  136
Dec_136 =  136
Hex_136 =  136








In other languages

The rationale behind the method to specify based literals in the C
programming language is strange and unintuitive. Here, you have only three
possible bases: 8, 10, and 16 (why no base 2?). Furthermore, requiring
that numbers in base 8 be preceded by a zero feels like a bad joke on us
programmers. For example, what values do 0210 and 210 represent
in C?



When dealing with microcontrollers, we might encounter I/O devices that are
memory mapped. Here, we have the ability to write:

Lights_On  : constant := 2#1000_1000#;
Lights_Off : constant := 2#0111_0111#;





and have the ability to turn on/off the lights as follows:

Output_Devices := Output_Devices or  Lights_On;
Output_Devices := Output_Devices and Lights_Off;





Here's the complete example:


ada_numeric_literals.adb

 1with Ada.Text_IO;
 2
 3procedure Ada_Numeric_Literals is
 4   Lights_On  : constant := 2#1000_1000#;
 5   Lights_Off : constant := 2#0111_0111#;
 6
 7   type Byte is mod 256;
 8   Output_Devices : Byte := 0;
 9
10   --  for Output_Devices'Address
11   --    use 16#DEAD_BEEF#;
12   --  ^^^^^^^^^^^^^^^^^^^^^^^^^^
13   --  Memory mapped Output
14
15   use Ada.Text_IO;
16begin
17   Output_Devices := Output_Devices or
18                       Lights_On;
19
20   Put_Line ("Output_Devices (lights on ) = "
21             & Byte'Image (Output_Devices));
22
23   Output_Devices := Output_Devices and
24                       Lights_Off;
25
26   Put_Line ("Output_Devices (lights off) = "
27             & Byte'Image (Output_Devices));
28end Ada_Numeric_Literals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literal_Lights
MD5: c3e72b25366d8d815a1f425f2695ad0b








Runtime output



Output_Devices (lights on ) =  136
Output_Devices (lights off) =  0







Of course, we can also use
records with representation clauses
to do the above, which is even more elegant.

The notion of base in Ada allows for exponents, which is particularly pleasant.
For instance, we can write:


literal_binaries.ads

 1package Literal_Binaries is
 2   Kilobyte  : constant := 2#1#e+10;
 3   Megabyte  : constant := 2#1#e+20;
 4   Gigabyte  : constant := 2#1#e+30;
 5   Terabyte  : constant := 2#1#e+40;
 6   Petabyte  : constant := 2#1#e+50;
 7   Exabyte   : constant := 2#1#e+60;
 8   Zettabyte : constant := 2#1#e+70;
 9   Yottabyte : constant := 2#1#e+80;
10end Literal_Binaries;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literal_Binary
MD5: 98d971e0f170db570069f8868e442d6d







In based literals, the exponent — like the base — uses the regular
decimal notation and specifies the power of the base that the based literal
should be multiplied with to obtain the final value. For instance
2#1#e+10 = 1 x 210 = 1_024 (in base 10), whereas
16#F#e+2 = 15 x 162 = 15 x 256 = 3_840 (in
base 10).

Based numbers apply equally well to real literals. We can, for instance, write:

One_Third : constant := 3#0.1#;
--                      ^^^^^^
--                  same as 1.0/3





Whether we write 3#0.1# or 1.0 / 3, or even 3#1.0#e-1, Ada
allows us to specify exactly rational numbers for which decimal literals cannot
be written.

The last nice feature is that Ada has an open-ended set of integer and real
types. As a result, numeric literals in Ada do not carry with them their type
as, for example, in C. The actual type of the literal is determined from the
context. This is particularly helpful in avoiding overflows, underflows, and
loss of precision.


In other languages

In C, a source of confusion can be the distinction between 32l and
321. Although both look similar, they're actually very different from
each other.



And this is not all: all constant computations done at compile time are done in
infinite precision, be they integer or real. This allows us to write constants
with whatever size and precision without having to worry about overflow or
underflow. We can for instance write:

Zero : constant := 1.0 - 3.0 * One_Third;





and be guaranteed that constant Zero has indeed value zero. This is very
different from writing:

One_Third_Approx : constant :=
  0.33333333333333333333333333333;
Zero_Approx      : constant :=
  1.0 - 3.0 * One_Third_Approx;





where Zero_Approx is really 1.0e-29 — and that will show up
in your numerical computations. The above is quite handy when we want to write
fractions without any loss of precision. Here's the complete code:


ada_numeric_literals.adb

 1with Ada.Text_IO;
 2
 3procedure Ada_Numeric_Literals is
 4   One_Third : constant := 3#1.0#e-1;
 5   --  same as 1.0/3.0
 6
 7   Zero      : constant := 1.0 - 3.0 * One_Third;
 8   pragma Assert (Zero = 0.0);
 9
10   One_Third_Approx : constant :=
11     0.33333333333333333333333333333;
12   Zero_Approx      : constant :=
13     1.0 - 3.0 * One_Third_Approx;
14
15   use Ada.Text_IO;
16
17begin
18   Put_Line ("Zero        = "
19             & Float'Image (Zero));
20   Put_Line ("Zero_Approx = "
21             & Float'Image (Zero_Approx));
22end Ada_Numeric_Literals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literals
MD5: ee604245b34e8cb878a8ebdb21cd564e








Runtime output



Zero        =  0.00000E+00
Zero_Approx =  1.00000E-29







Along these same lines, we can write:


ada_numeric_literals.adb

 1with Ada.Text_IO;
 2
 3with Literal_Binaries; use Literal_Binaries;
 4
 5procedure Ada_Numeric_Literals is
 6
 7   Big_Sum : constant := 1         +
 8                         Kilobyte  +
 9                         Megabyte  +
10                         Gigabyte  +
11                         Terabyte  +
12                         Petabyte  +
13                         Exabyte   +
14                         Zettabyte;
15
16   Result : constant := (Yottabyte - 1) /
17                        (Kilobyte - 1);
18
19   Nil    : constant := Result - Big_Sum;
20   pragma Assert (Nil = 0);
21
22   use Ada.Text_IO;
23
24begin
25   Put_Line ("Nil         = "
26             & Integer'Image (Nil));
27end Ada_Numeric_Literals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Numeric_Literals.Literal_Binary
MD5: 7bda6442e68271d12bdb827b63f0d702








Runtime output



Nil         =  0







and be guaranteed that Nil is equal to zero.




Universal Numeric Types

Previously, we introduced the concept of
universal types. Three of them are numeric
types: universal real, universal integer and universal fixed types. In this
section, we discuss these universal numeric types in more detail.


Universal Real and Integer

Universal real and integer types are mainly used in the declaration of
named numbers:


show_universal_real_integer.ads

 1package Show_Universal_Real_Integer is
 2
 3   Pi : constant := 3.1415926535;
 4   --               ^^^^^^^^^^^^
 5   --            universal real type
 6
 7   N  : constant := 10;
 8   --               ^^
 9   --        universal integer type
10
11end Show_Universal_Real_Integer;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Universal_Real_Integer
MD5: 3cfa52af66185c693ede07f3b0e689e6







The type of a named number is implied by the type of the
numeric literal and the type of any named
numbers that we use in the
static expression. (We discuss static
expressions next.) In this specific example, we declare Pi using a real
literal, which implies that it's a named number of universal real type.
Likewise, N is of universal integer type because we use an integer
literal in its declaration.
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	3.3.2 Number Declarations[#2]







Static expressions

As we've just seen, we can use an expression in the declaration of a named
number. This expression is static, as it's always evaluated at compile time.
Therefore, we must use the keyword constant in the declaration of named
numbers.

If all components of the static expression are of universal integer type, then
the named number is of universal integer type. Otherwise, the static expression
is of universal real type. For example, if the first element of a static
expression is of universal integer type, but we have a constant of universal
real type in the same expression, then the type of the whole static expression
is universal real:


static_expressions.ads

 1package Static_Expressions is
 2
 3   Two_Pi : constant := 2 * 3.1415926535;
 4   --                   ^
 5   --              universal integer type
 6   --
 7   --                       ^^^^^^^^^^^^
 8   --                 universal real type
 9   --
10   --      => result: universal real type
11
12end Static_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Static_Expressions
MD5: 3429db9e1a7c4d4fe7d94e82159c3cb8







In this example, the static expression is of universal real type because of the
real literal (3.1415926535) — even though we have the universal
integer 2 in the expression.

Likewise, if we use a constant of universal real type in the static expression,
the result is of universal real type:


static_expressions.ads

 1package Static_Expressions is
 2
 3   Pi     : constant := 3.1415926535;
 4   --                   ^^^^^^^^^^^^
 5   --               universal real type
 6
 7   Two_Pi : constant := 2 * Pi;
 8   --                   ^
 9   --              universal integer type
10   --
11   --                       ^^
12   --                 universal real type
13   --
14   --      => result: universal real type
15
16end Static_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Static_Expressions
MD5: 599494102c4e5e5979a6e0071412da78







In this example, the result of the static expression is of universal real type
because of we're using the named number Pi, which is of universal real
type.



Complexity of static expressions

The operations that we use in static expressions may be arbitrarily complex.
For example:


static_expressions.ads

 1package Static_Expressions is
 2
 3   C1 : constant := 300_453.5;
 4   C2 : constant := 455_233.5 * C1;
 5   C3 : constant := 872_922.5 * C2;
 6   C4 : constant := 155_277.5 * C1 + C2 / C3;
 7   C5 : constant := 2.0 * C1 +
 8                    3.0 * (C2 / (C4 * C3)) +
 9                    4.0 * (C1 / (C2 * C2)) +
10                    5.0 * (C3 / (C1 * C1));
11
12end Static_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Static_Expressions
MD5: ebdd5b1c64ad1944931a962756e72291







As we can see in this example, we may create a chain of dependencies, where the
result of a static expression depends on the result of previously evaluated
static expressions. For instance, C5 depends on the evaluation of
C1, C2, C3, C4.



Accuracy of static expressions

The accuracy and range of numeric literals used in static expressions may be
arbitrarily high as well:


static_expressions.ads

 1package Static_Expressions is
 2
 3   Pi : constant :=
 4      3.14159_26535_89793_23846_26433_83279_50288;
 5
 6   Seed : constant :=
 7      143_574_786_272_784_656_928_283_872_972_764;
 8
 9   Super_Seed : constant :=
10      Seed * Seed * Seed * Seed * Seed * Seed;
11
12end Static_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Static_Expressions
MD5: 777574a29ffa6da8bffb4287dee45be8







In this example, Super_Seed has a value that is above the typical range
of integer constants. This might become challenging when using such named
numbers in actual computations, as we
discuss soon.

Another example is when the result of the expression is a
repeating decimal[#3]:


repeating_decimals.ads

1package Repeating_Decimals is
2
3   One_Over_Three : constant :=
4      1.0 / 3.0;
5
6end Repeating_Decimals;








show_repeating_decimals.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Repeating_Decimals;
 4use  Repeating_Decimals;
 5
 6procedure Show_Repeating_Decimals is
 7   F_1_3    : constant Float           :=
 8                One_Over_Three;
 9   LF_1_3   : constant Long_Float      :=
10                One_Over_Three;
11   LLF_1_3  : constant Long_Long_Float :=
12                One_Over_Three;
13begin
14   Put_Line (F_1_3'Image);
15   Put_Line (LF_1_3'Image);
16   Put_Line (LLF_1_3'Image);
17end Show_Repeating_Decimals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Repeating_Decimal
MD5: 4fc38ef6482e403d655b4662d4199abb








Runtime output



 3.33333E-01
 3.33333333333333E-01
 3.33333333333333333E-01







In this example, as expected, we see that the accuracy of the value we display
increases if we use a type with higher precision. This wouldn't be possible if
we had used a floating-point type with limited precision for the
One_Over_Three constant:


repeating_decimals.ads

1package Repeating_Decimals is
2
3   One_Over_Three : constant Long_Float :=
4      1.0 / 3.0;
5   --                        ^^^^^^^^^^
6   --          using Long_Float instead of
7   --              universal real type
8
9end Repeating_Decimals;








show_repeating_decimals.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Repeating_Decimals;
 4use  Repeating_Decimals;
 5
 6procedure Show_Repeating_Decimals is
 7   F_1_3    : constant Float           :=
 8                Float (One_Over_Three);
 9   LF_1_3   : constant Long_Float      :=
10                Long_Float (One_Over_Three);
11   LLF_1_3  : constant Long_Long_Float :=
12                Long_Long_Float (One_Over_Three);
13begin
14   Put_Line (F_1_3'Image);
15   Put_Line (LF_1_3'Image);
16   Put_Line (LLF_1_3'Image);
17end Show_Repeating_Decimals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Repeating_Decimal
MD5: d0fa105d679cc246e2e8baf37cbe48c4








Runtime output



 3.33333E-01
 3.33333333333333E-01
 3.33333333333333315E-01







Because we're using the Long_Float type for the One_Over_Three
constant instead of the universal real type, the accuracy doesn't increase when
we use the Long_Long_Float type — as we see in the value of the
LLF_1_3 constant — even though this type has a higher precision.


For further reading...

When using big numbers, you could simply
assign the named number One_Over_Three to a big real:


repeating_decimals.ads

1package Repeating_Decimals is
2
3   One_Over_Three : constant :=
4      1.0 / 3.0;
5
6end Repeating_Decimals;








show_repeating_decimals.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Reals;
 4use  Ada.Numerics.Big_Numbers.Big_Reals;
 5
 6with Repeating_Decimals;
 7use  Repeating_Decimals;
 8
 9procedure Show_Repeating_Decimals is
10   BR_1_3 : constant Big_Real := One_Over_Three;
11begin
12   Put_Line ("BR: "
13             & To_String (Arg   => BR_1_3,
14                          Fore  => 2,
15                          Aft   => 31,
16                          Exp   => 0));
17end Show_Repeating_Decimals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Repeating_Decimal
MD5: 4f1981b785baa35704c85e7e688c8ce4








Runtime output



BR:  0.3333333333333333333333333333333







Another approach is to use the division operation directly:


show_repeating_decimals.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Reals;
 4use  Ada.Numerics.Big_Numbers.Big_Reals;
 5
 6with Repeating_Decimals;
 7use  Repeating_Decimals;
 8
 9procedure Show_Repeating_Decimals is
10   BR_1_3   : constant Big_Real := 1 / 3;
11begin
12   Put_Line ("BR: "
13             & To_String (Arg   => BR_1_3,
14                          Fore  => 2,
15                          Aft   => 31,
16                          Exp   => 0));
17end Show_Repeating_Decimals;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Repeating_Decimal
MD5: 5fc195f9fbab3b1ec74c507780a44ec8








Runtime output



BR:  0.3333333333333333333333333333333







We talk more about
big real and quotients later on.





Conversion of universal real and integer

Although a named number exists as an numeric representation form in Ada, the
value it represents cannot be used directly at runtime — even if we
just display the value of the constant at runtime, for example. In fact, a
conversion to a non-universal type is required in order to use the named number
anywhere else other than a static expression:


static_expressions.ads

 1package Static_Expressions is
 2
 3   Pi : constant :=
 4      3.14159_26535_89793_23846_26433_83279_50288;
 5
 6   Seed : constant :=
 7      143_574_786_272_784_656_928_283_872_972_764;
 8
 9   Super_Seed : constant :=
10      Seed * Seed * Seed * Seed * Seed * Seed;
11
12end Static_Expressions;








show_static_expressions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Static_Expressions;
 4use  Static_Expressions;
 5
 6procedure Show_Static_Expressions is
 7begin
 8   Put_Line (Pi'Image);
 9   --  Same as:
10   --  Put_Line (Float (Pi)'Image);
11
12   Put_Line (Seed'Image);
13   --  Same as:
14   --  Put_Line (
15   --    Long_Long_Long_Integer (Seed)'Image);
16end Show_Static_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Conversion_To_Non_Universal_Types
MD5: e50641737f970b935e853ac249dd83d8








Runtime output



 3.14159265358979324E+00
 143574786272784656928283872972764







As we see in this example, the named number Pi is converted to
Float before being used as an actual parameter in the call to
Put_Line. Similarly, Seed is converted to
Long_Long_Long_Integer.

When we use the Image attribute, the compiler automatically selects a
numeric type which has a suitable range for the named number. In the example
above, we wouldn't be able to represent the value of Seed with
Integer, so the compiler selected Long_Long_Long_Integer. Of
course, we could have also specified the type by using explicit
type conversions or a
qualified expressions:


show_static_expressions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Static_Expressions;
 4use  Static_Expressions;
 5
 6procedure Show_Static_Expressions is
 7begin
 8   Put_Line (Long_Long_Float (Pi)'Image);
 9   Put_Line (Long_Long_Float'(Pi)'Image);
10end Show_Static_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Conversion_To_Non_Universal_Types
MD5: 18bcc3bffd51ebc1bc98976ed1597f01








Runtime output



 3.14159265358979324E+00
 3.14159265358979324E+00







Now, we're explicitly converting to Long_Long_Float in the first call
to Put_Line and using a qualified expression in the second call to
Put_Line.

A conversion is also performed when we use a named number in an object
declaration:


show_static_expressions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Static_Expressions;
 4use  Static_Expressions;
 5
 6procedure Show_Static_Expressions is
 7   Two_Pi : constant Float := 2.0 * Pi;
 8   --  Same as:
 9   --  Two_Pi: constant Float :=
10   --            2.0 * Float (Pi);
11
12   Two_Pi_More_Precise :
13     constant Long_Long_Float := 2.0 * Pi;
14   --  Same as:
15   --  Two_Pi_More_Precise :
16   --    constant Long_Long_Float :=
17   --      2.0 * Long_Long_Float (Pi);
18begin
19   Put_Line (Two_Pi'Image);
20   Put_Line (Two_Pi_More_Precise'Image);
21end Show_Static_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Conversion_To_Non_Universal_Types
MD5: c918cdcb4e927cfbc1fbe6ffb0277178








Runtime output



 6.28319E+00
 6.28318530717958648E+00







In this example, Pi is converted to Float in the declaration of
Two_Pi because we use the Float type in its declaration.
Likewise, Pi is converted to Long_Long_Float in the declaration
of Two_Pi_More_Precise because we use the Long_Long_Float type in
its declaration. (Actually, the same conversion is performed for each instance
of the real literal 2.0 in this example.)

Note that the range of the type we select might not be suitable for the named
number we want to use. For example:


show_static_expressions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Static_Expressions;
 4use  Static_Expressions;
 5
 6procedure Show_Static_Expressions is
 7   Initial_Seed : constant
 8     Long_Long_Long_Integer :=
 9       Super_Seed;
10begin
11   Put_Line (Initial_Seed'Image);
12end Show_Static_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Conversion_To_Non_Universal_Types
MD5: 2f8e26fbcd0b5defd94ffef570c0f087








Build output



show_static_expressions.adb:9:08: error: value not in range of type "Standard.Long_Long_Long_Integer"
show_static_expressions.adb:9:08: error: static expression fails Constraint_Check
gprbuild: *** compilation phase failed







In this example, we get a compilation error because the range of the
Long_Long_Long_Integer type isn't enough to store the value of the
Super_Seed.


For further reading...

To circumvent the compilation error in the code example we've just seen,
the best alternative to use big numbers
— we discuss this topic later on in this chapter:


show_static_expressions.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6with Static_Expressions;
 7use  Static_Expressions;
 8
 9procedure Show_Static_Expressions is
10   Initial_Seed : constant
11     Big_Integer :=
12       Super_Seed;
13begin
14   Put_Line (Initial_Seed'Image);
15end Show_Static_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Numeric_Types.Conversion_To_Non_Universal_Types
MD5: bf1511f1b8bf3965baa86b953c56c406








Runtime output



 8759293341409421973222546428841660585569956482050794686013387595655014366454466435608186698777666337878024699535133518984020807000356866931243611464200216865629858496856071423986012216650305536







By changing the type from Long_Long_Long_Integer to
Big_Integer, we get rid of the compilation error. (The value of
Super_Seed — stored in Initial_Seed — is
displayed at runtime.)






Universal Fixed

For fixed-point types, we also have a corresponding universal type. However, in
contrast to the universal real and integer types, universal fixed types aren't
an abstraction used in static expressions, but rather a concept that permeates
actual fixed-point types. In fact, for
fixed-point types, some operations
are accomplished via universal fixed types — for example, the conversion
between fixed-point types and the multiplication and division operations.

Let's start by analyzing how floating-point and integer types associate their
operations to the specific type of an object. For example, if we have an object
A of type Float in a multiplication, we cannot just write
A * B if we want to multiply A by an object B of another
floating-point type — if B is of type Long_Float, for
example, writing A * B triggers a compilation error. (Otherwise, which
precision should be used for the result?) Therefore, we have
to convert one of the objects to have matching types:


show_float_multiplication_mismatch.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show_Float_Multiplication_Mismatch is
4   F  : Float      := 0.25;
5   LF : Long_Float := 0.50;
6begin
7   F := F * LF;
8   Put_Line ("F = " & F'Image);
9end Show_Float_Multiplication_Mismatch;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Types.Float_Multiplication
MD5: 88ce3a0f29e2bd31ddfc491557d7f0e3








Build output



show_float_multiplication_mismatch.adb:7:11: error: invalid operand types for operator "*"
show_float_multiplication_mismatch.adb:7:11: error: left operand has type "Standard.Float"
show_float_multiplication_mismatch.adb:7:11: error: right operand has type "Standard.Long_Float"
gprbuild: *** compilation phase failed







This code example fails to compile because of the F * LF operation.
(We could correct the code by writing F * Float (LF), for example.)

In contrast, for fixed-point types, we can mix objects of different types in a
multiplication or division. (In this case, mixing is allowed for the
convenience of the programmer.) For example:


normalized_fixed_point_types.ads

 1package Normalized_Fixed_Point_Types is
 2
 3   type TQ31 is
 4     delta 2.0 ** (-31)
 5     range -1.0 .. 1.0 - 2.0 ** (-31);
 6
 7   type TQ15 is
 8     delta 2.0 ** (-15)
 9     range -1.0 .. 1.0 - 2.0 ** (-15);
10
11end Normalized_Fixed_Point_Types;








show_fixed_multiplication.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Normalized_Fixed_Point_Types;
 4use  Normalized_Fixed_Point_Types;
 5
 6procedure Show_Fixed_Multiplication is
 7   A : TQ15 := 0.25;
 8   B : TQ31 := 0.50;
 9begin
10   A := A * B;
11   Put_Line ("A = " & A'Image);
12end Show_Fixed_Multiplication;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Types.Fixed_Point_Multiplication
MD5: a4cefdc29a562fbec30b6864b6ec2602








Runtime output



A =  0.12500







In this example, the A * B is accepted by the compiler, even though
A and B have different types. This is only possible because the
multiplication operation of fixed-point types makes use of the universal fixed
type. In other words, the multiplication operation in this code example doesn't
operate directly on the fixed-point type TQ31. Instead, it converts
A and B to the universal fixed type, performs the operation using
this type, and converts back to the original type — TQ15 in this
case.

In addition to the multiplication operation, other operations such as the
conversion between fixed-point types and the division operations make use of
universal fixed types:


custom_decimal_types.ads

1package Custom_Decimal_Types is
2
3  type T3_D3 is delta 10.0 ** (-3) digits 3;
4  type T3_D6 is delta 10.0 ** (-3) digits 6;
5  type T6_D6 is delta 10.0 ** (-6) digits 6;
6
7end Custom_Decimal_Types;








show_universal_fixed.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Decimal_Types;
 4use  Custom_Decimal_Types;
 5
 6procedure Show_Universal_Fixed is
 7  Val_T3_D3 : T3_D3;
 8  Val_T3_D6 : T3_D6;
 9  Val_T6_D6 : T6_D6;
10begin
11   Val_T3_D3 := 0.65;
12
13   Val_T3_D6 := T3_D6 (Val_T3_D3);
14   --           ^^^^^^^^^^^^^^^^^
15   --      type conversion using
16   --       universal fixed type
17
18   Val_T6_D6 := T6_D6 (Val_T3_D6);
19   --           ^^^^^^^^^^^^^^^^^
20   --      type conversion using
21   --       universal fixed type
22
23   Put_Line ("Val_T3_D3 = "
24             & Val_T3_D3'Image);
25   Put_Line ("Val_T3_D6 = "
26             & Val_T3_D6'Image);
27   Put_Line ("Val_T6_D6 = "
28             & Val_T3_D6'Image);
29   Put_Line ("-----------------");
30
31   Val_T3_D6 := Val_T6_D6 * 2.0;
32   --           ^^^^^^^^^^^^^^^^
33   --    using universal fixed type for
34   --      the multiplication operation
35   Put_Line ("Val_T3_D6 = "
36             & Val_T3_D6'Image);
37
38   Val_T3_D6 := Val_T6_D6 / Val_T3_D3;
39   --           ^^^^^^^^^^^^^^^^^^^^^
40   --      different fixed-point types:
41   --    using universal fixed type for
42   --           the division operation
43   Put_Line ("Val_T3_D6 = "
44             & Val_T3_D6'Image);
45
46end Show_Universal_Fixed;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Types.Universal_Fixed
MD5: 1e253d8a39576f817b2130aa35929d96








Runtime output



Val_T3_D3 =  0.650
Val_T3_D6 =  0.650
Val_T6_D6 =  0.650
-----------------
Val_T3_D6 =  1.300
Val_T3_D6 =  1.000







In this example, the conversion from the fixed-point type T3_D3 to the
T3_D6 and T6_D6 types is performed via universal fixed types.

Similarly, the multiplication operation Val_T6_D6 * 2.0 uses universal
fixed types. Here, we're actually multiplying a variable of type T6_D6
by two and assigning it to a variable of type Val_T3_D6. Although these
variable have different fixed-point types, no explicit conversion (e.g.:
Val_T3_D6 := T3_D6 (Val_T6_D6 * 2.0);) is required in this case because
the result of the operation is of universal fixed type, so that it can be
assigned to a variable of any fixed-point type.

Finally, in the Val_T3_D6 := Val_T6_D6 / Val_T3_D3 statement, we're
using three fixed-point types: we're dividing a variable of type T6_D6
by a variable of type T3_D3, and assigning it to a variable of type
T3_D6. All these operations are only possible without explicit type
conversions because the underlying types for the fixed-point division operation
are universal fixed types.


For further reading...

It's possible to implement custom * and / operators for
fixed-point types. However, those operators do not override the
corresponding operators for universal fixed-point types. For example:


normalized_fixed_point_types.ads

 1package Normalized_Fixed_Point_Types is
 2
 3   type TQ63 is
 4     delta 2.0 ** (-63)
 5     range -1.0 .. 1.0 - 2.0 ** (-63);
 6
 7   type TQ31 is
 8     delta 2.0 ** (-31)
 9     range -1.0 .. 1.0 - 2.0 ** (-31);
10
11   overriding
12   --  ^^^^^^
13   --  "+" operator is overriding!
14   function "+" (L, R : TQ31)
15                 return TQ31;
16
17   not overriding
18   --  ^^^^^^^^^^
19   --  "*" operator is NOT overriding!
20   function "*" (L, R : TQ31)
21                 return TQ31;
22
23   type TQ15 is
24     delta 2.0 ** (-15)
25     range -1.0 .. 1.0 - 2.0 ** (-15);
26
27end Normalized_Fixed_Point_Types;








normalized_fixed_point_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Normalized_Fixed_Point_Types is
 4
 5   function "+" (L, R : TQ31)
 6                 return TQ31 is
 7   begin
 8      Put_Line
 9        ("=> Overriding '+'");
10      return TQ31 (TQ63 (L) + TQ63 (R));
11   end "+";
12
13   function "*" (L, R : TQ31)
14                 return TQ31 is
15   begin
16      Put_Line
17        ("=> Custom "
18         & "non-overriding '*'");
19      return TQ31 (TQ63 (L) * TQ63 (R));
20   end "*";
21
22end Normalized_Fixed_Point_Types;








show_fixed_multiplication.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Normalized_Fixed_Point_Types;
 4use  Normalized_Fixed_Point_Types;
 5
 6procedure Show_Fixed_Multiplication is
 7   Q31_A : TQ31 := 0.25;
 8   Q31_B : TQ31 := 0.50;
 9   Q15_A : TQ15 := 0.25;
10   Q15_B : TQ15 := 0.50;
11begin
12   Q31_A := Q31_A * Q31_B;
13   Put_Line ("Q31_A = " & Q31_A'Image);
14
15   Q15_A := Q15_A * Q15_B;
16   Put_Line ("Q15_A = " & Q31_A'Image);
17
18   Q15_A := TQ15 (Q31_A) * Q15_B;
19   --       ^^^^^^^^^^^^
20   --  A conversion is required because of
21   --  the multiplication operator of
22   --  TQ15.
23   Put_Line ("Q31_A = " & Q31_A'Image);
24end Show_Fixed_Multiplication;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Universal_Types.Fixed_Point_Custom_Multiplication
MD5: 954ada297ac676ab1f11447083d87882








Runtime output



=> Custom non-overriding '*'
Q31_A =  0.1250000000
Q15_A =  0.1250000000
Q31_A =  0.1250000000







In this example, we're declaring a custom multiplication operator for the
TQ31 type. As we can see in the declaration, we specify that it's
not overriding the * operator. (Removing the not
keyword triggers a compilation error.) In contrast, for the +
operator, we're indeed overriding the default + operator of the
TQ31 type in the Normalized_Fixed_Point_Types because the
addition operator is associated with its corresponding fixed-point type,
not with the universal fixed-point type. In the
Q31_A := Q31_A * Q31_B statement, we see at runtime (through the
"=> Custom non-overriding '*'" message) that the custom
multiplication is being used.

However, because of this custom * operator, we cannot mix objects of
this type with objects of other fixed-point types in multiplication or
division operations. Therefore, for a statement such as
Q15_A := Q31_A * Q15_B, we have to convert Q31_A to the
TQ15 type before multiplying it by Q15_B.




In the Ada Reference Manual


	4.5.5 Multiplying Operators[#4]









Attributes of Modular Types

In the Introduction to Ada course, we've seen that Ada has two kinds of integer
type: signed[#5] and
modular[#6] types. For example:


num_types.ads

1package Num_Types is
2
3   type Signed_Integer is range 1 .. 1_000_000;
4   type Modular is mod 2**32;
5
6end Num_Types;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: 2dff9fe22c6bbe52f964befccf68debf







In this section, we discuss two attributes of modular types: Modulus
and Mod. We also discuss operations on modular types.


In the Ada Reference Manual


	3.5.4 Integer Types[#7]







Modulus Attribute

The Modulus attribute returns the modulus of the modular type as a
universal integer value. Let's get the modulus of the 32-bit Modular
type that we've declared in the Num_Types package of the previous
example:


show_modular.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3with Num_Types;   use Num_Types;
4
5procedure Show_Modular is
6   Modulus_Value : constant := Modular'Modulus;
7begin
8   Put_Line (Modulus_Value'Image);
9end Show_Modular;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: 336254ebc8c09ee9921633f6919994fe








Runtime output



 4294967296







When we run this example, we get 4294967296, which is equal to 2**32.



Mod Attribute


Note

This section was originally written by Robert A. Duff and published as
Gem #26: The Mod Attribute[#8].



Operations on signed integers can overflow: if the result is outside the base
range, Constraint_Error will be raised. In our previous example, we
declared the Signed_Integer type:

type Signed_Integer is range 1 .. 1_000_000;





The base range of Signed_Integer is the range of
Signed_Integer'Base, which is chosen by the compiler, but is likely to
be something like -2**31 .. 2**31 - 1. (Note: we discussed the
Base attribute in this section.)

Operations on modular integers use modular (wraparound) arithmetic. For
example:


show_modular.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Num_Types;   use Num_Types;
 4
 5procedure Show_Modular is
 6   X : Modular;
 7begin
 8   X := 1;
 9   Put_Line (X'Image);
10
11   X := -X;
12   Put_Line (X'Image);
13end Show_Modular;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: e9ac61d2e43585f002fe2b79544ef9d7








Runtime output



 1
 4294967295







Negating X gives -1, which wraps around to 2**32 - 1, i.e.
all-one-bits.

But what about a type conversion from signed to modular? Is that a signed
operation (so it should overflow) or is it a modular operation (so it should
wrap around)? The answer in Ada is the former — that is, if you try to
convert, say, Integer'(-1) to Modular, you will get
Constraint_Error:


show_modular.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Num_Types;   use Num_Types;
 4
 5procedure Show_Modular is
 6   I : Integer := -1;
 7   X : Modular := 1;
 8begin
 9   X := Modular (I);  --  raises Constraint_Error
10   Put_Line (X'Image);
11end Show_Modular;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: e8e1a1924efcbe770c719c29547bb863








Build output



show_modular.adb:9:09: warning: value not in range of type "Modular" defined at num_types.ads:4 [enabled by default]
show_modular.adb:9:09: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_modular.adb:9 range check failed







To solve this problem, we can use the Mod attribute:


show_modular.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Num_Types;   use Num_Types;
 4
 5procedure Show_Modular is
 6   I : constant Integer := -1;
 7   X : Modular := 1;
 8begin
 9   X := Modular'Mod (I);
10   Put_Line (X'Image);
11end Show_Modular;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Modular_1
MD5: 572a753de946b7578c5f1b6a795ede98








Runtime output



 4294967295







The Mod attribute will correctly convert from any integer type to a
given modular type, using wraparound semantics.


Historically

In older versions of Ada — such as Ada 95 —, the only way to do
this conversion is to use Unchecked_Conversion, which is somewhat
uncomfortable. Furthermore, if you're trying to convert to a generic formal
modular type, how do you know what size of signed integer type to use? Note
that Unchecked_Conversion might malfunction if the source and target
types are of different sizes.

The Mod attribute was added to Ada 2005 to solve this problem.
Also, we can now safely use this attribute in generics. For example:


mod_attribute.ads

1generic
2   type Formal_Modular is mod <>;
3package Mod_Attribute is
4   function F return Formal_Modular;
5end Mod_Attribute;








mod_attribute.adb

 1package body Mod_Attribute is
 2
 3   A_Signed_Integer : Integer := -1;
 4
 5   function F return Formal_Modular is
 6   begin
 7      return Formal_Modular'Mod
 8               (A_Signed_Integer);
 9   end F;
10
11end Mod_Attribute;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Mod_Attribute
MD5: b2f227b8d4f14cd36508bf33c403f751







In this example, F will return the all-ones bit pattern, for
whatever modular type is passed to Formal_Modular.





Operations on modular types

Modular types are particularly useful for bit manipulation. For example, we
can use the and, or, xor and not operators for
modular types.

Also, we can perform bit-shifting by multiplying or dividing a modular object
with a power of two. For example, if M is a variable of modular type,
then M := M * 2 ** 3; shifts the bits to the left by three bits.
Likewise, M := M / 2 ** 3 shifts the bits to the right. Note that the
compiler selects the appropriate shifting operator when translating these
operations to machine code — no actual multiplication or division will be
performed.

Let's see a simple implementation of the CRC-CCITT (0x1D0F) algorithm:


crc_defs.ads

 1package Crc_Defs is
 2
 3    type Byte is mod 2 ** 8;
 4    type Crc  is mod 2 ** 16;
 5
 6    type Byte_Array is
 7      array (Positive range <>) of Byte;
 8
 9    function Crc_CCITT (A : Byte_Array)
10                        return Crc;
11
12    procedure Display (Crc_A : Crc);
13
14    procedure Display (A : Byte_Array);
15
16end Crc_Defs;








crc_defs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Crc_Defs is
 4
 5    package Byte_IO is new Modular_IO (Byte);
 6    package Crc_IO  is new Modular_IO (Crc);
 7
 8    function Crc_CCITT (A : Byte_Array)
 9                        return Crc
10    is
11       X     : Byte;
12       Crc_A : Crc := 16#1d0f#;
13    begin
14       for I in A'Range loop
15          X := Byte (Crc_A / 2 ** 8) xor A (I);
16          X := X xor (X / 2 ** 4);
17          declare
18             Crc_X : constant Crc := Crc (X);
19          begin
20             Crc_A := Crc_A * 2 ** 8  xor
21                      Crc_X * 2 ** 12 xor
22                      Crc_X * 2 ** 5  xor
23                      Crc_X;
24          end;
25       end loop;
26
27       return Crc_A;
28    end Crc_CCITT;
29
30    procedure Display (Crc_A : Crc) is
31    begin
32       Crc_IO.Put (Crc_A);
33       New_Line;
34    end Display;
35
36    procedure Display (A : Byte_Array) is
37    begin
38       for E of A loop
39          Byte_IO.Put (E);
40          Put (", ");
41       end loop;
42       New_Line;
43    end Display;
44
45begin
46   Byte_IO.Default_Width := 1;
47   Byte_IO.Default_Base  := 16;
48   Crc_IO.Default_Width  := 1;
49   Crc_IO.Default_Base   := 16;
50end Crc_Defs;








show_crc.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Crc_Defs;    use Crc_Defs;
 3
 4procedure Show_Crc is
 5   AA    : constant Byte_Array :=
 6             (16#0#, 16#20#, 16#30#);
 7   Crc_A : Crc;
 8begin
 9   Crc_A := Crc_CCITT (AA);
10
11   Put ("Input array: ");
12   Display (AA);
13
14   Put ("CRC-CCITT: ");
15   Display (Crc_A);
16end Show_Crc;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Modular_Types.Mod_Crc_CCITT_Ada
MD5: 9c66abfadcce92231295cbccad087912








Runtime output



Input array: 16#0#, 16#20#, 16#30#, 
CRC-CCITT: 16#21B9#







In this example, the core of the algorithm is implemented in the
Crc_CCITT function. There, we use bit shifting — for instance,
* 2 ** 8 and / 2 ** 8, which shift left and right, respectively,
by eight bits. We also use the xor operator.




Attributes of Floating-Point Types

In this section, we discuss various attributes related to floating-point types.


In the Ada Reference Manual


	3.5.8 Operations of Floating Point Types[#9]


	A.5.3 Attributes of Floating Point Types[#10]







Representation-oriented attributes

In this section, we discuss attributes related to the representation of
floating-point types.


Attribute: Machine_Radix

Machine_Radix is an attribute that returns the radix of the hardware
representation of a type. For example:


show_machine_radix.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Machine_Radix is
 4begin
 5   Put_Line
 6     ("Float'Machine_Radix:           "
 7      & Float'Machine_Radix'Image);
 8   Put_Line
 9     ("Long_Float'Machine_Radix:      "
10      & Long_Float'Machine_Radix'Image);
11   Put_Line
12     ("Long_Long_Float'Machine_Radix: "
13      & Long_Long_Float'Machine_Radix'Image);
14end Show_Machine_Radix;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_Radix
MD5: 88680df680f1db4ff803912850370551








Runtime output



Float'Machine_Radix:            2
Long_Float'Machine_Radix:       2
Long_Long_Float'Machine_Radix:  2







Usually, this value is two, as the radix is based on a binary system.



Attributes: Machine_Mantissa

Machine_Mantissa is an attribute that returns the number of bits
reserved for the mantissa of the floating-point type. For example:


show_machine_mantissa.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Machine_Mantissa is
 4begin
 5   Put_Line
 6     ("Float'Machine_Mantissa:           "
 7      & Float'Machine_Mantissa'Image);
 8   Put_Line
 9     ("Long_Float'Machine_Mantissa:      "
10      & Long_Float'Machine_Mantissa'Image);
11   Put_Line
12     ("Long_Long_Float'Machine_Mantissa: "
13      & Long_Long_Float'Machine_Mantissa'Image);
14end Show_Machine_Mantissa;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_Mantissa
MD5: da946a90a454c6e8f68cbff1ec54c7d3








Runtime output



Float'Machine_Mantissa:            24
Long_Float'Machine_Mantissa:       53
Long_Long_Float'Machine_Mantissa:  64







On a typical desktop PC, as indicated by Machine_Mantissa, we have 24
bits for the floating-point mantissa of the Float type.



Machine_Emin and Machine_Emax

The Machine_Emin and Machine_Emax attributes return the minimum
and maximum value, respectively, of the machine exponent the floating-point
type. Note that, in all cases, the returned value is a universal integer. For
example:


show_machine_emin_emax.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Machine_Emin_Emax is
 4begin
 5   Put_Line
 6     ("Float'Machine_Emin:               "
 7      & Float'Machine_Emin'Image);
 8   Put_Line
 9     ("Float'Machine_Emax:               "
10      & Float'Machine_Emax'Image);
11   Put_Line
12     ("Long_Float'Machine_Emin:          "
13      & Long_Float'Machine_Emin'Image);
14   Put_Line
15     ("Long_Float'Machine_Emax:          "
16      & Long_Float'Machine_Emax'Image);
17   Put_Line
18     ("Long_Long_Float'Machine_Emin:     "
19      & Long_Long_Float'Machine_Emin'Image);
20   Put_Line
21     ("Long_Long_Float'Machine_Emax:     "
22      & Long_Long_Float'Machine_Emax'Image);
23end Show_Machine_Emin_Emax;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_Emin_Emax
MD5: 9766e06faaf1fc2ca48dd0bc0461b247








Runtime output



Float'Machine_Emin:               -125
Float'Machine_Emax:                128
Long_Float'Machine_Emin:          -1021
Long_Float'Machine_Emax:           1024
Long_Long_Float'Machine_Emin:     -16381
Long_Long_Float'Machine_Emax:      16384







On a typical desktop PC, the value of Float'Machine_Emin and
Float'Machine_Emax is -125 and 128, respectively.

To get the actual minimum and maximum value of the exponent for a specific
type, we need to use the Machine_Radix attribute that we've seen
previously. Let's calculate the minimum and maximum value of the exponent for
the Float type on a typical PC:


	Value of minimum exponent: Float'Machine_Radix ** Float'Machine_Emin.



	In our target platform, this is
2-125 = 2.35098870164457501594 x 10-38.









	Value of maximum exponent: Float'Machine_Radix ** Float'Machine_Emax.



	In our target platform, this is
2128  = 3.40282366920938463463 x 1038.













Attribute: Digits

Digits is an attribute that returns the requested decimal precision of
a floating-point subtype. Let's see an example:


show_digits.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Digits is
 4begin
 5   Put_Line ("Float'Digits:           "
 6             & Float'Digits'Image);
 7   Put_Line ("Long_Float'Digits:      "
 8             & Long_Float'Digits'Image);
 9   Put_Line ("Long_Long_Float'Digits: "
10             & Long_Long_Float'Digits'Image);
11end Show_Digits;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Digits
MD5: cd1c88054f7d54703760a852d08acb6d








Runtime output



Float'Digits:            6
Long_Float'Digits:       15
Long_Long_Float'Digits:  18







Here, the requested decimal precision of the Float type is six digits.

Note that we said that Digits is the requested level of precision,
which is specified as part of declaring a floating point type. We can retrieve
the actual decimal precision with Base'Digits. For example:


show_base_digits.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Base_Digits is
 4   type Float_D3 is new Float digits 3;
 5begin
 6   Put_Line ("Float_D3'Digits:           "
 7             & Float_D3'Digits'Image);
 8   Put_Line ("Float_D3'Base'Digits:      "
 9             & Float_D3'Base'Digits'Image);
10end Show_Base_Digits;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Base_Digits
MD5: a2deb352f93511ab2a39d41f0b3f9512








Runtime output



Float_D3'Digits:            3
Float_D3'Base'Digits:       6







The requested decimal precision of the Float_D3 type is three digits,
while the actual decimal precision is six digits (on a typical desktop PC).



Attributes: Denorm, Signed_Zeros, Machine_Rounds, Machine_Overflows

In this section, we discuss attributes that return Boolean values
indicating whether a feature is available or not in the target architecture:


	Denorm is an attribute that indicates whether the target architecture
uses denormalized numbers[#11].


	Signed_Zeros is an attribute that indicates whether the type uses a
sign for zero values, so it can represent both -0.0 and 0.0.


	Machine_Rounds is an attribute that indicates whether
rounding-to-nearest is used, rather than some other choice (such as
rounding-toward-zero).


	Machine_Overflows is an attribute that indicates whether a
Constraint_Error exception is (or is not) guaranteed to be raised
when an operation with that type produces an overflow or divide-by-zero.





show_boolean_attributes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Boolean_Attributes is
 4begin
 5   Put_Line
 6     ("Float'Denorm:           "
 7      & Float'Denorm'Image);
 8   Put_Line
 9     ("Long_Float'Denorm:      "
10      & Long_Float'Denorm'Image);
11   Put_Line
12     ("Long_Long_Float'Denorm: "
13      & Long_Long_Float'Denorm'Image);
14   Put_Line
15     ("Float'Signed_Zeros:           "
16      & Float'Signed_Zeros'Image);
17   Put_Line
18     ("Long_Float'Signed_Zeros:      "
19      & Long_Float'Signed_Zeros'Image);
20   Put_Line
21     ("Long_Long_Float'Signed_Zeros: "
22      & Long_Long_Float'Signed_Zeros'Image);
23   Put_Line
24     ("Float'Machine_Rounds:           "
25      & Float'Machine_Rounds'Image);
26   Put_Line
27     ("Long_Float'Machine_Rounds:      "
28      & Long_Float'Machine_Rounds'Image);
29   Put_Line
30     ("Long_Long_Float'Machine_Rounds: "
31      & Long_Long_Float'Machine_Rounds'Image);
32   Put_Line
33     ("Float'Machine_Overflows:           "
34      & Float'Machine_Overflows'Image);
35   Put_Line
36     ("Long_Float'Machine_Overflows:      "
37      & Long_Float'Machine_Overflows'Image);
38   Put_Line
39     ("Long_Long_Float'Machine_Overflows: "
40      & Long_Long_Float'Machine_Overflows'Image);
41end Show_Boolean_Attributes;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_Rounds_Overflows
MD5: b3f72c212cf00e697fe144a87eb72339








Runtime output



Float'Denorm:           TRUE
Long_Float'Denorm:      TRUE
Long_Long_Float'Denorm: TRUE
Float'Signed_Zeros:           TRUE
Long_Float'Signed_Zeros:      TRUE
Long_Long_Float'Signed_Zeros: TRUE
Float'Machine_Rounds:           TRUE
Long_Float'Machine_Rounds:      TRUE
Long_Long_Float'Machine_Rounds: TRUE
Float'Machine_Overflows:           FALSE
Long_Float'Machine_Overflows:      FALSE
Long_Long_Float'Machine_Overflows: FALSE







On a typical PC, we have the following information:


	Denorm is true (i.e. the architecture uses denormalized numbers);


	Signed_Zeros is true (i.e. the standard floating-point types use a
sign for zero values);


	Machine_Rounds is true (i.e. rounding-to-nearest is used for
floating-point types);


	Machine_Overflows is false (i.e. there's no guarantee that a
Constraint_Error exception is raised when an operation with a
floating-point type produces an overflow or divide-by-zero).







Primitive function attributes

In this section, we discuss attributes that we can use to manipulate
floating-point values.


Attributes: Fraction, Exponent and Compose

The Exponent and Fraction attributes return "parts" of a
floating-point value:


	Exponent returns the machine exponent, and


	Fraction returns the mantissa part.




Compose is used to return a floating-point value based on a fraction
(the mantissa part) and the machine exponent.

Let's see some examples:


show_exponent_fraction_compose.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Exponent_Fraction_Compose is
 4begin
 5   Put_Line
 6     ("Float'Fraction (1.0):     "
 7      & Float'Fraction (1.0)'Image);
 8   Put_Line
 9     ("Float'Fraction (0.25):    "
10      & Float'Fraction (0.25)'Image);
11   Put_Line
12     ("Float'Fraction (1.0e-25): "
13      & Float'Fraction (1.0e-25)'Image);
14   Put_Line
15     ("Float'Exponent (1.0):     "
16      & Float'Exponent (1.0)'Image);
17   Put_Line
18     ("Float'Exponent (0.25):    "
19      & Float'Exponent (0.25)'Image);
20   Put_Line
21     ("Float'Exponent (1.0e-25): "
22      & Float'Exponent (1.0e-25)'Image);
23   Put_Line
24     ("Float'Compose (5.00000e-01, 1):   "
25      & Float'Compose (5.00000e-01, 1)'Image);
26   Put_Line
27     ("Float'Compose (5.00000e-01, -1):  "
28      & Float'Compose (5.00000e-01, -1)'Image);
29   Put_Line
30     ("Float'Compose (9.67141E-01, -83): "
31      & Float'Compose (9.67141E-01, -83)'Image);
32end Show_Exponent_Fraction_Compose;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Exponent_Fraction
MD5: d2e61b6b9a7a50861145f6b65e9fac39








Runtime output



Float'Fraction (1.0):      5.00000E-01
Float'Fraction (0.25):     5.00000E-01
Float'Fraction (1.0e-25):  9.67141E-01
Float'Exponent (1.0):      1
Float'Exponent (0.25):    -1
Float'Exponent (1.0e-25): -83
Float'Compose (5.00000e-01, 1):    1.00000E+00
Float'Compose (5.00000e-01, -1):   2.50000E-01
Float'Compose (9.67141E-01, -83):  1.00000E-25







To understand this code example, we have to take this formula into account:


Value = Fraction x Machine_RadixExponent




Considering that the value of Float'Machine_Radix on a typical PC is
two, we see that the value 1.0 is composed by a fraction of 0.5 and a machine
exponent of one. In other words:


0.5 x 21 = 1.0




For the value 0.25, we get a fraction of 0.5 and a machine exponent of -1,
which is the result of 0.5 x 2-1 = 0.25.
We can use the Compose attribute to perform this calculation. For
example, Float'Compose (0.5, -1) = 0.25.

Note that Fraction is always between 0.5 and 0.999999 (i.e < 1.0),
except for denormalized numbers, where it can be < 0.5.



Attribute: Scaling

Scaling is an attribute that scales a floating-point value based on the
machine radix and a machine exponent passed to the function. For example:


show_scaling.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Scaling is
 4begin
 5   Put_Line ("Float'Scaling (0.25, 1): "
 6             & Float'Scaling (0.25, 1)'Image);
 7   Put_Line ("Float'Scaling (0.25, 2): "
 8             & Float'Scaling (0.25, 2)'Image);
 9   Put_Line ("Float'Scaling (0.25, 3): "
10             & Float'Scaling (0.25, 3)'Image);
11end Show_Scaling;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Scaling
MD5: 9fa821d32911b74ee4b4fde3f3adafd8








Runtime output



Float'Scaling (0.25, 1):  5.00000E-01
Float'Scaling (0.25, 2):  1.00000E+00
Float'Scaling (0.25, 3):  2.00000E+00







The scaling is calculated with this formula:


scaling = value x Machine_Radixmachine exponent




For example, on a typical PC with a machine radix of two,
Float'Scaling (0.25, 3) = 2.0 corresponds to


0.25 x 23 = 2.0






Round-up and round-down attributes

Floor and Ceiling are attributes that returned the rounded-down
or rounded-up value, respectively, of a floating-point value. For example:


show_floor_ceiling.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show_Floor_Ceiling is
4begin
5   Put_Line ("Float'Floor (0.25):   "
6             & Float'Floor (0.25)'Image);
7   Put_Line ("Float'Ceiling (0.25): "
8             & Float'Ceiling (0.25)'Image);
9end Show_Floor_Ceiling;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Floor_Ceiling
MD5: 1344d54ae86b9fd4831d5f078eb655d4








Runtime output



Float'Floor (0.25):    0.00000E+00
Float'Ceiling (0.25):  1.00000E+00







As we can see in this example, the rounded-down value (floor) of 0.25 is 0.0,
while the rounded-up value (ceiling) of 0.25 is 1.0.



Round-to-nearest attributes

In this section, we discuss three attributes used for rounding:
Rounding, Unbiased_Rounding, Machine_Rounding
In all cases, the rounding attributes return the nearest integer value (as a
floating-point value). For example, the rounded value for 4.8 is 5.0 because 5
is the closest integer value.

Let's see a code example:


show_roundings.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Roundings is
 4begin
 5   Put_Line
 6     ("Float'Rounding (0.5):  "
 7      & Float'Rounding (0.5)'Image);
 8   Put_Line
 9     ("Float'Rounding (1.5):  "
10      & Float'Rounding (1.5)'Image);
11   Put_Line
12     ("Float'Rounding (4.5):  "
13      & Float'Rounding (4.5)'Image);
14   Put_Line
15     ("Float'Rounding (-4.5): "
16      & Float'Rounding (-4.5)'Image);
17   Put_Line
18     ("Float'Unbiased_Rounding (0.5): "
19      & Float'Unbiased_Rounding (0.5)'Image);
20   Put_Line
21     ("Float'Unbiased_Rounding (1.5): "
22      & Float'Unbiased_Rounding (1.5)'Image);
23   Put_Line
24     ("Float'Machine_Rounding (0.5): "
25      & Float'Machine_Rounding (0.5)'Image);
26   Put_Line
27     ("Float'Machine_Rounding (1.5): "
28      & Float'Machine_Rounding (1.5)'Image);
29end Show_Roundings;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Rounding
MD5: 3f78165f092a163339cb9593ff15a50d








Runtime output



Float'Rounding (0.5):   1.00000E+00
Float'Rounding (1.5):   2.00000E+00
Float'Rounding (4.5):   5.00000E+00
Float'Rounding (-4.5): -5.00000E+00
Float'Unbiased_Rounding (0.5):  0.00000E+00
Float'Unbiased_Rounding (1.5):  2.00000E+00
Float'Machine_Rounding (0.5):  1.00000E+00
Float'Machine_Rounding (1.5):  2.00000E+00







The difference between these attributes is the way they handle the case when a
value is exactly in between two integer values. For example, 4.5 could be
rounded up to 5.0 or rounded down to 4.0. This is the way each rounding
attribute works in this case:


	Rounding rounds away from zero. Positive floating-point values are
rounded up, while negative floating-point values are rounded down when the
value is between two integer values. For example:


	4.5 is rounded-up to 5.0, i.e.
Float'Rounding (4.5) = Float'Ceiling (4.5) = 5.0.


	-4.5 is rounded-down to -5.0, i.e.
Float'Rounding (-4.5) = Float'Floor (-4.5) = -5.0.






	Unbiased_Rounding rounds toward the even integer. For example,


	Float'Unbiased_Rounding (0.5) = 0.0 because zero is the closest even
integer, while


	Float'Unbiased_Rounding (1.5) = 2.0 because two is the closest even
integer.






	Machine_Rounding uses the most appropriate rounding instruction
available on the target platform. While this rounding attribute can
potentially have the best performance, its result may be non-portable. For
example, whether the rounding of 4.5 becomes 4.0 or 5.0 depends on the target
platform.


	If an algorithm depends on a specific rounding behavior, it's best to avoid
the Machine_Rounding attribute. On the other hand, if the rounding
behavior won't have a significant impact on the results, we can safely use
this attribute.










Attributes: Truncation, Remainder, Adjacent

The Truncation attribute returns the truncated value of a
floating-point value, i.e. the value corresponding to the integer part of a
number rounded toward zero. This corresponds to the number before the radix
point. For example, the truncation of 1.55 is 1.0 because the integer part of
1.55 is 1.

The Remainder attribute returns the remainder part of a division. For
example, Float'Remainder (1.25, 0.5) = 0.25. Let's briefly discuss the
details of this operations. The result of the division 1.25 / 0.5 is 2.5. Here,
1.25 is the dividend and 0.5 is the divisor. The quotient and remainder of this
division are 2 and 0.25, respectively. (Here, the quotient is an integer number,
and the remainder is the floating-point part that remains.)

Note that the relation between quotient and remainder is defined in such a way
that we get the original dividend back when we use the formula: "quotient x
divisor + remainder = dividend". For the previous example, this means
2 x 0.5 + 0.25 = 1.25.

The Adjacent attribute is the next machine value towards another value.
For example, on a typical PC, the adjacent value of a small value —
say, 1.0 x 10-83 — towards zero is +0.0, while the adjacent
value of this small value towards 1.0 is another small, but greater value
— in fact, it's 1.40130 x 10-45. Note that the first parameter
of the Adjacent attribute is the value we want to analyze and the
second parameter is the Towards value.

Let's see a code example:


show_truncation_remainder_adjacent.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Truncation_Remainder_Adjacent is
 4begin
 5   Put_Line
 6     ("Float'Truncation (1.55):  "
 7      & Float'Truncation (1.55)'Image);
 8   Put_Line
 9     ("Float'Truncation (-1.55): "
10      & Float'Truncation (-1.55)'Image);
11   Put_Line
12     ("Float'Remainder (1.25, 0.25): "
13      & Float'Remainder (1.25, 0.25)'Image);
14   Put_Line
15     ("Float'Remainder (1.25, 0.5):  "
16      & Float'Remainder (1.25, 0.5)'Image);
17   Put_Line
18     ("Float'Remainder (1.25, 1.0):  "
19      & Float'Remainder (1.25, 1.0)'Image);
20   Put_Line
21     ("Float'Remainder (1.25, 2.0):  "
22      & Float'Remainder (1.25, 2.0)'Image);
23   Put_Line
24     ("Float'Adjacent (1.0e-83, 0.0): "
25      & Float'Adjacent (1.0e-83, 0.0)'Image);
26   Put_Line
27     ("Float'Adjacent (1.0e-83, 1.0): "
28      & Float'Adjacent (1.0e-83, 1.0)'Image);
29end Show_Truncation_Remainder_Adjacent;









Attributes: Copy_Sign and Leading_Part

Copy_Sign is an attribute that returns a value where the sign of the
second floating-point argument is multiplied by the magnitude of the first
floating-point argument. For example, Float'Copy_Sign (1.0, -10.0) is
-1.0. Here, the sign of the second argument (-10.0) is multiplied by the
magnitude of the first argument (1.0), so the result is -1.0.

Leading_Part is an attribute that returns the approximated version of
the mantissa of a value based on the specified number of leading bits for the
mantissa. Let's see some examples:


	Float'Leading_Part (3.1416, 1) is 2.0 because that's the value we can
represent with one leading bit.


	Note that Float'Fraction (2.0) = 0.5 — which can be
represented with one leading bit in the mantissa — and
Float'Exponent (2.0) = 2.)






	If we increase the number of leading bits of the mantissa to two — by
writing Float'Leading_Part (3.1416, 2) —, we get 3.0 because
that's the value we can represent with two leading bits.


	If we increase again the number of leading bits to five —
Float'Leading_Part (3.1416, 5) —, we get 3.125.


	Note that, in this case Float'Fraction (3.125) = 0.78125
and Float'Exponent (3.125) = 2.


	The binary mantissa is actually 2#110_0100_0000_0000_0000_0000#,
which can be represented with five leading bits as expected:
2#110_01#.



	We can get the binary mantissa by calculating
Float'Fraction (3.125) * Float (Float'Machine_Radix) ** (Float'Machine_Mantissa - 1)
and converting the result to binary format. The -1 value in the formula
corresponds to the sign bit.
















Attention

In this explanation about the Leading_Part attribute, we're
talking about leading bits. Strictly speaking, however, this is actually a
simplification, and it's only correct if Machine_Radix is equal to
two — which is the case for most machines. Therefore, in most cases,
the explanation above is perfectly acceptable.

However, if Machine_Radix is not equal to two, we cannot use the
term "bits" anymore, but rather digits of the Machine_Radix.



Let's see some examples:


show_copy_sign_leading_part_machine.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Copy_Sign_Leading_Part_Machine is
 4begin
 5   Put_Line
 6     ("Float'Copy_Sign (1.0, -10.0): "
 7      & Float'Copy_Sign (1.0, -10.0)'Image);
 8   Put_Line
 9     ("Float'Copy_Sign (-1.0, -10.0): "
10      & Float'Copy_Sign (-1.0, -10.0)'Image);
11   Put_Line
12     ("Float'Copy_Sign (1.0,  10.0): "
13      & Float'Copy_Sign (1.0,  10.0)'Image);
14   Put_Line
15     ("Float'Copy_Sign (1.0, -0.0):  "
16      & Float'Copy_Sign (1.0, -0.0)'Image);
17   Put_Line
18     ("Float'Copy_Sign (1.0,  0.0):  "
19      & Float'Copy_Sign (1.0,  0.0)'Image);
20   Put_Line
21     ("Float'Leading_Part (1.75, 1): "
22      & Float'Leading_Part (1.75, 1)'Image);
23   Put_Line
24     ("Float'Leading_Part (1.75, 2): "
25      & Float'Leading_Part (1.75, 2)'Image);
26   Put_Line
27     ("Float'Leading_Part (1.75, 3): "
28      & Float'Leading_Part (1.75, 3)'Image);
29end Show_Copy_Sign_Leading_Part_Machine;









Attribute: Machine

Not every real number is directly representable as a floating-point value on a
specific machine. For example, let's take a value such as 1.0 x 1015
(or 1,000,000,000,000,000):


show_float_value.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Float_Value is
 4   package F_IO is new
 5     Ada.Text_IO.Float_IO (Float);
 6
 7   V : Float;
 8begin
 9   F_IO.Default_Fore := 3;
10   F_IO.Default_Aft  := 1;
11   F_IO.Default_Exp  := 0;
12
13   V := 1.0E+15;
14   Put ("1.0E+15 = ");
15   F_IO.Put (Item => V);
16   New_Line;
17
18end Show_Float_Value;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Float_Value
MD5: a7f80f7584ebaf39f2d5f9564c9c7d64








Runtime output



1.0E+15 = 999999986991000.0







If we run this example on a typical PC, we see that the expected value
1_000_000_000_000_000.0 was displayed as 999_999_986_991_000.0.
This is because 1.0 x 1015 isn't
directly representable on this machine, so it has to be modified to a value that
is actually representable (on the machine).

This automatic modification we've just described is actually hidden, so to
say, in the assignment. However, we can make it more visible by using the
Machine (X) attribute, which returns a version of X that is
representable on the target machine. The Machine (X) attribute rounds
(or truncates) X to either one of the adjacent machine numbers for the
specific floating-point type of X. (Of course, if the real value of
X is directly representable on the target machine, no modification is
performed.)

In fact, we could rewrite the V := 1.0E+15 assignment of the code example
as V := Float'Machine (1.0E+15), as we're never assigning a real value
directly to a floating-pointing variable — instead, we're first
converting it to a version of the real value that is representable on the
target machine. In this case, 999999986991000.0 is a representable version of
the real value 1.0 x 1015. Of course, writing V := 1.0E+15 or
V := Float'Machine (1.0E+15) doesn't make any difference to the actual
value that is assigned to V (in the case of this specific target
architecture), as the conversion to a representable value happens automatically
during the assignment to V.

There are, however, instances where using the Machine attribute does
make a difference in the result. For example, let's say we want to calculate
the difference between the original real value in our example
(1.0 x 1015) and the actual value that is assigned to V. We can
do this by using the Machine attribute in the calculation:


show_machine_attribute.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Machine_Attribute is
 4   package F_IO is new
 5     Ada.Text_IO.Float_IO (Float);
 6
 7   V : Float;
 8begin
 9   F_IO.Default_Fore := 3;
10   F_IO.Default_Aft  := 1;
11   F_IO.Default_Exp  := 0;
12
13   Put_Line
14     ("Original value: 1_000_000_000_000_000.0");
15
16   V := 1.0E+15;
17   Put ("Machine value:  ");
18   F_IO.Put (Item => V);
19   New_Line;
20
21   V := 1.0E+15 - Float'Machine (1.0E+15);
22   Put ("Difference:     ");
23   F_IO.Put (Item => V);
24   New_Line;
25
26end Show_Machine_Attribute;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Floating_Point_Types.Machine_Attribute
MD5: c2db2cca028dc5811068f9b7f1bc209d








Runtime output



Original value: 1_000_000_000_000_000.0
Machine value:  999999986991000.0
Difference:     13008896.0







When we run this example on a typical PC, we see that the difference is
roughly 1.3009 x 107. (Actually, the value that we might see is
1.3008896 x 107, which is a version of 1.3009 x 107 that is
representable on the target machine.)

When we write 1.0E+15 - Float'Machine (1.0E+15):


	the first value in the operation is the universal real value
1.0 x 1015, while


	the second value in the operation is a version of the universal real value
1.0 x 1015 that is representable on the target machine.




This also means that, in the assignment to V, we're actually writing
V := Float'Machine (1.0E+15 - Float'Machine (1.0E+15)), so that:


	we first get the intermediate real value that represents the difference
between these values; and then


	we get a version of this intermediate real value that is representable on the
target machine.




This is the reason why we see 1.3008896 x 107 instead of
1.3009 x 107 when we run this application.





Attributes of Fixed-Point types

In this section, we discuss various attributes and operations related to
fixed-point types.


In the Ada Reference Manual


	3.5.10 Operations of Fixed Point Types[#12]


	A.5.4 Attributes of Fixed Point Types[#13]







Attributes of ordinary and decimal fixed-point types


Attribute: Machine_Radix

Machine_Radix is an attribute that returns the radix of the hardware
representation of a type. For example:


show_fixed_machine_radix.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Fixed_Machine_Radix is
 4   type T3_D3 is delta 10.0 ** (-3) digits 3;
 5
 6   D : constant := 2.0 ** (-31);
 7   type TQ31 is delta D range -1.0 .. 1.0 - D;
 8begin
 9   Put_Line ("T3_D3'Machine_Radix: "
10             & T3_D3'Machine_Radix'Image);
11   Put_Line ("TQ31'Machine_Radix:  "
12             & TQ31'Machine_Radix'Image);
13end Show_Fixed_Machine_Radix;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Machine_Radix
MD5: a09d060a58f76550e948a8245ffb5fde








Runtime output



T3_D3'Machine_Radix:  2
TQ31'Machine_Radix:   2







Usually, this value is two, as the radix is based on a binary system.



Attribute: Machine_Rounds and Machine_Overflows

In this section, we discuss attributes that return Boolean values
indicating whether a feature is available or not in the target architecture:


	Machine_Rounds is an attribute that indicates what happens when the
result of a fixed-point operation is inexact:


	T'Machine_Rounds = True: inexact result is rounded;


	T'Machine_Rounds = False: inexact result is truncated.






	Machine_Overflows is an attribute that indicates whether a
Constraint_Error is guaranteed to be raised when a fixed-point
operation with that type produces an overflow or divide-by-zero.





show_boolean_attributes.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Boolean_Attributes is
 4   type T3_D3 is delta 10.0 ** (-3) digits 3;
 5
 6   D : constant := 2.0 ** (-31);
 7   type TQ31 is delta D range -1.0 .. 1.0 - D;
 8begin
 9   Put_Line ("T3_D3'Machine_Rounds:    "
10             & T3_D3'Machine_Rounds'Image);
11   Put_Line ("TQ31'Machine_Rounds:     "
12             & TQ31'Machine_Rounds'Image);
13   Put_Line ("T3_D3'Machine_Overflows: "
14             & T3_D3'Machine_Overflows'Image);
15   Put_Line ("TQ31'Machine_Overflows:  "
16             & TQ31'Machine_Overflows'Image);
17end Show_Boolean_Attributes;









Attribute: Small and Delta

The Small and Delta attributes return numbers that indicate the
numeric precision of a fixed-point type. In many cases, the Small of a
type T is equal to the Delta of that type — i.e.
T'Small = T'Delta. Let's discuss each attribute and how they distinguish
from each other.

The Delta attribute returns the value of the delta that was
used in the type definition. For example, if we declare
type T3_D3 is delta 10.0 ** (-3) digits D, then the value of
T3_D3'Delta is the 10.0 ** (-3) that we used in the type
definition.

The Small attribute returns the "small" of a type, i.e. the smallest
value used in the machine representation of the type. The small must be at
least equal to or smaller than the delta — in other words, it must
conform to the T'Small <= T'Delta rule.


For further reading...

The Small and the Delta need not actually be small numbers.
They can be arbitrarily large. For instance, they could be 1.0, or 1000.0.
Consider the following example:


fixed_point_defs.ads

 1package Fixed_Point_Defs is
 2   S     : constant := 32;
 3   Exp   : constant := 128;
 4   D     : constant := 2.0 ** (-S + Exp + 1);
 5
 6   type Fixed is delta D
 7     range -1.0 * 2.0 ** Exp ..
 8            1.0 * 2.0 ** Exp - D;
 9
10   pragma Assert (Fixed'Size = S);
11end Fixed_Point_Defs;








show_fixed_type_info.adb

 1with Fixed_Point_Defs; use Fixed_Point_Defs;
 2with Ada.Text_IO;      use Ada.Text_IO;
 3
 4procedure Show_Fixed_Type_Info is
 5begin
 6   Put_Line ("Size : "
 7             & Fixed'Size'Image);
 8   Put_Line ("Small : "
 9             & Fixed'Small'Image);
10   Put_Line ("Delta : "
11             & Fixed'Delta'Image);
12   Put_Line ("First : "
13             & Fixed'First'Image);
14   Put_Line ("Last : "
15             & Fixed'Last'Image);
16end Show_Fixed_Type_Info;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Large_Small_Attribute
MD5: 89672950b355060d250e0f5d7e2d40cb








Runtime output



Size :  32
Small :  1.58456325028528675E+29
Delta :  1.58456325028528675E+29
First : -340282366920938463463374607431768211456.0
Last :  340282366762482138434845932244680310784.0







In this example, the small of the Fixed type is actually quite
large: 1.5845632502852867529. (Also, the first and the last values
are large: -340,282,366,920,938,463,463,374,607,431,768,211,456.0 and
340,282,366,762,482,138,434,845,932,244,680,310,784.0, or approximately
-3.402838 and 3.402838.)

In this case, if we assign 1 or 1,000 to a variable F of this type,
the actual value stored in F is zero. Feel free to try this out!



When we declare an ordinary fixed-point data type, we must specify the delta.
Specifying the small, however, is optional:


	If the small isn't specified, it is automatically selected by the compiler.
In this case, the actual value of the small is an implementation-defined
power of two — always following the rule that says:
T'Small <= T'Delta.


	If we want, however, to specify the small, we can do that by using the
Small aspect. In this case, it doesn't need to be a power of two.




For decimal fixed-point types, we cannot specify the small. In this case,
it's automatically selected by the compiler, and it's always equal to the
delta.

Let's see an example:


fixed_small_delta.ads

 1package Fixed_Small_Delta is
 2   D3 : constant := 10.0 ** (-3);
 3
 4   type T3_D3 is delta D3 digits 3;
 5
 6   type TD3   is delta D3 range -1.0 .. 1.0 - D3;
 7
 8   D31 : constant := 2.0 ** (-31);
 9   D15 : constant := 2.0 ** (-15);
10
11   type TQ31 is delta D31 range -1.0 .. 1.0 - D31;
12
13   type TQ15 is delta D15 range -1.0 .. 1.0 - D15
14     with Small => D31;
15end Fixed_Small_Delta;








show_fixed_small_delta.adb

 1with Ada.Text_IO;       use Ada.Text_IO;
 2
 3with Fixed_Small_Delta; use Fixed_Small_Delta;
 4
 5procedure Show_Fixed_Small_Delta is
 6begin
 7   Put_Line ("T3_D3'Small: "
 8             & T3_D3'Small'Image);
 9   Put_Line ("T3_D3'Delta: "
10             & T3_D3'Delta'Image);
11   Put_Line ("T3_D3'Size: "
12             & T3_D3'Size'Image);
13   Put_Line ("--------------------");
14
15   Put_Line ("TD3'Small: "
16             & TD3'Small'Image);
17   Put_Line ("TD3'Delta: "
18             & TD3'Delta'Image);
19   Put_Line ("TD3'Size: "
20             & TD3'Size'Image);
21   Put_Line ("--------------------");
22
23   Put_Line ("TQ31'Small: "
24             & TQ31'Small'Image);
25   Put_Line ("TQ31'Delta: "
26             & TQ31'Delta'Image);
27   Put_Line ("TQ32'Size: "
28             & TQ31'Size'Image);
29   Put_Line ("--------------------");
30
31   Put_Line ("TQ15'Small: "
32             & TQ15'Small'Image);
33   Put_Line ("TQ15'Delta: "
34             & TQ15'Delta'Image);
35   Put_Line ("TQ15'Size: "
36             & TQ15'Size'Image);
37end Show_Fixed_Small_Delta;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Small_Delta
MD5: 0e811c7c0b92f05483b0ac7c3489dc3d








Runtime output



T3_D3'Small:  1.00000000000000000E-03
T3_D3'Delta:  1.00000000000000000E-03
T3_D3'Size:  11
--------------------
TD3'Small:  9.76562500000000000E-04
TD3'Delta:  1.00000000000000000E-03
TD3'Size:  11
--------------------
TQ31'Small:  4.65661287307739258E-10
TQ31'Delta:  4.65661287307739258E-10
TQ32'Size:  32
--------------------
TQ15'Small:  4.65661287307739258E-10
TQ15'Delta:  3.05175781250000000E-05
TQ15'Size:  32







As we can see in the output of the code example, the Delta attribute
returns the value we used for delta in the type definition of the
T3_D3, TD3, TQ31 and TQ15 types.

The TD3 type is an ordinary fixed-point type with the the same delta as
the decimal T3_D3 type. In this case, however, TD3'Small is not
the same as the TD3'Delta. On a typical desktop PC, TD3'Small is
2-10, while the delta is 10-3. (Remember that, for ordinary
fixed-point types, if we don't specify the small, it's automatically selected
by the compiler as a power of two smaller than or equal to the delta.)

In the case of the TQ15 type, we're specifying the small by using the
Small aspect. In this case, the underlying size of the TQ15
type is 32 bits, while the precision we get when operating with this type is
16 bits. Let's see a specific example for this type:


show_fixed_small_delta.adb

 1with Ada.Text_IO;       use Ada.Text_IO;
 2
 3with Fixed_Small_Delta; use Fixed_Small_Delta;
 4
 5procedure Show_Fixed_Small_Delta is
 6   V : TQ15;
 7begin
 8   Put_Line ("V'Size: " & V'Size'Image);
 9
10   V := TQ15'Small;
11   Put_Line ("V: " & V'Image);
12
13   V := TQ15'Delta;
14   Put_Line ("V: " & V'Image);
15end Show_Fixed_Small_Delta;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Small_Delta
MD5: f2a71db911913d6fbf5343671599c0ae








Runtime output



V'Size:  32
V:  0.00000
V:  0.00003







In the first assignment, we assign TQ15'Small (2-31) to
V. This value is smaller than the type's delta (2-15). Even
though V'Size is 32 bits, V'Delta indicates 16-bit precision, and
TQ15'Small requires 32-bit precision to be represented correctly.
As a result, V has a value of zero after this assignment.

In contrast, after the second assignment — where we assign
TQ15'Delta (2-15) to V — we see, as expected, that
V has the same value as the delta.



Attributes: Fore and Aft

The Fore and Aft attributes indicate the number of characters
or digits needed for displaying a value in decimal representation. To be more
precise:


	The Fore attribute refers to the digits before the decimal point and
it returns the number of digits plus one for the sign indicator (which is
either - or space), and it's always at least two.


	The Aft attribute returns the number of decimal digits that is needed
to represent the delta after the decimal point.




Let's see an example:


show_fixed_fore_aft.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Fixed_Fore_Aft is
 4   type T3_D3 is delta 10.0 ** (-3) digits 3;
 5
 6   D : constant := 2.0 ** (-31);
 7   type TQ31 is delta D range -1.0 .. 1.0 - D;
 8
 9   Dec : constant T3_D3 := -0.123;
10   Fix : constant TQ31  := -TQ31'Delta;
11begin
12   Put_Line ("T3_D3'Fore: "
13             & T3_D3'Fore'Image);
14   Put_Line ("T3_D3'Aft:  "
15             & T3_D3'Aft'Image);
16
17   Put_Line ("TQ31'Fore: "
18             & TQ31'Fore'Image);
19   Put_Line ("TQ31'Aft:  "
20             & TQ31'Aft'Image);
21   Put_Line ("----");
22   Put_Line ("Dec: "
23             & Dec'Image);
24   Put_Line ("Fix: "
25             & Fix'Image);
26end Show_Fixed_Fore_Aft;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Fixed_Fore_Aft
MD5: d031f74d967a96dee1c6a83ff4bd14cf








Runtime output



T3_D3'Fore:  2
T3_D3'Aft:   3
TQ31'Fore:  2
TQ31'Aft:   10
----
Dec: -0.123
Fix: -0.0000000005







As we can see in the output of the Dec and Fix variables at the
bottom, the value of Fore is two for both T3_D3 and TQ31.
This value corresponds to the length of the string "-0" displayed in the output
for these variables (the first two characters of "-0.123" and "-0.0000000005").

The value of Dec'Aft is three, which matches the number of digits after
the decimal point in "-0.123". Similarly, the value of Fix'Aft is 10,
which matches the number of digits after the decimal point in "-0.0000000005".




Attributes of decimal fixed-point types

The attributes presented in this subsection are only available for decimal
fixed-point types.


Attribute: Digits

Digits is an attribute that returns the number of significant decimal
digits of a decimal fixed-point subtype. This corresponds to the value that we
use for the digits in the definition of a decimal fixed-point type.

Let's see an example:


show_decimal_digits.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Decimal_Digits is
 4   type T3_D6 is delta 10.0 ** (-3) digits 6;
 5   subtype T3_D2 is T3_D6 digits 2;
 6begin
 7   Put_Line ("T3_D6'Digits: "
 8             & T3_D6'Digits'Image);
 9   Put_Line ("T3_D2'Digits: "
10             & T3_D2'Digits'Image);
11end Show_Decimal_Digits;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Decimal_Digits
MD5: d46e67bd0f8b369918e7ab9ab4413ae7








Runtime output



T3_D6'Digits:  6
T3_D2'Digits:  2







In this example, T3_D6'Digits is six, which matches the value that we
used for digits in the type definition of T3_D6. The same logic
applies for subtypes, as we can see in the value of T3_D2'Digits. Here,
the value is two, which was used in the declaration of the T3_D2
subtype.



Attribute: Scale

According to the Ada Reference Manual, the Scale attribute "indicates
the position of the point relative to the rightmost significant digits of
values" of a decimal type. For example:


	If the value of Scale is two, then there are two decimal digits after
the decimal point.


	If the value of Scale is negative, that implies that the
Delta is a power of 10 greater than 1, and it would be the number of
zero digits that every value would end in.




The Scale corresponds to the N used in the delta 10.0 ** (-N)
expression of the type declaration. For example, if we write
delta 10.0 ** (-3) in the declaration of a type T, then the value
of T'Scale is three.

Let's look at this complete example:


show_decimal_scale.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Decimal_Scale is
 4   type TM3_D6 is delta 10.0 **   3  digits 6;
 5   type T3_D6  is delta 10.0 ** (-3) digits 6;
 6   type T9_D12 is delta 10.0 ** (-9) digits 12;
 7begin
 8   Put_Line ("TM3_D6'Scale: "
 9             & TM3_D6'Scale'Image);
10   Put_Line ("T3_D6'Scale: "
11             & T3_D6'Scale'Image);
12   Put_Line ("T9_D12'Scale: "
13             & T9_D12'Scale'Image);
14end Show_Decimal_Scale;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Decimal_Scale
MD5: 56a99848cf31a9c69fe6d91ead73375a








Runtime output



TM3_D6'Scale: -3
T3_D6'Scale:  3
T9_D12'Scale:  9







In this example, we get the following values for the scales:


	TM3_D6'Scale = -3,


	T3_D6'Scale = 3,


	T9_D12 = 9.




As you can see, the value of Scale is directly related to the delta
of the corresponding type declaration.



Attribute: Round

The Round attribute rounds a value of any real type to the nearest
value that is a multiple of the delta of the decimal fixed-point type,
rounding away from zero if exactly between two such multiples.

For example, if we have a type T with three digits, and we use a value
with 10 digits after the decimal point in a call to T'Round, the
resulting value will have three digits after the decimal point.

Note that the X input of an S'Round (X) call is a universal real
value, while the returned value is of S'Base type.

Let's look at this example:


show_decimal_round.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Decimal_Round is
 4   type T3_D3 is delta 10.0 ** (-3) digits 3;
 5begin
 6   Put_Line ("T3_D3'Round (0.2774): "
 7             & T3_D3'Round (0.2774)'Image);
 8   Put_Line ("T3_D3'Round (0.2777): "
 9             & T3_D3'Round (0.2777)'Image);
10end Show_Decimal_Round;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Fixed_Point_Types.Decimal_Round
MD5: 153d9dae52fee750da30dd9152a03c37








Runtime output



T3_D3'Round (0.2774):  0.277
T3_D3'Round (0.2777):  0.278







Here, the T3_D3 has a precision of three digits. Therefore, to fit this
precision, 0.2774 is rounded to 0.277, and 0.2777 is rounded to 0.278.





Big Numbers

As we've seen before, we can define numeric types in Ada with a high degree of
precision. However, these normal numeric types in Ada are limited to what
the underlying hardware actually supports. For example, any signed integer
type — whether defined by the language or the user — cannot have a
range greater than that of System.Min_Int .. System.Max_Int because
those constants reflect the actual hardware's signed integer types. In certain
applications, that precision might not be enough, so we have to rely on
arbitrary-precision arithmetic[#14].
These so-called "big numbers" are limited conceptually only by available
memory, in contrast to the underlying hardware-defined numeric types.

Ada supports two categories of big numbers: big integers and big reals —
both are specified in child packages of the Ada.Numerics.Big_Numbers
package:



	Category

	Package





	Big Integers

	Ada.Numerics.Big_Numbers.Big_Integers



	Big Reals

	Ada.Numerics.Big_Numbers.Big_Real







In the Ada Reference Manual


	Big Numbers[#15]


	Big Integers[#16]


	Big Reals[#17]







Overview

Let's start with a simple declaration of big numbers:


show_simple_big_numbers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6with Ada.Numerics.Big_Numbers.Big_Reals;
 7use  Ada.Numerics.Big_Numbers.Big_Reals;
 8
 9procedure Show_Simple_Big_Numbers is
10   BI : Big_Integer;
11   BR : Big_Real;
12begin
13   BI := 12345678901234567890;
14   BR := 2.0 ** 1234;
15
16   Put_Line ("BI: " & BI'Image);
17   Put_Line ("BR: " & BR'Image);
18
19   BI := BI + 1;
20   BR := BR + 1.0;
21
22   Put_Line ("BI: " & BI'Image);
23   Put_Line ("BR: " & BR'Image);
24end Show_Simple_Big_Numbers;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Simple_Big_Numbers
MD5: b6a5e9ad170b09cbbabeb3ce06cc958c








Runtime output



BI:  12345678901234567890
BR: 295811224608098629060044695716103590786339687135372992239556207050657350796238924261053837248378050186443647759070955993120820899330381760937027212482840944941362110665443775183495726811929203861182015218323892077355983393191208928867652655993602487903113708549402668624521100611794270340232766099317098048887493809023127398253860618772619035009883272941129544640111837184.000
BI:  12345678901234567891
BR: 295811224608098629060044695716103590786339687135372992239556207050657350796238924261053837248378050186443647759070955993120820899330381760937027212482840944941362110665443775183495726811929203861182015218323892077355983393191208928867652655993602487903113708549402668624521100611794270340232766099317098048887493809023127398253860618772619035009883272941129544640111837185.000







In this example, we're declaring the big integer BI and the big real
BR, and we're incrementing them by one.

Naturally, we're not limited to using the + operator (such as in this
example). We can use the same operators on big numbers that we can use with
normal numeric types. In fact, the common unary operators
(+, -, abs) and binary operators (+, -,
*, /, **, Min and Max) are available to us.
For example:


show_simple_big_numbers_operators.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6procedure Show_Simple_Big_Numbers_Operators is
 7   BI : Big_Integer;
 8begin
 9   BI := 12345678901234567890;
10
11   Put_Line ("BI: " & BI'Image);
12
13   BI := -BI + BI / 2;
14   BI :=  BI - BI * 2;
15
16   Put_Line ("BI: " & BI'Image);
17end Show_Simple_Big_Numbers_Operators;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Simple_Big_Numbers_Operators
MD5: 198708787bfcd6e16ec4fba718706af6








Runtime output



BI:  12345678901234567890
BI:  6172839450617283945







In this example, we're applying the four basic operators (+, -,
*, /) on big integers.



Factorial

A typical example is the factorial[#18]: a sequence of the
factorial of consecutive small numbers can quickly lead to big numbers. Let's
take this implementation as an example:


factorial.ads

1function Factorial (N : Integer)
2                    return Long_Long_Integer;








factorial.adb

 1function Factorial (N : Integer)
 2                    return Long_Long_Integer is
 3   Fact : Long_Long_Integer := 1;
 4begin
 5   for I in 2 .. N loop
 6      Fact := Fact * Long_Long_Integer (I);
 7   end loop;
 8
 9   return Fact;
10end Factorial;








show_factorial.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Factorial;
 4
 5procedure Show_Factorial is
 6begin
 7   for I in 1 .. 50 loop
 8      Put_Line (I'Image & "! = "
 9                & Factorial (I)'Image);
10   end loop;
11end Show_Factorial;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Factorial_Integer
MD5: 9b20469533706ef025a03b506a07b920








Runtime output



 1! =  1
 2! =  2
 3! =  6
 4! =  24
 5! =  120
 6! =  720
 7! =  5040
 8! =  40320
 9! =  362880
 10! =  3628800
 11! =  39916800
 12! =  479001600
 13! =  6227020800
 14! =  87178291200
 15! =  1307674368000
 16! =  20922789888000
 17! =  355687428096000
 18! =  6402373705728000
 19! =  121645100408832000
 20! =  2432902008176640000

raised CONSTRAINT_ERROR : factorial.adb:6 overflow check failed







Here, we're using Long_Long_Integer for the computation and return type
of the Factorial function. (We're using Long_Long_Integer because
its range is probably the biggest possible on the machine, although that is not
necessarily so.) The last number we're able to calculate
before getting an exception is 20!, which basically shows the limitation of
standard integers for this kind of algorithm. If we use big integers instead,
we can easily display all numbers up to 50! (and more!):


factorial.ads

1with Ada.Numerics.Big_Numbers.Big_Integers;
2use  Ada.Numerics.Big_Numbers.Big_Integers;
3
4function Factorial (N : Integer)
5                    return Big_Integer;








factorial.adb

 1function Factorial (N : Integer)
 2                    return Big_Integer is
 3   Fact : Big_Integer := 1;
 4begin
 5   for I in 2 .. N loop
 6      Fact := Fact * To_Big_Integer (I);
 7   end loop;
 8
 9   return Fact;
10end Factorial;








show_big_number_factorial.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Factorial;
 4
 5procedure Show_Big_Number_Factorial is
 6begin
 7   for I in 1 .. 50 loop
 8      Put_Line (I'Image & "! = "
 9                & Factorial (I)'Image);
10   end loop;
11end Show_Big_Number_Factorial;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Factorial_Big_Numbers
MD5: d1f6464a3232d574d01f7ac14b822731








Runtime output



 1! =  1
 2! =  2
 3! =  6
 4! =  24
 5! =  120
 6! =  720
 7! =  5040
 8! =  40320
 9! =  362880
 10! =  3628800
 11! =  39916800
 12! =  479001600
 13! =  6227020800
 14! =  87178291200
 15! =  1307674368000
 16! =  20922789888000
 17! =  355687428096000
 18! =  6402373705728000
 19! =  121645100408832000
 20! =  2432902008176640000
 21! =  51090942171709440000
 22! =  1124000727777607680000
 23! =  25852016738884976640000
 24! =  620448401733239439360000
 25! =  15511210043330985984000000
 26! =  403291461126605635584000000
 27! =  10888869450418352160768000000
 28! =  304888344611713860501504000000
 29! =  8841761993739701954543616000000
 30! =  265252859812191058636308480000000
 31! =  8222838654177922817725562880000000
 32! =  263130836933693530167218012160000000
 33! =  8683317618811886495518194401280000000
 34! =  295232799039604140847618609643520000000
 35! =  10333147966386144929666651337523200000000
 36! =  371993326789901217467999448150835200000000
 37! =  13763753091226345046315979581580902400000000
 38! =  523022617466601111760007224100074291200000000
 39! =  20397882081197443358640281739902897356800000000
 40! =  815915283247897734345611269596115894272000000000
 41! =  33452526613163807108170062053440751665152000000000
 42! =  1405006117752879898543142606244511569936384000000000
 43! =  60415263063373835637355132068513997507264512000000000
 44! =  2658271574788448768043625811014615890319638528000000000
 45! =  119622220865480194561963161495657715064383733760000000000
 46! =  5502622159812088949850305428800254892961651752960000000000
 47! =  258623241511168180642964355153611979969197632389120000000000
 48! =  12413915592536072670862289047373375038521486354677760000000000
 49! =  608281864034267560872252163321295376887552831379210240000000000
 50! =  30414093201713378043612608166064768844377641568960512000000000000







As we can see in this example, replacing the Long_Long_Integer type by
the Big_Integer type fixes the problem (the runtime exception) that we
had in the previous version.
(Note that we're using the To_Big_Integer function to convert from
Integer to Big_Integer: we discuss these conversions next.)

Note that there is a limit to the upper bounds for big integers. However, this
limit isn't dependent on the hardware types — as it's the case for normal
numeric types —, but rather compiler specific. In other words, the
compiler can decide how much memory it wants to use to represent big integers.



Conversions

Most probably, we want to mix big numbers and standard numbers (i.e. integer
and real numbers) in our application. In this section, we talk about the
conversion between big numbers and standard types.


Validity

The package specifications of big numbers include subtypes that ensure
that a actual value of a big number is valid:



	Type

	Subtype for valid values





	Big Integers

	Valid_Big_Integer



	Big Reals

	Valid_Big_Real






These subtypes include a contract for this check. For example, this is the
definition of the Valid_Big_Integer subtype:

subtype Valid_Big_Integer is Big_Integer
  with Dynamic_Predicate =>
           Is_Valid (Valid_Big_Integer),
       Predicate_Failure =>
           (raise Program_Error);





Any operation on big numbers is actually performing this validity check (via a
call to the Is_Valid function). For example, this is the addition
operator for big integers:

function "+" (L, R : Valid_Big_Integer)
              return Valid_Big_Integer;





As we can see, both the input values to the operator as well as the return
value are expected to be valid — the Valid_Big_Integer subtype
triggers this check, so to say. This approach ensures that an algorithm
operating on big numbers won't be using invalid values.



Conversion functions

These are the most important functions to convert between big number and
standard types:



	Category

	To big number

	From big number





	Big Integers

	
	To_Big_Integer





	
	To_Integer (Integer)


	From_Big_Integer
(other integer types)







	Big Reals

	
	To_Big_Real (floating-point types or
fixed-point types)





	
	From_Big_Real







	
	To_Big_Real (Valid_Big_Integer)


	To_Real (Integer)





	
	Numerator,
Denominator (Integer)










In the following sections, we discuss these functions in more detail.



Big integer to integer

We use the To_Big_Integer and To_Integer functions to convert
back and forth between Big_Integer and Integer types:


show_simple_big_integer_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6procedure Show_Simple_Big_Integer_Conversion is
 7   BI : Big_Integer;
 8   I  : Integer := 10000;
 9begin
10   BI := To_Big_Integer (I);
11   Put_Line ("BI: " & BI'Image);
12
13   I := To_Integer (BI + 1);
14   Put_Line ("I:  " & I'Image);
15end Show_Simple_Big_Integer_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Simple_Big_Integer_Conversion
MD5: 83effc9da9835d92f4c49ed03d7ed84a








Runtime output



BI:  10000
I:   10001







In addition, we can use the generic Signed_Conversions and
Unsigned_Conversions packages to convert between Big_Integer and
any signed or unsigned integer types:


show_arbitrary_big_integer_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6procedure Show_Arbitrary_Big_Integer_Conversion is
 7
 8   type Mod_32_Bit is mod 2 ** 32;
 9
10   package Long_Long_Integer_Conversions is new
11     Signed_Conversions (Long_Long_Integer);
12   use Long_Long_Integer_Conversions;
13
14   package Mod_32_Bit_Conversions is new
15     Unsigned_Conversions (Mod_32_Bit);
16   use Mod_32_Bit_Conversions;
17
18   BI   : Big_Integer;
19   LLI  : Long_Long_Integer := 10000;
20   U_32 : Mod_32_Bit        := 2 ** 32 + 1;
21
22begin
23   BI := To_Big_Integer (LLI);
24   Put_Line ("BI:   " & BI'Image);
25
26   LLI := From_Big_Integer (BI + 1);
27   Put_Line ("LLI:  " & LLI'Image);
28
29   BI := To_Big_Integer (U_32);
30   Put_Line ("BI:   " & BI'Image);
31
32   U_32 := From_Big_Integer (BI + 1);
33   Put_Line ("U_32: " & U_32'Image);
34
35end Show_Arbitrary_Big_Integer_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Arbitrary_Big_Integer_Conversion
MD5: a89b42ff012c8729770eefa2d2b1f6c1








Runtime output



BI:    10000
LLI:   10001
BI:    1
U_32:  2







In this examples, we declare the Long_Long_Integer_Conversions and the
Mod_32_Bit_Conversions to be able to convert between big integers and
the Long_Long_Integer and the Mod_32_Bit types, respectively.

Note that, when converting from big integer to integer, we used the
To_Integer function, while, when using the instances of the generic
packages, the function is named From_Big_Integer.



Big real to floating-point types

When converting between big real and floating-point types, we have to
instantiate the generic Float_Conversions package:


show_big_real_floating_point_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Reals;
 4use  Ada.Numerics.Big_Numbers.Big_Reals;
 5
 6procedure Show_Big_Real_Floating_Point_Conversion
 7is
 8   type D10 is digits 10;
 9
10   package D10_Conversions is new
11     Float_Conversions (D10);
12   use D10_Conversions;
13
14   package Long_Float_Conversions is new
15     Float_Conversions (Long_Float);
16   use Long_Float_Conversions;
17
18   BR  : Big_Real;
19   LF  : Long_Float := 2.0;
20   F10 : D10        := 1.999;
21
22begin
23   BR := To_Big_Real (LF);
24   Put_Line ("BR:   " & BR'Image);
25
26   LF := From_Big_Real (BR + 1.0);
27   Put_Line ("LF:   " & LF'Image);
28
29   BR := To_Big_Real (F10);
30   Put_Line ("BR:   " & BR'Image);
31
32   F10 := From_Big_Real (BR + 0.1);
33   Put_Line ("F10:  " & F10'Image);
34
35end Show_Big_Real_Floating_Point_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Floating_Point_Conversion
MD5: 4ccb570b964d11d215660f5929f2709c








Runtime output



BR:    2.000
LF:    3.00000000000000E+00
BR:    1.999
F10:   2.099000000E+00







In this example, we declare the D10_Conversions and the
Long_Float_Conversions to be able to convert between big reals and
the custom floating-point type D10 and the Long_Float type,
respectively. To do that, we use the To_Big_Real and the
From_Big_Real functions.



Big real to fixed-point types

When converting between big real and ordinary fixed-point types, we have to
instantiate the generic Fixed_Conversions package:


show_big_real_fixed_point_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Reals;
 4use  Ada.Numerics.Big_Numbers.Big_Reals;
 5
 6procedure Show_Big_Real_Fixed_Point_Conversion
 7is
 8   D : constant := 2.0 ** (-31);
 9   type TQ31 is delta D range -1.0 .. 1.0 - D;
10
11   package TQ31_Conversions is new
12     Fixed_Conversions (TQ31);
13   use TQ31_Conversions;
14
15   BR   : Big_Real;
16   FQ31 : TQ31 := 0.25;
17
18begin
19   BR := To_Big_Real (FQ31);
20   Put_Line ("BR:   " & BR'Image);
21
22   FQ31 := From_Big_Real (BR * 2.0);
23   Put_Line ("FQ31: " & FQ31'Image);
24
25end Show_Big_Real_Fixed_Point_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Fixed_Point_Conversion
MD5: 49f03e130ec34842cbac7a728a280821








Runtime output



BR:    0.250
FQ31:  0.5000000000







In this example, we declare the TQ31_Conversions to be able to convert
between big reals and the custom fixed-point type TQ31 type.
Again, we use the To_Big_Real and the From_Big_Real functions for
the conversions.

Note that there's no direct way to convert between decimal fixed-point types
and big real types. (Of course, you could perform this conversion indirectly
by using a floating-point or an ordinary fixed-point type in between.)



Big reals to (big) integers

We can also convert between big reals and big integers (or standard integers):


show_big_real_big_integer_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6with Ada.Numerics.Big_Numbers.Big_Reals;
 7use  Ada.Numerics.Big_Numbers.Big_Reals;
 8
 9procedure Show_Big_Real_Big_Integer_Conversion
10is
11   I  : Integer;
12   BI : Big_Integer;
13   BR : Big_Real;
14
15begin
16   I  := 12345;
17   BR := To_Real (I);
18   Put_Line ("BR (from I):  " & BR'Image);
19
20   BI := 123456;
21   BR := To_Big_Real (BI);
22   Put_Line ("BR (from BI): " & BR'Image);
23
24end Show_Big_Real_Big_Integer_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Big_Integer_Conversion
MD5: 26bf2a4704ce98709587eedab3391119








Runtime output



BR (from I):  12345.000
BR (from BI): 123456.000







Here, we use the To_Real and the To_Big_Real and functions for
the conversions.



String conversions

In addition to that, we can use string conversions:


show_big_number_string_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6with Ada.Numerics.Big_Numbers.Big_Reals;
 7use  Ada.Numerics.Big_Numbers.Big_Reals;
 8
 9procedure Show_Big_Number_String_Conversion
10is
11   BI : Big_Integer;
12   BR : Big_Real;
13begin
14   BI := From_String ("12345678901234567890");
15   BR := From_String ("12345678901234567890.0");
16
17   Put_Line ("BI: "
18             & To_String (Arg   => BI,
19                          Width => 5,
20                          Base => 2));
21   Put_Line ("BR: "
22             & To_String (Arg   => BR,
23                          Fore  => 2,
24                          Aft   => 6,
25                          Exp   => 18));
26end Show_Big_Number_String_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Number_String_Conversion
MD5: aa1f19af04b0b901a086ac86151693a7








Runtime output



BI:  2#1010101101010100101010011000110011101011000111110000101011010010#
BR: 12.345678E+18







In this example, we use the From_String to convert a string to a big
number. Note that the From_String function is actually called when
converting a literal — because of the corresponding aspect for
user-defined literals in the definitions of the Big_Integer and the
Big_Real types.


For further reading...

Big numbers are implemented using
user-defined literals, which we
discussed previously. In fact, these are the corresponding type
declarations:

--  Declaration from
--  Ada.Numerics.Big_Numbers.Big_Integers;

type Big_Integer is private
  with Integer_Literal => From_Universal_Image,
       Put_Image       => Put_Image;

function From_Universal_Image
  (Arg : String)
  return Valid_Big_Integer
    renames From_String;

--  Declaration from
--  Ada.Numerics.Big_Numbers.Big_Reals;

type Big_Real is private
  with Real_Literal => From_Universal_Image,
       Put_Image    => Put_Image;

function From_Universal_Image
  (Arg : String)
   return Valid_Big_Real
     renames From_String;





As we can see in these declarations, the From_String function
renames the From_Universal_Image function, which is being used for
the user-defined literals.



Also, we call the To_String function to get a string for the big
numbers. Naturally, using the To_String function instead of the
Image attribute — as we did in previous examples — allows
us to customize the format of the string that we display in the user message.




Other features of big integers

Now, let's look at two additional features of big integers:


	the natural and positive subtypes, and


	other available operators and functions.





Big positive and natural subtypes

Similar to integer types, big integers have the Big_Natural and
Big_Positive subtypes to indicate natural and positive numbers. However,
in contrast to the Natural and Positive subtypes, the
Big_Natural and Big_Positive subtypes are defined via predicates
rather than the simple ranges of normal (ordinary) numeric types:

subtype Natural  is
  Integer range 0 .. Integer'Last;

subtype Positive is
  Integer range 1 .. Integer'Last;

subtype Big_Natural is Big_Integer
  with Dynamic_Predicate =>
         (if Is_Valid (Big_Natural)
            then Big_Natural >= 0),
       Predicate_Failure =>
         (raise Constraint_Error);

subtype Big_Positive is Big_Integer
  with Dynamic_Predicate =>
         (if Is_Valid (Big_Positive)
            then Big_Positive > 0),
       Predicate_Failure =>
         (raise Constraint_Error);





Therefore, we cannot simply use attributes such as Big_Natural'First.
However, we can use the subtypes to ensure that a big integer is in the
expected (natural or positive) range:


show_big_positive_natural.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6procedure Show_Big_Positive_Natural is
 7   BI, D, N : Big_Integer;
 8begin
 9   D  := 3;
10   N  := 2;
11   BI := Big_Natural (D / Big_Positive (N));
12
13   Put_Line ("BI: " & BI'Image);
14end Show_Big_Positive_Natural;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Positive_Natural
MD5: 844b41f001c9aed9cb99decb221d93fd








Runtime output



BI:  1







By using the Big_Natural and Big_Positive subtypes in the
calculation above (in the assignment to BI), we ensure that we don't
perform a division by zero, and that the result of the calculation is a natural
number.




Other operators for big integers

We can use the mod and rem operators with big integers:


show_big_integer_rem_mod.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6procedure Show_Big_Integer_Rem_Mod is
 7   BI : Big_Integer;
 8begin
 9   BI := 145 mod (-4);
10   Put_Line ("BI (mod): " & BI'Image);
11
12   BI := 145 rem (-4);
13   Put_Line ("BI (rem): " & BI'Image);
14end Show_Big_Integer_Rem_Mod;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Integer_Rem_Mod
MD5: 7347b617c51a3782921d997b3cfd5d37








Runtime output



BI (mod): -5
BI (rem):  1







In this example, we use the mod and rem operators in the
assignments to BI.

Moreover, there's a Greatest_Common_Divisor function for big
integers which, as the name suggests, calculates the greatest common divisor of
two big integer values:


show_big_integer_greatest_common_divisor.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6procedure Show_Big_Integer_Greatest_Common_Divisor
 7is
 8   BI : Big_Integer;
 9begin
10   BI := Greatest_Common_Divisor (145, 25);
11   Put_Line ("BI: " & BI'Image);
12
13end Show_Big_Integer_Greatest_Common_Divisor;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Integer_Greatest_Common_Divisor
MD5: 27e2f7b4cbe20ec979b672f3e7edfdb7








Runtime output



BI:  5







In this example, we retrieve the greatest common divisor of 145 and 25
(i.e.: 5).



Big real and quotients

An interesting feature of big reals is that they support quotients. In fact,
we can simply assign 2/3 to a big real variable. (Note that we're able to
omit the decimal points, as we write 2/3 instead of 2.0 / 3.0.)
For example:


show_big_real_quotient_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Reals;
 4use  Ada.Numerics.Big_Numbers.Big_Reals;
 5
 6procedure Show_Big_Real_Quotient_Conversion
 7is
 8   BR   : Big_Real;
 9begin
10   BR := 2 / 3;
11   --  Same as:
12   --  BR := From_Quotient_String ("2 / 3");
13
14   Put_Line ("BR:   " & BR'Image);
15
16   Put_Line ("Q:    "
17             & To_Quotient_String (BR));
18
19   Put_Line ("Q numerator:    "
20             & Numerator (BR)'Image);
21   Put_Line ("Q denominator:  "
22             & Denominator (BR)'Image);
23end Show_Big_Real_Quotient_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Real_Quotient_Conversion
MD5: 97d78457d3f6d5e1810e461c2c7cd172








Runtime output



BR:    0.666
Q:     2 /  3
Q numerator:     2
Q denominator:   3







In this example, we assign 2 / 3 to BR — we could have used
the From_Quotient_String function as well. Also, we use the
To_Quotient_String to get a string that represents the quotient.
Finally, we use the Numerator and Denominator functions to
retrieve the values, respectively, of the numerator and denominator of the
quotient (as big integers) of the big real variable.



Range checks

Previously, we've talked about the Big_Natural and Big_Positive
subtypes. In addition to those subtypes, we have the In_Range function
for big numbers:


show_big_numbers_in_range.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Numerics.Big_Numbers.Big_Integers;
 4use  Ada.Numerics.Big_Numbers.Big_Integers;
 5
 6with Ada.Numerics.Big_Numbers.Big_Reals;
 7use  Ada.Numerics.Big_Numbers.Big_Reals;
 8
 9procedure Show_Big_Numbers_In_Range is
10
11   BI : Big_Integer;
12   BR : Big_Real;
13
14   BI_From : constant Big_Integer := 0;
15   BI_To   : constant Big_Integer := 1024;
16
17   BR_From : constant Big_Real := 0.0;
18   BR_To   : constant Big_Real := 1024.0;
19
20begin
21   BI := 1023;
22   BR := 1023.9;
23
24   if In_Range (BI, BI_From, BI_To) then
25      Put_Line ("BI ("
26                & BI'Image
27                & ") is in the "
28                & BI_From'Image
29                & " .. "
30                & BI_To'Image
31                & " range");
32   end if;
33
34   if In_Range (BR, BR_From, BR_To) then
35      Put_Line ("BR ("
36                & BR'Image
37                & ") is in the "
38                & BR_From'Image
39                & " .. "
40                & BR_To'Image
41                & " range");
42   end if;
43
44end Show_Big_Numbers_In_Range;








Code block metadata



Project: Courses.Advanced_Ada.Data_Types.Numerics.Big_Numbers.Big_Numbers_In_Range
MD5: ded52ef7e9ef13a83264940ff9d8bcb3








Runtime output



BI ( 1023) is in the  0 ..  1024 range
BR (1023.900) is in the  0.000 .. 1024.000 range







In this example, we call the In_Range function to check whether the big
integer number (BI) and the big real number (BR) are in the range
between 0 and 1024.
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Expressions


Expressions: Definition

According to the Ada Reference Manual, an expression "is a formula that defines
the computation or retrieval of a value." Also, when an expression is
evaluated, the computed or retrieved value always has an associated type known
at compile-time.

Even though the definition above is very simple, Ada expressions are actually
very flexible — and they can also be very complex. In fact, if you read
the corresponding section[#1] of the Ada Reference Manual, you'll
quickly discover that they include elements such as relations, membership
choices, terms and primaries. Some of these are classic elements of expressions
in programming languages, although some of their forms are unique to Ada. In
this section, we present examples of just some of these elements. For a
complete overview, please refer to the Reference Manual.


In the Ada Reference Manual


	4.4 Expressions[#2]







Relations and simple expressions

Expressions usually consist of relations, which in turn consist of simple
expressions. (There are more details to this, but we'll keep it simple for the
moment.) Let's see a code example with a few expressions, which we dissect into
the corresponding grammatical elements — we're going to discuss them
later:


show_expression_elements.adb

 1procedure Show_Expression_Elements is
 2   type Mode is (Off, A, B, C, D);
 3
 4   pragma Unreferenced (B, C, D);
 5
 6   subtype Active_Mode is Mode
 7     range Mode'Succ (Off) .. Mode'Last;
 8
 9   M1, M2 : Mode;
10   Dummy     : Boolean;
11begin
12   M1 := A;
13
14   Dummy :=
15       M1 in Active_Mode
16                and then M2 in Off | A;
17   --
18   --   ^^^^^^^^^^^^^^^^^ relation
19   --
20   --                     ^^^^^^^^^^^^^^ relation
21   --   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22   --                                  expression
23
24   Dummy :=
25       M1 in Active_Mode;
26   --  ^^ name
27   --  ^^ primary
28   --  ^^ factor
29   --  ^^ term
30   --  ^^ simple expression
31   --
32   --        ^^^^^^^^^^^ membership choice
33   --        ^^^^^^^^^^^ membership choice list
34   --
35   --  ^^^^^^^^^^^^^^^^^ relation
36   --  ^^^^^^^^^^^^^^^^^ expression
37
38   Dummy :=
39       M2 in Off | A;
40   --  ^^ name
41   --  ^^ primary
42   --  ^^ factor
43   --  ^^ term
44   --  ^^ simple expression
45   --
46   --        ^^^ membership choice
47   --              ^ membership choice
48   --        ^^^^^^^ membership choice list
49   --
50   --  ^^^^^^^^^^^^^ relation
51   --  ^^^^^^^^^^^^^ expression
52
53end Show_Expression_Elements;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Expression_Elements
MD5: a22e6f2d2bc181ce77097a1de204eb62








Build output



show_expression_elements.adb:9:08: warning: variable "M2" is read but never assigned [-gnatwv]







In this code example, we see three expressions. As we mentioned earlier, every
expression has a type; here, the type of each expression is Boolean.

The first expression (M1 in Active_Mode and then M2 in Off | A) consists
of two relations: M1 in Active_Mode and M2 in Off | A. Let's
discuss some of the details.

The M1 in Active_Mode relation consists of the simple expression
M1 and the membership choice list Active_Mode. (Here, the
in keyword is part of the relation definition.) Also, as we see in the
comments of the source code, the simple expression M1 is, at the same
time, a term, a factor, a primary and a name.

Let's briefly talk about this chain of syntactic elements for simple
expressions. Very roughly said, this is how we can break up simple expressions:


	a simple expression consists of terms;


	a term consists of factors;


	a factor consists of primaries;


	a primary can be one of those:



	a numeric literal;


	null;


	a string literal;


	an aggregate;


	a name;


	an allocator (like new Integer);


	a parenthesized expression;


	a conditional expression;


	a quantified expression;


	a declare expression.












For further reading...

The definition of simple expressions we've just seen is very simplified. In
actuality, these are the grammatical elements specified in the Ada Reference
Manual:

simple_expression ::=
  [unary_adding_operator] term {binary_adding_operator term}

term ::= factor {multiplying_operator factor}

factor ::= primary [** primary] | abs primary | not primary

primary ::=
  numeric_literal | null | string_literal | aggregate
| name | allocator | (expression)
| (conditional_expression) | (quantified_expression)
| (declare_expression)







Later on in this chapter, we discuss
conditional expressions,
quantified expressions and
declare expressions in more details.

In the relation M2 in Off | A from the code example, Off | A is
a membership choice list, and Off and A are membership choices.


For further reading...

Relations can actually be much more complicated than the one we just
saw. In fact, this is the definition from the Ada Reference Manual:

expression ::=
     relation {and relation}
   | relation {and then relation}
   | relation {or relation}
   | relation {or else relation}
   | relation {xor relation}

relation ::=
     simple_expression
       [relational_operator simple_expression]
   | simple_expression [not] in
       membership_choice_list
   | raise_expression





Again, for more details, please refer to the
section on expressions[#3] of the Ada Reference Manual.




In the Ada Reference Manual


	4.4 Expressions[#4]


	4.5.2 Relational Operators and Membership Tests[#5]








Numeric expressions

The expressions we've seen so far had the Boolean type. Although much
of the grammar described in the Manual exists exclusively for Boolean
operations, we can also write numeric expressions such as the following one:


show_numeric_expressions.adb

 1procedure Show_Numeric_Expressions is
 2   C1    : constant Integer := 5;
 3   Dummy :          Integer;
 4begin
 5   Dummy :=
 6       -2 ** 4 + 3 * C1 ** 8;
 7   --                      ^ numeric literal
 8   --                      ^ primary
 9   --                ^^      name
10   --                ^^      primary
11   --                ^^^^^^^ factor
12   --              ^ multiplying operator
13   --            ^           numeric literal
14   --            ^           primary
15   --            ^           factor
16   --            ^^^^^^^^^^^ term
17   --
18   --        ^ numeric literal
19   --        ^ primary
20   --   ^ numeric literal
21   --   ^ primary
22   --   ^^^^^^               factor
23   --   ^^^^^^               term
24   --          ^ binary adding operator
25   --  ^ unary adding operator
26   --
27   --  ^^^^^^^^^^^^^^^^^^^^^^ simple expression
28   --
29   --  ^^^^^^^^^^^^^^^^^^^^^^ expression
30end Show_Numeric_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Numeric_Expressions
MD5: a3c902c7aa5b0afe30ae220256c3306a







In this code example, the expression - 2 ** 4 + 3 * C1 ** 8 consists of
just a single simple expression. (Note that simple expressions do not have to
be "simple".) This simple expression consists of two terms: 2 ** 4 and
3 * C1 ** 8. While the 2 ** 4 term is also a single factor, the
3 * C1 ** 8 term consists of two factors: 3 and C1 ** 8.
Both the 2 ** 4 and the C1 ** 8 factors consists of two primaries
each:


	the 2 ** 4 factor has the primaries 2 and 4,


	the C1 ** 8 factor has the primaries C1 and 8.





In the Ada Reference Manual


	4.4 Expressions[#6]








Other expressions

Expressions aren't limited to the Boolean type or to numeric types.
Indeed, expressions can be of any type, and the definition of primaries we've
seen earlier on already hints in this direction — as it includes elements
such as allocators. Because expressions are very flexible, covering all possible
variations and combinations in this section is out of scope. Again, please refer
to the section on expressions[#7] of the Ada Reference Manual for
further details.



Parenthesized expression

An interesting aspect of primaries is that, by using parentheses, we can
embed an expression inside another expression. As an example, let's discuss the
following expression and its elements:


show_parenthesized_expressions.adb

 1procedure Show_Parenthesized_Expressions is
 2   C1 : constant Integer := 4;
 3   C2 : constant Integer := 5;
 4
 5   Dummy : Integer;
 6begin
 7   Dummy :=
 8       (2 + C1) * C2;
 9   --       ^^       name
10   --       ^^       primary
11   --       ^^       factor
12   --       ^^       term
13   --
14   --   ^            numeric literal
15   --   ^            primary
16   --   ^            factor
17   --   ^            term
18   --
19   --     ^          binary adding operator
20   --  ^^^^^^^^      simple expression
21   --
22   --  ^^^^^^^^      expression
23   --  ^^^^^^^^      primary
24   --  ^^^^^^^^      factor
25   --
26   --             ^^ factor
27   --  ^^^^^^^^^^^^^ term
28   --
29   --  ^^^^^^^^^^^^^ simple expression
30   --
31   --  ^^^^^^^^^^^^^ expression
32end Show_Parenthesized_Expressions;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Parenthesized_Expressions
MD5: 5871d2b0cd33e4f562b96381e0f0d293







In this example, we first start with the single expression (2 + C1) * C2,
which is also a simple expression consisting of just one term, which consists of
two factors: (2 + C1) and C2. The (2 + C1) factor is also a
primary. Now, because of the parentheses, we identify that the primary
(2 + C1) is an expression that is embedded in another expression.


Important

To be fair, the existence of parentheses in a primary could also indicate
other kinds of expressions, such as conditional or quantified expressions.
However, differentiating between them is straightforward, as we'll see later
on in this chapter.



We then proceed to parse the (2 + C1) expression, which consists of the
terms 2 and C1. As we've seen in the comments of the code example,
each of these terms consists of one factor, which consists of one primary. In
the end, after parsing the primaries, we identify that 2 is a numeric
literal and C1 is a name.

Note that the usage of parentheses might lead to situations where we have
expressions in potentially unsuspected places. For example, consider the
following code example:


show_name_in_expression.adb

 1procedure Show_Name_In_Expression is
 2   type Mode is (Off, A, B, C, D);
 3
 4   M1 : Mode;
 5begin
 6   M1 := A;
 7
 8   case M1 is
 9     when Off | D   =>
10       null;
11     when A | B | C =>
12       M1 := D;
13   end case;
14
15end Show_Name_In_Expression;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Name_In_Expression
MD5: ec8fcbc511e6a372da4f0ad99d2619a5







Here, the case statement expects a selecting expression. In this case, M1
is identified as a name — after being identified as a relation, a simple
expression, a term, a factor and a primary.

However, if we replace case M1 is by case (M1) is, (M1)
is identified as a parenthesized expression, not as a name! This parenthesized
expression is first parsed and evaluated, which might have implications in case
statements, as we'll see
in another chapter.

Let's look at another example, this time with a subprogram call:


increment_by_one.ads

1procedure Increment_By_One (I : in out Integer);








increment_by_one.adb

1procedure Increment_By_One (I : in out Integer) is
2begin
3   I := I + 1;
4end Increment_By_One;








show_name_in_expression.adb

1with Increment_By_One;
2
3procedure Show_Name_In_Expression is
4   V : Integer := 0;
5begin
6   Increment_By_One ((V));
7end Show_Name_In_Expression;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Expressions_Definition.Name_In_Expression
MD5: 4805df49dc702e5cb365252e58742dd2








Build output



show_name_in_expression.adb:6:23: error: actual for "I" must be a variable
gprbuild: *** compilation phase failed







The Increment_By_One procedure from this example expects a variable as an
actual parameter because the parameter mode is in out. However, the
(V) in the call to the procedure is interpreted as an expression, so we
end up providing a value — the result of the expression — as the
actual parameter instead of the V variable. Naturally, this is a
compilation error. (Of course, writing Increment_By_One (V) fixes the
error.)




Conditional Expressions

As we've seen before, we can write simple expressions such as I = 0 or
D.Valid. A conditional expression, as the name implies, is an
expression that contains a condition. This might be an "if-expression" (in the
if ... then ... else form) or a "case-expression" (in the
case ... is when => form).

The Max function in the following code example is an expression function
implemented with a conditional expression — an if-expression, to be more
precise:


expr_func.ads

1package Expr_Func is
2
3   function Max (A, B : Integer) return Integer is
4     (if A >= B then A else B);
5
6end Expr_Func;







Let's say we have a system with four states Off, On,
Waiting, and Invalid. For this system, we want to implement a
function named Toggled that returns the toggled value of a state
S. If the current value of S is either Off or On,
the function toggles from Off to On (or from On
to Off). For other values, the state remains unchanged — i.e. the
returned value is the same as the input value. This is the implementation using
a conditional expression:


expr_func.ads

 1package Expr_Func is
 2
 3   type State is (Off, On, Waiting, Invalid);
 4
 5   function Toggled (S : State) return State is
 6     (if S = Off
 7       then On
 8       elsif S = On
 9         then Off
10         else S);
11
12end Expr_Func;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.Conditional_If_Expressions_1
MD5: 7a99711afecc0b481557f9874dfbf4de







As you can see, if-expressions may contain an elsif branch (and
therefore be more complicated).

The code above corresponds to this more verbose version:


expr_func.ads

1package Expr_Func is
2
3   type State is (Off, On, Waiting, Invalid);
4
5   function Toggled (S : State) return State;
6
7end Expr_Func;








expr_func.adb

 1package body Expr_Func is
 2
 3   function Toggled (S : State) return State is
 4   begin
 5      if S = Off then
 6         return On;
 7      elsif S = On then
 8         return Off;
 9      else
10         return S;
11      end if;
12   end Toggled;
13
14end Expr_Func;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.Conditional_If_Expressions_2
MD5: 9e6cdf53c9c934f37e5717e1d230615a







If we compare the if-block of this code example to the if-expression of the
previous example, we notice that the if-expression is just a simplified version
without the return keyword and the end if;. In fact, converting
an if-block to an if-expression is quite straightforward.

We could also replace the if-expression used in the Toggled function
above with a case-expression. For example:


expr_func.ads

 1package Expr_Func is
 2
 3   type State is (Off, On, Waiting, Invalid);
 4
 5   function Toggled (S : State) return State is
 6     (case S is
 7       when Off    => On,
 8       when On     => Off,
 9       when others => S);
10
11end Expr_Func;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.Conditional_Case_Expressions_1
MD5: 0dd3a86f0872d1e8c3a81f7a17c44bd5







Note that we use commas in case-expressions to separate the alternatives (the
when expressions). The code above corresponds to this more verbose
version:


expr_func.ads

1package Expr_Func is
2
3   type State is (Off, On, Waiting, Invalid);
4
5   function Toggled (S : State) return State;
6
7end Expr_Func;








expr_func.adb

 1package body Expr_Func is
 2
 3   function Toggled (S : State) return State is
 4   begin
 5      case S is
 6         when Off    => return On;
 7         when On     => return Off;
 8         when others => return S;
 9      end case;
10   end Toggled;
11
12end Expr_Func;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Conditional_Expressions.Conditional_Case_Expressions_2
MD5: db6a0737e3931c83c31f53e4da3d8a2b







If we compare the case block of this code example to the case-expression of the
previous example, we notice that the case-expression is just a simplified
version of the case block without the return keyword and the
end case;, and with alternatives separated by commas instead of
semicolons.


In the Ada Reference Manual


	4.5.7 Conditional Expressions[#8]








Quantified Expressions

Quantified expressions are for expressions using a quantifier —
which can be either all or some — and a predicate. This
kind of expressions let us formalize statements such as:


	"all values of array A must be zero" into
for all I in A'Range => A (I) = 0, and


	"at least one value of array A must be zero" into
for some I in A'Range => A (I) = 0.




In the quantified expression for all I in A'Range => A (I) = 0, the
quantifier is all and the predicate is A (I) = 0. In the second
expression, the quantifier is some. The result of a quantified
expression is always a Boolean value.

For example, we could use the quantified expressions above and implement these
two functions:


	Is_Zero, which checks whether all components of an array A are
zero, and


	Has_Zero, which checks whether array A has at least one
component of the array A is zero.




This is the complete code:


int_arrays.ads

 1package Int_Arrays is
 2
 3   type Integer_Arr is
 4     array (Positive range <>) of Integer;
 5
 6   function Is_Zero (A : Integer_Arr)
 7                     return Boolean is
 8      (for all I in A'Range => A (I) = 0);
 9
10   function Has_Zero (A : Integer_Arr)
11                      return Boolean is
12      (for some I in A'Range => A (I) = 0);
13
14   procedure Display_Array (A    : Integer_Arr;
15                            Name : String);
16
17end Int_Arrays;








int_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Int_Arrays is
 4
 5   procedure Display_Array (A    : Integer_Arr;
 6                            Name : String) is
 7   begin
 8      Put (Name & ": ");
 9      for E of A loop
10         Put (E'Image & " ");
11      end loop;
12      New_Line;
13   end Display_Array;
14
15end Int_Arrays;








test_int_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Int_Arrays;  use Int_Arrays;
 4
 5procedure Test_Int_Arrays is
 6   A : Integer_Arr := (0, 0, 1);
 7begin
 8   Display_Array (A, "A");
 9   Put_Line ("Is_Zero: "
10             & Boolean'Image (Is_Zero (A)));
11   Put_Line ("Has_Zero: "
12             & Boolean'Image (Has_Zero (A)));
13
14   A := (0, 0, 0);
15
16   Display_Array (A, "A");
17   Put_Line ("Is_Zero: "
18             & Boolean'Image (Is_Zero (A)));
19   Put_Line ("Has_Zero: "
20             & Boolean'Image (Has_Zero (A)));
21end Test_Int_Arrays;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Quantified_Expression.Quantified_Expression_1
MD5: 4bbda8a3830272748500f797f23f76fc








Runtime output



A:  0  0  1 
Is_Zero: FALSE
Has_Zero: TRUE
A:  0  0  0 
Is_Zero: TRUE
Has_Zero: TRUE







As you might have expected, we can rewrite a quantified expression as a loop
in the for I in A'Range loop if ... return ... form. In the code below,
we're implementing Is_Zero and Has_Zero using loops and
conditions instead of quantified expressions:


int_arrays.ads

 1package Int_Arrays is
 2
 3   type Integer_Arr is
 4     array (Positive range <>) of Integer;
 5
 6   function Is_Zero (A : Integer_Arr)
 7                     return Boolean;
 8
 9   function Has_Zero (A : Integer_Arr)
10                      return Boolean;
11
12   procedure Display_Array (A    : Integer_Arr;
13                            Name : String);
14
15end Int_Arrays;








int_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Int_Arrays is
 4
 5   function Is_Zero (A : Integer_Arr)
 6                     return Boolean is
 7   begin
 8      for I in A'Range loop
 9         if A (I) /= 0 then
10            return False;
11         end if;
12      end loop;
13
14      return True;
15   end Is_Zero;
16
17   function Has_Zero (A : Integer_Arr)
18                      return Boolean is
19   begin
20      for I in A'Range loop
21        if A (I) = 0 then
22           return True;
23        end if;
24      end loop;
25
26      return False;
27   end Has_Zero;
28
29   procedure Display_Array (A    : Integer_Arr;
30                            Name : String) is
31   begin
32      Put (Name & ": ");
33      for E of A loop
34         Put (E'Image & " ");
35      end loop;
36      New_Line;
37   end Display_Array;
38
39end Int_Arrays;








test_int_arrays.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Int_Arrays;  use Int_Arrays;
 4
 5procedure Test_Int_Arrays is
 6   A : Integer_Arr := (0, 0, 1);
 7begin
 8   Display_Array (A, "A");
 9   Put_Line ("Is_Zero: "
10             & Boolean'Image (Is_Zero (A)));
11   Put_Line ("Has_Zero: "
12             & Boolean'Image (Has_Zero (A)));
13
14   A := (0, 0, 0);
15
16   Display_Array (A, "A");
17   Put_Line ("Is_Zero: "
18             & Boolean'Image (Is_Zero (A)));
19   Put_Line ("Has_Zero: "
20             & Boolean'Image (Has_Zero (A)));
21end Test_Int_Arrays;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Quantified_Expression.Quantified_Expression_2
MD5: a957a8fd60e1849248efe1a84eae6afa








Runtime output



A:  0  0  1 
Is_Zero: FALSE
Has_Zero: TRUE
A:  0  0  0 
Is_Zero: TRUE
Has_Zero: TRUE







So far, we've seen quantified expressions using indices — e.g.
for all I in A'Range => .... We could avoid indices in quantified
expressions by simply using the E of A form. In this case, we can just
write for all E of A => .... Let's adapt the implementation of
Is_Zero and Has_Zero using this form:


int_arrays.ads

 1package Int_Arrays is
 2
 3   type Integer_Arr is
 4     array (Positive range <>) of Integer;
 5
 6   function Is_Zero (A : Integer_Arr)
 7                     return Boolean is
 8      (for all E of A => E = 0);
 9
10   function Has_Zero (A : Integer_Arr)
11                      return Boolean is
12      (for some E of A => E = 0);
13
14end Int_Arrays;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Quantified_Expression.Quantified_Expression_3
MD5: 059d12a6529483ebcc5db23dc6262896







Here, we're checking the components E of the array A and
comparing them against zero.
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	4.5.8 Quantified Expressions[#9]








Declare Expressions

So far, we've seen expressions that make use of existing objects declared
outside of the expression. Sometimes, we might want to declare constant objects
inside the expression, so we can use them locally in the expression. Similarly,
we might want to rename an object and use the renamed object in an expression.
In those cases, we can use a declare expression.

A declare expression allows for declaring or renaming objects within an
expression:


p.ads

1package P is
2
3   function Max (A, B : Integer) return Integer is
4     (declare
5         Bigger_A : constant Boolean := (A >= B);
6      begin
7         (if Bigger_A then A else B));
8
9end P;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Declare_Expressions.Simple_Declare_Expression
MD5: c4773c3749eea045ac5db147fbac594b







The declare expression starts with the declare keyword and the usual
object declarations, and it's followed by the begin keyword and the
body. In this example, the body of the declare expression is a conditional
expression.

Of course, the code above isn't really useful, so let's look at a more complete
example:


integer_arrays.ads

 1package Integer_Arrays is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   function Sum (Arr : Integer_Array)
 7                 return Integer;
 8
 9   --
10   --  Expression function using
11   --  declare expression:
12   --
13   function Avg (Arr : Integer_Array)
14                 return Float is
15     (declare
16         A :          Integer_Array renames Arr;
17         S : constant Float := Float (Sum (A));
18         L : constant Float := Float (A'Length);
19      begin
20         S / L);
21
22end Integer_Arrays;








integer_arrays.adb

 1package body Integer_Arrays is
 2
 3   function Sum (Arr : Integer_Array)
 4                 return Integer is
 5   begin
 6      return Acc : Integer := 0 do
 7         for V of Arr loop
 8            Acc := Acc + V;
 9         end loop;
10      end return;
11   end Sum;
12
13end Integer_Arrays;








show_integer_arrays.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2
 3with Integer_Arrays; use Integer_Arrays;
 4
 5procedure Show_Integer_Arrays is
 6   Arr : constant Integer_Array := [1, 2, 3];
 7begin
 8   Put_Line ("Sum: "
 9             & Sum (Arr)'Image);
10   Put_Line ("Avg: "
11             & Avg (Arr)'Image);
12end Show_Integer_Arrays;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Declare_Expressions.Integer_Arrays
MD5: 30a035038508549822c819b60638133d








Runtime output



Sum:  6
Avg:  2.00000E+00







In this example, the Avg function is implemented using a declare
expression. In this expression, A renames the Arr array, and
S is a constant initialized with the value returned by the Sum
function.
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	4.5.9 Declare Expressions[#10]







Restrictions in the declarative part

The declarative part of a declare expression is more restricted than the
declarative part of a subprogram or declare block. In fact, we cannot:


	declare variables;


	declare constants of limited types;


	rename an object of limited type that is constructed within the declarative
part;


	declare aliased constants;


	declare constants that make use of the Access or
Unchecked_Access attributes in the initialization;


	declare constants of anonymous access type.




Let's see some examples of erroneous declarations:


integer_arrays.ads

 1package Integer_Arrays is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   type Integer_Sum is limited private;
 7
 8   type Const_Integer_Access is
 9     access constant Integer;
10
11   function Sum (Arr : Integer_Array)
12                 return Integer;
13
14   function Sum (Arr : Integer_Array)
15                 return Integer_Sum;
16
17   --
18   --  Expression function using
19   --  declare expression:
20   --
21   function Avg (Arr : Integer_Array)
22                 return Float is
23     (declare
24         A  : Integer_Array renames Arr;
25
26         S1 : aliased constant Integer := Sum (A);
27         --  ERROR: aliased constant
28
29         S : Float := Float (S1);
30         L : Float := Float (A'Length);
31         --  ERROR: declaring variables
32
33         S2 : constant Integer_Sum := Sum (A);
34         --  ERROR: declaring constant of
35         --         limited type
36
37         A1 : Const_Integer_Access :=
38                S1'Unchecked_Access;
39         --  ERROR: using 'Unchecked_Access
40         --         attribute
41
42         A2 : access Integer := null;
43         --  ERROR: declaring object of
44         --         anonymous access type
45      begin
46         S / L);
47
48private
49
50   type Integer_Sum is new Integer;
51
52end Integer_Arrays;








integer_arrays.adb

 1package body Integer_Arrays is
 2
 3   function Sum (Arr : Integer_Array)
 4                 return Integer is
 5   begin
 6      return Acc : Integer := 0 do
 7         for V of Arr loop
 8            Acc := Acc + V;
 9         end loop;
10      end return;
11   end Sum;
12
13   function Sum (Arr : Integer_Array)
14                 return Integer_Sum is
15     (Integer_Sum (Integer'(Sum (Arr))));
16
17end Integer_Arrays;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Declare_Expressions.Integer_Arrays_Error
MD5: ea38f5067c849b85685d70ffc386f7a7








Build output



integer_arrays.ads:26:10: error: "aliased" not allowed in declare_expression
integer_arrays.ads:29:10: error: object renaming or constant declaration expected
integer_arrays.ads:30:10: error: object renaming or constant declaration expected
integer_arrays.ads:33:10: error: object renaming or constant declaration expected
integer_arrays.ads:38:19: error: "Unchecked_Access" attribute cannot occur in a declare_expression
integer_arrays.ads:42:15: error: anonymous access type not allowed in declare_expression
gprbuild: *** compilation phase failed







In this version of the Avg function, we see many errors in the
declarative part of the declare expression. If we convert the declare
expression into an actual function implementation, however, those declarations
won't trigger compilation errors. (Feel free to try this out!)




Reduction Expressions


Note

This feature was introduced in Ada 2022.



A reduction expression reduces a list of values into a single value. For
example, we can reduce the list [2, 3, 4] to a single value:


	by adding the values of the list: 2 + 3 + 4 = 9, or


	by multiplying the values of the list: 2 * 3 * 4 = 24.




We write a reduction expression by using the Reduce attribute and
providing the reducer and its initial value:


	the reducer is the operator (e.g.: + or *) that we use to
combine the values of the list;


	the initial value is the value that we use before all other values of the
list.




For example, if we use + as the operator and 0 an the initial
value, we get the reduction expression: 0 + 2 + 3 + 4 = 9. This can be
implemented using an array:


show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4   A : array (1 .. 3) of Integer;
 5   I : Integer;
 6begin
 7   A := [2, 3, 4];
 8   I := A'Reduce ("+", 0);
 9
10   Put_Line ("A = "
11             & A'Image);
12   Put_Line ("I = "
13             & I'Image);
14end Show_Reduction_Expression;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Simple_Reduction_Expression
MD5: 63c85aeff33e9ab3bf37bcb62559e0b2








Runtime output



A = 
[ 2,  3,  4]
I =  9







Here, we have the array A with a list of values. The
A'Reduce ("+", 0) expression reduces the list of values of A into
a single value — in this case, an integer value that is stored in
I. This statement is equivalent to:

I := 0;
for E of A loop
   I := I + E;
end loop;





Naturally, we can reduce the array using the * operator:


show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4   A : array (1 .. 3) of Integer;
 5   I : Integer;
 6begin
 7   A := [2, 3, 4];
 8   I := A'Reduce ("*", 1);
 9
10   Put_Line ("A = "
11             & A'Image);
12   Put_Line ("I = "
13             & I'Image);
14end Show_Reduction_Expression;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Simple_Reduction_Expression
MD5: 98e1de10863eed4bd12cc6ab1d7ce7ef








Runtime output



A = 
[ 2,  3,  4]
I =  24







In this example, we call A'Reduce ("*", 1) to reduce the list. (Note
that we use an initial value of one because it is the
identity element[#11] of a multiplication, so the
complete operation is: 1 * 2 * 3 * 4 = 24.)
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	Reduction Expressions[#12]







Value sequences

In addition to arrays, we can apply reduction expression to value sequences,
which consist of an iterated element association — for example,
[for I in 1 .. 3 => I + 1]. We can simply append the reduction
expression to a value sequence:


show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4   I : Integer;
 5begin
 6   I := [for I in 1 .. 3 =>
 7           I + 1]'Reduce ("+", 0);
 8   Put_Line ("I = "
 9             & I'Image);
10
11   I := [for I in 1 .. 3 =>
12           I + 1]'Reduce ("*", 1);
13   Put_Line ("I = "
14             & I'Image);
15end Show_Reduction_Expression;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Reduction_Expression_Value_Sequences
MD5: 25b75869e53aa3c8a8f8c821a05718c5








Runtime output



I =  9
I =  24







In this example, we create the value sequence [for I in 1 .. 3 => I + 1]
and reduce it using the + and * operators. (Note that the
operations in this example have the same results as in the previous examples
using arrays.)



Custom reducers

In the previous examples, we've used standard operators such as + and
* as the reducer. We can, however, write our own reducers and pass
them to the Reduce attribute. For example:


show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4   type Integer_Array is
 5     array (Positive range <>) of Integer;
 6
 7   A : Integer_Array (1 .. 3);
 8   I : Long_Integer;
 9
10   procedure Accumulate
11     (Accumulator : in out Long_Integer;
12      Value       : Integer) is
13   begin
14      Accumulator := Accumulator
15                     + Long_Integer (Value);
16   end Accumulate;
17
18begin
19   A := [2, 3, 4];
20   I := A'Reduce (Accumulate, 0);
21
22   Put_Line ("A = "
23             & A'Image);
24   Put_Line ("I = "
25             & I'Image);
26end Show_Reduction_Expression;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Custom_Reducer_Procedure
MD5: 1ed7cd1f3f5d5b8acda36b04afa955f0








Runtime output



A = 
[ 2,  3,  4]
I =  9







In this example, we implement the Accumulate procedure as our reducer,
which is called to accumulate the individual elements (integer values) of the
list. We pass this procedure to the Reduce attribute in the
I := A'Reduce (Accumulate, 0) statement, which is equivalent to:

I := 0;
for E of A loop
   Accumulate (I, E);
end loop;





A custom reducer must have the following parameters:


	The accumulator parameter, which stores the interim result — and the
final result as well, once all elements of the list have been processed.


	The value parameter, which is a single element from the list.




Note that the accumulator type doesn't need to match the type of the individual
components. In this example, we're using Integer as the component type,
while the accumulator type is Long_Integer. (For this kind of reducers,
using Long_Integer instead of Integer for the accumulator type
makes lots of sense due to the risk of triggering overflows while the reducer
is accumulating values — e.g. when accumulating a long list with larger
numbers.)

In the example above, we've implemented the reducer as a procedure. However, we
can also implement it as a function. In this case, the accumulated value is
returned by the function:


show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4   type Integer_Array is
 5     array (Positive range <>) of Integer;
 6
 7   A : Integer_Array (1 .. 3);
 8   I : Long_Integer;
 9
10   function Accumulate
11     (Accumulator : Long_Integer;
12      Value       : Integer)
13      return Long_Integer is
14   begin
15      return Accumulator + Long_Integer (Value);
16   end Accumulate;
17
18begin
19   A := [2, 3, 4];
20   I := A'Reduce (Accumulate, 0);
21
22   Put_Line ("A = "
23             & A'Image);
24   Put_Line ("I = "
25             & I'Image);
26end Show_Reduction_Expression;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Custom_Reducer_Function
MD5: 3bfc9b59e4667490e40921770990f52b








Runtime output



A = 
[ 2,  3,  4]
I =  9







In this example, we converted the Accumulate procedure into a function
(while the core implementation is essentially the same).

Note that the reduction expression remains the same, independently of whether
we're using a procedure or a function as the reducer. Therefore, the statement
with the reduction expression in this example is the same as in the previous
example: I := A'Reduce (Accumulate, 0);. Now that we're using a
function, this statement is equivalent to:

I := 0;
for E of A loop
   I := Accumulate (I, E);
end loop;







Other accumulator types

The accumulator type isn't restricted to scalars: in fact, we could use record
types as well. For example:


show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Reduction_Expression is
 4   type Integer_Array is
 5     array (Positive range <>) of Integer;
 6
 7   A : Integer_Array (1 .. 3);
 8
 9   type Integer_Accumulator is record
10      Value : Long_Integer;
11      Count : Integer;
12   end record;
13
14   function Accumulate
15     (Accumulator : Integer_Accumulator;
16      Value       : Integer)
17      return Integer_Accumulator is
18   begin
19      return (Value => Accumulator.Value
20                       + Long_Integer (Value),
21              Count => Accumulator.Count + 1);
22   end Accumulate;
23
24   function Zero return Integer_Accumulator is
25     (Value => 0, Count => 0);
26
27   function Average (Acc : Integer_Accumulator)
28                     return Float is
29     (Float (Acc.Value) / Float (Acc.Count));
30
31   Acc : Integer_Accumulator;
32
33begin
34   A := [2, 3, 4];
35
36   Acc := A'Reduce (Accumulate, Zero);
37   Put_Line ("Acc = "
38             & Acc'Image);
39   Put_Line ("Avg = "
40             & Average (Acc)'Image);
41end Show_Reduction_Expression;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Reducer_Integer_Accumulator
MD5: 95d61e18e7b719d0a25dc35cdbff6af2








Runtime output



Acc = 
(VALUE =>  9,
 COUNT =>  3)
Avg =  3.00000E+00







In this example, we're using the Integer_Accumulator record type in our
reducer — the Accumulate function. In this case, we're not only
accumulating the values, but also counting the number of elements in the
list. (Of course, we could have used A'Length for that as well.)

Also, we're not limited to numeric types: we can also create a reducer using
strings as the accumulator type. In fact, we can display the initial value and
the elements of the list by using unbounded strings:


show_reduction_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Strings.Unbounded;
 4use  Ada.Strings.Unbounded;
 5
 6procedure Show_Reduction_Expression is
 7   type Integer_Array is
 8     array (Positive range <>) of Integer;
 9
10   A : Integer_Array (1 .. 3);
11
12   function Unbounded_String_List
13     (Accumulator : Unbounded_String;
14      Value       : Integer)
15          return Unbounded_String is
16   begin
17      return Accumulator
18             & ", " & Value'Image;
19   end Unbounded_String_List;
20
21begin
22   A := [2, 3, 4];
23
24   Put_Line ("A = "
25             & A'Image);
26   Put_Line ("L = "
27             & To_String (A'Reduce
28               (Unbounded_String_List,
29                  To_Unbounded_String ("0"))));
30end Show_Reduction_Expression;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Expressions.Reduction_Expressions.Reducer_String_Accumulator
MD5: 557416f08f28a48110c0fa6909086629








Runtime output



A = 
[ 2,  3,  4]
L = 0,  2,  3,  4







In this case, the "accumulator" is concatenating the initial value and
individual values of the list into a string.
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Statements


Simple and Compound Statements

We can classify statements as either simple or compound. Simple statements
don't contain other statements; think of them as "atomic units" that cannot be
further divided. Compound statements, on the other hand, may contain other
— simple or compound — statements.

Here are some examples from each category:



	Category

	Examples





	Simple statements

	Null statement, assignment, subprogram call, etc.



	Compound statements

	If statement, case statement, loop statement,
block statement
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	5.1 Simple and Compound Statements - Sequences of Statements[#1]








Labels

We can use labels to identify statements in the code. They have the following
format: <<Some_Label>>. We write them right before the statement we want
to apply it to. Let's see an example of labels with simple statements:


show_statement_identifier.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Statement_Identifier is
 4   pragma Warnings (Off, "is not referenced");
 5begin
 6   <<Show_Hello>> Put_Line ("Hello World!");
 7   <<Show_Test>>  Put_Line ("This is a test.");
 8
 9   <<Show_Separator>>
10   <<Show_Block_Separator>>
11   Put_Line ("====================");
12end Show_Statement_Identifier;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Simple_Labels
MD5: 820f5963b476af5c04314fd4373d2286








Runtime output



Hello World!
This is a test.
====================







Here, we're labeling each statement. For example, we use the Show_Hello
label to identify the Put_Line ("Hello World!"); statement. Note that we
can use multiple labels a single statement. In this code example, we use the
Show_Separator and Show_Block_Separator labels for the same
statement.
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	5.1 Simple and Compound Statements - Sequences of Statements[#2]







Labels and goto statements

Labels are mainly used in combination with goto statements. (Although
pretty much uncommon, we could potentially use labels to indicate important
statements in the code.) Let's see an example where we use a goto label;
statement to jump to a specific label:


show_cleanup.adb

 1procedure Show_Cleanup is
 2   pragma Warnings (Off, "always false");
 3
 4   Some_Error : Boolean;
 5begin
 6   Some_Error := False;
 7
 8   if Some_Error then
 9      goto Cleanup;
10   end if;
11
12   <<Cleanup>> null;
13end Show_Cleanup;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Label_Goto
MD5: 0ce06582bbefae818d4da3b7d2d3436b







Here, we transfer the control to the cleanup statement as soon as an error is
detected.



Use-case: Continue

Another use-case is that of a Continue label in a loop. Consider a loop
where we want to skip further processing depending on a condition:


show_continue.adb

 1procedure Show_Continue is
 2   function Is_Further_Processing_Needed
 3     (Dummy : Integer)
 4      return Boolean
 5   is
 6   begin
 7      --  Dummy implementation
 8      return False;
 9   end Is_Further_Processing_Needed;
10
11   A : constant array (1 .. 10) of Integer :=
12        (others => 0);
13begin
14   for E of A loop
15
16      --  Some stuff here...
17
18      if Is_Further_Processing_Needed (E) then
19
20         --  Do more stuff...
21
22         null;
23      end if;
24   end loop;
25end Show_Continue;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Label_Continue_1
MD5: 115eeaf08d5fb072d707d6325fe9cfd0







In this example, we call the Is_Further_Processing_Needed (E) function to
check whether further processing is needed or not. If it's needed, we continue
processing in the if statement. We could simplify this code by just using
a Continue label at the end of the loop and a goto statement:


show_continue.adb

 1procedure Show_Continue is
 2   function Is_Further_Processing_Needed
 3     (Dummy : Integer)
 4      return Boolean
 5   is
 6   begin
 7      --  Dummy implementation
 8      return False;
 9   end Is_Further_Processing_Needed;
10
11   A : constant array (1 .. 10) of Integer :=
12     (others => 0);
13begin
14   for E of A loop
15
16      --  Some stuff here...
17
18      if not Is_Further_Processing_Needed (E) then
19         goto Continue;
20      end if;
21
22      --  Do more stuff...
23
24      <<Continue>>
25   end loop;
26end Show_Continue;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Label_Continue_2
MD5: 260b52ead782adf76eee5cf3c4e8332b







Here, we use a Continue label at the end of the loop and jump to it in
the case that no further processing is needed. Note that, in this example, we
don't have a statement after the Continue label because the label itself
is at the end of a statement — to be more specific, at the end of the loop
statement. In such cases, there's an implicit null statement.


Historically

Since Ada 2012, we can simply write:

loop
   --  Some statements...

   <<Continue>>
end loop;





If a label is used at the end of a sequence of statements, a null
statement is implied. In previous versions of Ada, however, that is not the
case. Therefore, when using those versions of the language, we must write at
least a null statement:

loop
   --  Some statements...

   <<Continue>> null;
end loop;









Labels and compound statements

We can use labels with compound statements as well. For example, we can label
a for loop:


show_statement_identifier.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Statement_Identifier is
 4   pragma Warnings (Off, "is not referenced");
 5
 6   Arr   : constant array (1 .. 5) of Integer :=
 7             (1, 4, 6, 42, 49);
 8   Found : Boolean := False;
 9begin
10   <<Find_42>> for E of Arr loop
11      if E = 42 then
12         Found := True;
13         exit;
14      end if;
15   end loop;
16
17   Put_Line ("Found: " & Found'Image);
18end Show_Statement_Identifier;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Loop_Label
MD5: 5ca80b5a379ba0b08ccfaa4c6eab64d5








Runtime output



Found: TRUE








For further reading...

In addition to labels, loops and block statements allow us to use a
statement identifier. In simple terms, instead of writing
<<Some_Label>>, we write Some_Label :.

We could rewrite the previous code example using a loop statement
identifier:


show_statement_identifier.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Statement_Identifier is
 4   Arr   : constant array (1 .. 5) of Integer :=
 5             (1, 4, 6, 42, 49);
 6   Found : Boolean := False;
 7begin
 8   Find_42 : for E of Arr loop
 9      if E = 42 then
10         Found := True;
11         exit Find_42;
12      end if;
13   end loop Find_42;
14
15   Put_Line ("Found: " & Found'Image);
16end Show_Statement_Identifier;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Labels.Loop_Statement_Identifier
MD5: e52cb5eea9427addf3cabe64dd73bc2d








Runtime output



Found: TRUE







Loop statement and block statement identifiers are generally preferred over
labels. Later in this chapter, we discuss this topic in more detail.






Exit loop statement

We've introduced bare loops back in the
Introduction to Ada course[#3].
In this section, we'll briefly discuss loop names and exit loop statements.

A bare loop has this form:

loop
    exit when Some_Condition;
end loop;





We can name a loop by using a loop statement identifier:

Loop_Name:
   loop
      exit Loop_Name when Some_Condition;
   end loop Loop_Name;





In this case, we have to use the loop's name after end loop. Also,
having a name for a loop allows us to indicate which loop we're exiting from:
exit Loop_Name when.

Let's see a complete example:


show_vector_cursor_iteration.adb

 1with Ada.Text_IO;            use Ada.Text_IO;
 2with Ada.Containers.Vectors;
 3
 4procedure Show_Vector_Cursor_Iteration is
 5
 6   package Integer_Vectors is new
 7     Ada.Containers.Vectors
 8       (Index_Type   => Positive,
 9        Element_Type => Integer);
10
11   use Integer_Vectors;
12
13   V : constant Vector := 20 & 10 & 0 & 13;
14   C : Cursor;
15begin
16   C := V.First;
17   Put_Line ("Vector elements are: ");
18
19   Show_Elements :
20      loop
21         exit Show_Elements when C = No_Element;
22
23         Put_Line ("Element: "
24                   & Integer'Image (V (C)));
25         C := Next (C);
26      end loop Show_Elements;
27
28end Show_Vector_Cursor_Iteration;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Exit_Loop_Statement.Exit_Named_Loop
MD5: b77353f6ed98f8ddb32c73c47d249020








Runtime output



Vector elements are: 
Element:  20
Element:  10
Element:  0
Element:  13







Naming a loop is particularly useful when we have nested loops and we want to
exit directly from the inner loop:


show_inner_loop_exit.adb

 1procedure Show_Inner_Loop_Exit is
 2   pragma Warnings (Off);
 3
 4   Cond : Boolean := True;
 5begin
 6
 7   Outer_Processing : loop
 8
 9      Inner_Processing : loop
10         exit Outer_Processing when Cond;
11      end loop Inner_Processing;
12
13   end loop Outer_Processing;
14
15end Show_Inner_Loop_Exit;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Exit_Loop_Statement.Inner_Loop_Exit
MD5: b5c7434f1bf23c2cb8f81e4c13a31386







Here, we indicate that we exit from the Outer_Processing loop in case a
condition Cond is met, even if we're actually within the inner loop.
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	5.7 Exit Statements[#4]








If, case and loop statements

In the Introduction to Ada course, we talked about
if statements[#5],
loop statements[#6],
and case statements[#7]. This is a very simple
code example with these statements:


show_if_case_loop_statements.adb

 1procedure Show_If_Case_Loop_Statements is
 2   pragma Warnings (Off);
 3
 4   Reset     : Boolean := False;
 5   Increment : Boolean := True;
 6   Val       : Integer := 0;
 7begin
 8   --
 9   --  If statement
10   --
11   if Reset then
12      Val := 0;
13   elsif Increment then
14      Val := Val + 1;
15   else
16      Val := Val - 1;
17   end if;
18
19   --
20   --  Loop statement
21   --
22   for I in 1 .. 5 loop
23      Val := Val * 2 - I;
24   end loop;
25
26   --
27   --  Case statement
28   --
29   case Val is
30      when 0 .. 5 =>
31         null;
32      when others =>
33         Val := 5;
34   end case;
35
36end Show_If_Case_Loop_Statements;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.If_Case_Loop_Statements.Example
MD5: 4fdc7f00e5218ed59d9eb050339567f1







In this section, we'll look into a more advanced detail about the case
statement.


In the Ada Reference Manual


	5.3 If Statements[#8]


	5.4 Case Statements[#9]


	5.5 Loop Statements[#10]







Case statements and expressions

As we know, the case statement has a choice expression
(case Choice_Expression is), which is expected to be a discrete type.
Also, this expression can be a function call or a type conversion, for example
— in additional to being a variable or a constant.

As we discussed earlier on,
if we use parentheses, the contents between those
parentheses is parsed as an expression. In the context of case statements, the
expression is first evaluated before being used as a choice expression. Consider
the following code example:


scales.ads

 1package Scales is
 2
 3   type Satisfaction_Scale is (Very_Dissatisfied,
 4                               Dissatisfied,
 5                               OK,
 6                               Satisfied,
 7                               Very_Satisfied);
 8
 9   type Scale is range 0 .. 10;
10
11   function To_Satisfaction_Scale
12     (S : Scale)
13      return Satisfaction_Scale;
14
15end Scales;








scales.adb

 1package body Scales is
 2
 3   function To_Satisfaction_Scale
 4     (S : Scale)
 5      return Satisfaction_Scale
 6   is
 7      Satisfaction : Satisfaction_Scale;
 8   begin
 9      case (S) is
10         when 0 .. 2  =>
11            Satisfaction := Very_Dissatisfied;
12         when 3 .. 4  =>
13            Satisfaction := Dissatisfied;
14         when 5 .. 6  =>
15            Satisfaction := OK;
16         when 7 .. 8  =>
17            Satisfaction := Satisfied;
18         when 9 .. 10 =>
19            Satisfaction := Very_Satisfied;
20      end case;
21
22      return Satisfaction;
23   end To_Satisfaction_Scale;
24
25end Scales;








show_case_statement_expression.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Scales;      use Scales;
 4
 5procedure Show_Case_Statement_Expression is
 6   Score : constant Scale := 0;
 7begin
 8   Put_Line ("Score: "
 9             & Scale'Image (Score)
10             & Satisfaction_Scale'Image (
11                 To_Satisfaction_Scale (Score)));
12
13end Show_Case_Statement_Expression;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.If_Case_Loop_Statements.Case_Statement_Expression
MD5: 353ff771291e0c994ec052e818f9720c








Build output



scales.adb:9:07: error: missing case values: -128 .. -1
scales.adb:9:07: error: missing case values: 11 .. 127
gprbuild: *** compilation phase failed







When we try to compile this code example, the compiler complains about missing
values in the To_Satisfaction_Scale function. As we mentioned in the
Introduction to Ada course[#11], every possible
value for the choice expression needs to be covered by a unique branch of the
case statement. In principle, it seems that we're actually covering all
possible values of the Scale type, which ranges from 0 to 10. However,
we've written case (S) is instead of case S is. Because of the
parentheses, (S) is evaluated as an expression. In this case, the
expected range of the case statement is not Scale'Range, but the range of
its base type Scale'Base'Range.


In other languages

In C, the switch-case statement requires parentheses for the choice
expression:


main.c

 1
 2#include <stdio.h>
 3
 4int main(int argc, const char * argv[])
 5{
 6   int s = 0;
 7
 8   switch (s)
 9   {
10      case 0:
11      case 1:
12         printf("Value in the 0 -- 1 range\n");
13      default:
14         printf("Value > 1\n");
15   }
16}








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.If_Case_Loop_Statements.Case_Statement_C
MD5: 64ef6b15f1bdf14ca9273964ec5e1755








Runtime output



Value in the 0 -- 1 range
Value > 1







In Ada, parentheses aren't expected in the choice expression. Therefore,
we shouldn't write case (S) is in a C-like fashion —
unless, of course, we really want to evaluate an expression in the case
statement.






Block Statements

We've introduced block statements back in the
Introduction to Ada course[#12].
They have this simple form:


show_block_statement.adb

 1procedure Show_Block_Statement is
 2   pragma Warnings (Off);
 3begin
 4
 5   --  BLOCK STARTS HERE:
 6   declare
 7      I : Integer;
 8   begin
 9      I := 0;
10   end;
11
12end Show_Block_Statement;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Block_Statements.Simple_Block_Statement
MD5: 61134b3899620c6d9ed68974fae33b5e







We can use an identifier when writing a block statement. (This is similar to
loop statement identifiers that we discussed in the previous section.) In this
example, we implement a block called Simple_Block:


show_block_statement.adb

 1procedure Show_Block_Statement is
 2   pragma Warnings (Off);
 3begin
 4
 5   Simple_Block : declare
 6      I : Integer;
 7   begin
 8      I := 0;
 9   end Simple_Block;
10
11end Show_Block_Statement;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Block_Statements.Block_Statement_Identifier
MD5: b327b7675931d9b994637671c806c7c3







Note that we must write end Simple_Block; when we use the
Simple_Block identifier.

Block statement identifiers are useful:


	to indicate the begin and the end of a block — as some blocks might be
long or nested in other blocks;


	to indicate the purpose of the block (i.e. as code documentation).
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	5.6 Block Statements[#13]








Extended return statement

A common idiom in Ada is to build up a function result in a local
object, and then return that object:


show_return.adb

 1procedure Show_Return is
 2
 3   type Array_Of_Natural is
 4     array (Positive range <>) of Natural;
 5
 6   function Sum (A : Array_Of_Natural)
 7                 return Natural
 8   is
 9      Result : Natural := 0;
10   begin
11      for Index in A'Range loop
12         Result := Result + A (Index);
13      end loop;
14      return Result;
15   end Sum;
16
17begin
18   null;
19end Show_Return;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Extended_Return_Statements.Simple_Return
MD5: 16e85a8cba869802f912627c40a64c20







Since Ada 2005, a notation called the extended return statement is available:
this allows you to declare the result object and return it as part of one
statement. It looks like this:


show_extended_return.adb

 1procedure Show_Extended_Return is
 2
 3   type Array_Of_Natural is
 4     array (Positive range <>) of Natural;
 5
 6   function Sum (A : Array_Of_Natural)
 7                 return Natural
 8   is
 9   begin
10      return Result : Natural := 0 do
11         for Index in A'Range loop
12            Result := Result + A (Index);
13         end loop;
14      end return;
15   end Sum;
16
17begin
18   null;
19end Show_Extended_Return;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Extended_Return_Statements.Extended_Return
MD5: d6d6edaf800a0e346ff8ede13cbbe100







The return statement here creates Result, initializes it to
0, and executes the code between do and end return.
When end return is reached, Result is automatically returned
as the function result.
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	6.5 Return Statements[#14]







Other usages of extended return statements


Note

This section was originally written by Robert A. Duff and published as
Gem #10: Limited Types in Ada 2005[#15].



While the extended_return_statement was added to the language
specifically to support
limited constructor functions,
it comes in handy whenever you want a local name for the function result:


show_string_construct.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_String_Construct is
 4
 5   function Make_String
 6     (S          : String;
 7      Prefix     : String;
 8      Use_Prefix : Boolean) return String
 9   is
10      Length : Natural := S'Length;
11   begin
12      if Use_Prefix then
13         Length := Length + Prefix'Length;
14      end if;
15
16      return Result : String (1 .. Length) do
17
18         --  fill in the characters
19         if Use_Prefix then
20            Result
21              (1 .. Prefix'Length) := Prefix;
22
23            Result
24              (Prefix'Length + 1 .. Length) := S;
25         else
26            Result := S;
27         end if;
28
29      end return;
30   end Make_String;
31
32   S1 : String := "Ada";
33   S2 : String := "Make_With_";
34begin
35   Put_Line ("No prefix:   "
36             & Make_String (S1, S2, False));
37   Put_Line ("With prefix: "
38             & Make_String (S1, S2, True));
39end Show_String_Construct;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Statements.Extended_Return_Statements.Extended_Return_Other_Usages
MD5: a2b26ceed06a0ab66aff6c2b59c02003








Runtime output



No prefix:   Ada
With prefix: Make_With_Ada







In this example, we first calculate the length of the string and store it in
Length. We then use this information to initialize the return object of
the Make_String function.
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Subprograms


Parameter Modes and Associations

In this section, we discuss some details about parameter modes and associations.
First of all, as we know, parameters can be either formal or actual:


	Formal parameters are the ones we see in a subprogram declaration and
implementation;


	Actual parameters are the ones we see in a subprogram call.



	Note that actual parameters are also called subprogram arguments in other
languages.











We define parameter associations as the connection between an actual parameter
in a subprogram call and its declaration as a formal parameter in a subprogram
specification or body.
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	6.2 Formal Parameter Modes[#1]


	6.4.1 Parameter Associations[#2]







Formal Parameter Modes

We already discussed formal parameter modes in the
Introduction to Ada[#3] course:



	in

	Parameter can only be read, not written



	out

	Parameter can be written to, then read



	in out

	Parameter can be both read and written






As this topic was already discussed in that course — and we used parameter
modes extensively in all code examples from that course —, we won't
introduce the topic again here. Instead, we'll look into some of the more
advanced details.



By-copy and by-reference

In the Introduction to Ada[#4] course, we saw
that parameter modes don't correspond directly to how parameters are
actually passed. In fact, an in out parameter could be passed by copy.
For example:


check_param_passing.ads

1with System;
2
3procedure Check_Param_Passing
4  (Formal : System.Address;
5   Actual : System.Address);








check_param_passing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System.Address_Image;
 3
 4procedure Check_Param_Passing
 5  (Formal : System.Address;
 6   Actual : System.Address) is
 7begin
 8   Put_Line ("Formal parameter at "
 9             & System.Address_Image (Formal));
10   Put_Line ("Actual parameter at "
11             & System.Address_Image (Actual));
12   if System.Address_Image (Formal) =
13      System.Address_Image (Actual)
14   then
15      Put_Line
16        ("Parameter is passed by reference.");
17   else
18      Put_Line
19        ("Parameter is passed by copy.");
20   end if;
21end Check_Param_Passing;








machine_x.ads

1with System;
2
3package Machine_X is
4
5   procedure Update_Value
6     (V  : in out Integer;
7      AV :        System.Address);
8
9end Machine_X;








machine_x.adb

 1with Check_Param_Passing;
 2
 3package body Machine_X is
 4
 5   procedure Update_Value
 6     (V  : in out Integer;
 7      AV :        System.Address) is
 8   begin
 9      V := V + 1;
10      Check_Param_Passing (Formal => V'Address,
11                           Actual => AV);
12   end Update_Value;
13
14end Machine_X;








show_by_copy_by_ref_params.adb

1with Machine_X; use Machine_X;
2
3procedure Show_By_Copy_By_Ref_Params is
4   A : Integer := 5;
5begin
6   Update_Value (A, A'Address);
7end Show_By_Copy_By_Ref_Params;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.By_Copy_By_Ref_Params
MD5: e437d3432703124496f0a217177959eb








Runtime output



Formal parameter at 00007FFCF12583FC
Actual parameter at 00007FFCF125841C
Parameter is passed by copy.







As we can see by running this example,


	the integer variable A in the Show_By_Copy_By_Ref_Params
procedure




and


	the V parameter in the Update_Value procedure




have different addresses, so they are different objects. Therefore, we conclude
that this parameter is being passed by value, even though it has the
in out mode. (We talk more about addresses and the 'Address
attribute later on).

As we know, when a parameter is passed by copy, it is first copied to a
temporary object. In the case of a parameter with in out mode, the
temporary object is copied back to the original (actual) parameter at the end of
the subprogram call. In our example, the temporary object indicated by V
is copied back to A at the end of the call to Update_Value.

In Ada, it's not the parameter mode that determines whether a parameter is
passed by copy or by reference, but rather its type. We can distinguish between
three categories:


	By-copy types;


	By-reference types;


	Unspecified types.




Obviously, parameters of by-copy types are passed by copy and parameters of
by-reference type are passed by reference. However, if a category isn't
specified — i.e. when the type is neither a by-copy nor a by-reference
type —, the decision is essentially left to the compiler.

As a rule of thumb, we can say that;


	elementary types — and any type that is essentially elementary, such as
a private type whose full view is an elementary type — are passed by
copy;


	tagged and explicitly limited types — and other types that are
essentially tagged, such as task types — are passed by reference.




The following table provides more details:



	Type category

	Parameter passing

	List of types





	By copy

	By copy

	
	Elementary types


	Descendant of a private type
whose full type is a by-copy
type







	By reference

	By reference

	
	Tagged types


	Task and protected types


	Explicitly limited record types


	Composite types with at least
one subcomponent of a
by-reference type


	Private types whose full type
is a by-reference type


	Any descendant of the types
mentioned above







	Unspecified

	Either by copy or
by reference

	
	Any type not mentioned above










Note that, for parameters of limited types, only those parameters whose type is
explicitly limited are always passed by reference. We discuss this topic in
more details in another chapter.

Let's see an example:


machine_x.ads

 1with System;
 2
 3package Machine_X is
 4
 5   type Integer_Array is
 6     array (Positive range <>) of Integer;
 7
 8   type Rec is record
 9      A : Integer;
10   end record;
11
12   type Rec_Array is record
13      A   : Integer;
14      Arr : Integer_Array (1 .. 100);
15   end record;
16
17   type Tagged_Rec is tagged record
18      A : Integer;
19   end record;
20
21   procedure Update_Value
22     (R  : in out Rec;
23      AR :        System.Address);
24
25   procedure Update_Value
26     (RA  : in out Rec_Array;
27      ARA :        System.Address);
28
29   procedure Update_Value
30     (R  : in out Tagged_Rec;
31      AR :        System.Address);
32
33end Machine_X;








machine_x.adb

 1with Check_Param_Passing;
 2
 3package body Machine_X is
 4
 5   procedure Update_Value
 6     (R  : in out Rec;
 7      AR :        System.Address)
 8   is
 9   begin
10      R.A := R.A + 1;
11      Check_Param_Passing (Formal => R'Address,
12                           Actual => AR);
13   end Update_Value;
14
15   procedure Update_Value
16     (RA  : in out Rec_Array;
17      ARA :        System.Address)
18   is
19   begin
20      RA.A := RA.A + 1;
21      Check_Param_Passing (Formal => RA'Address,
22                           Actual => ARA);
23   end Update_Value;
24
25   procedure Update_Value
26     (R  : in out Tagged_Rec;
27      AR :        System.Address)
28   is
29   begin
30      R.A := R.A + 1;
31      Check_Param_Passing (Formal => R'Address,
32                           Actual => AR);
33   end Update_Value;
34
35end Machine_X;








show_by_copy_by_ref_params.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Machine_X;   use Machine_X;
 3
 4procedure Show_By_Copy_By_Ref_Params is
 5   TR : Tagged_Rec := (A   => 5);
 6   R  : Rec        := (A   => 5);
 7   RA : Rec_Array  := (A   => 5,
 8                       Arr => (others => 0));
 9begin
10   Put_Line ("Tagged record");
11   Update_Value (TR, TR'Address);
12
13   Put_Line ("Untagged record");
14   Update_Value (R,  R'Address);
15
16   Put_Line ("Untagged record with array");
17   Update_Value (RA, RA'Address);
18end Show_By_Copy_By_Ref_Params;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.By_Copy_By_Ref_Params
MD5: 3ca46380c4df36af9393041181ff2f17








Runtime output



Tagged record
Formal parameter at 00007FFED4943AF0
Actual parameter at 00007FFED4943AF0
Parameter is passed by reference.
Untagged record
Formal parameter at 00007FFED494393C
Actual parameter at 00007FFED4943AEC
Parameter is passed by copy.
Untagged record with array
Formal parameter at 00007FFED4943950
Actual parameter at 00007FFED4943950
Parameter is passed by reference.







When we run this example, we see that the object of tagged type
(Tagged_Rec) is passed by reference to the Update_Value procedure.
In the case of the objects of untagged record types, you might see this:


	the parameter of Rec type — which is an untagged record with a
single component of integer type —, the parameter is passed by copy;


	the parameter of Rec_Array type — which is an untagged record
with a large array of 100 components —, the parameter is passed by
reference.




Because Rec and Rec_Array are neither by-copy nor by-reference
types, the decision about how to pass them to the Update_Value procedure
is made by the compiler. (Thus, it is possible that you see different results
when running the code above.)



Bounded errors

When we use parameters of types that are neither by-copy nor by-reference types,
we might encounter the situation where we have the same object bound to
different names in a subprogram. For example, if:


	we use a global object Global_R of a record type Rec




and


	we have a subprogram with an in-out parameter of the same record type
Rec




and


	we pass Global_R as the actual parameter for the in-out parameter of
this subprogram,




then we have two access paths to this object: one of them using the global
variable directly, and the other one using it indirectly via the in-out
parameter. This situation could lead to undefined behavior or to a program
error. Consider the following code example:


machine_x.ads

 1with System;
 2
 3package Machine_X is
 4
 5   type Rec is record
 6      A : Integer;
 7   end record;
 8
 9   Global_R : Rec := (A => 0);
10
11   procedure Update_Value
12     (R  : in out Rec;
13      AR :        System.Address);
14
15end Machine_X;








machine_x.adb

 1with Ada.Text_IO;         use Ada.Text_IO;
 2
 3with Check_Param_Passing;
 4
 5package body Machine_X is
 6
 7   procedure Update_Value
 8     (R  : in out Rec;
 9      AR :        System.Address)
10   is
11      procedure Show_Vars is
12      begin
13         Put_Line ("Global_R.A: "
14                   & Integer'Image (Global_R.A));
15         Put_Line ("R.A:        "
16                   & Integer'Image (R.A));
17      end Show_Vars;
18   begin
19      Check_Param_Passing (Formal => R'Address,
20                           Actual => AR);
21
22      Put_Line ("Incrementing Global_R.A...");
23      Global_R.A := Global_R.A + 1;
24      Show_Vars;
25
26      Put_Line ("Incrementing R.A...");
27      R.A := R.A + 5;
28      Show_Vars;
29   end Update_Value;
30
31end Machine_X;








show_by_copy_by_ref_params.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Machine_X;   use Machine_X;
 3
 4procedure Show_By_Copy_By_Ref_Params is
 5begin
 6   Put_Line ("Calling Update_Value...");
 7   Update_Value (Global_R,  Global_R'Address);
 8
 9   Put_Line ("After call to Update_Value...");
10   Put_Line ("Global_R.A: "
11             & Integer'Image (Global_R.A));
12end Show_By_Copy_By_Ref_Params;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.By_Copy_By_Ref_Params
MD5: 96be7054b7ff64a304705edf6b15f031








Runtime output



Calling Update_Value...
Formal parameter at 00007FFF3AAD695C
Actual parameter at 00000000004473BC
Parameter is passed by copy.
Incrementing Global_R.A...
Global_R.A:  1
R.A:         0
Incrementing R.A...
Global_R.A:  1
R.A:         5
After call to Update_Value...
Global_R.A:  5







In the Update_Value procedure, because Global_R and R
have a type that is neither a by-pass nor a by-reference type, the language does
not specify whether the old or the new value would be read in the calls to
Put_Line. In other words, the actual behavior is undefined. Also, this
situation might raise the Program_Error exception.


Important

As a general advice:


	you should be very careful when using global variables and


	you should avoid passing them as parameters in situations such as the one
illustrated in the code example above.








Aliased parameters

When a parameter is specified as aliased, it is always passed by
reference, independently of the type we're using. In this sense, we can use this
keyword to circumvent the rules mentioned so far. (We discuss more about
aliasing and
aliased parameters later on.)

Let's rewrite a previous code example that has a parameter of elementary type
and change it to aliased:


machine_x.ads

1with System;
2
3package Machine_X is
4
5   procedure Update_Value
6     (V  : aliased in out Integer;
7      AV :                System.Address);
8
9end Machine_X;








machine_x.adb

 1with Check_Param_Passing;
 2
 3package body Machine_X is
 4
 5   procedure Update_Value
 6     (V  : aliased in out Integer;
 7      AV :                System.Address)
 8   is
 9   begin
10      V := V + 1;
11      Check_Param_Passing (Formal => V'Address,
12                           Actual => AV);
13   end Update_Value;
14
15end Machine_X;








show_by_copy_by_ref_params.adb

1with Machine_X; use Machine_X;
2
3procedure Show_By_Copy_By_Ref_Params is
4   A : aliased Integer := 5;
5begin
6   Update_Value (A, A'Address);
7end Show_By_Copy_By_Ref_Params;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.By_Copy_By_Ref_Params
MD5: c066af3a7081815d0a7598733f9e6aec








Runtime output



Formal parameter at 00007FFFC788D9FC
Actual parameter at 00007FFFC788D9FC
Parameter is passed by reference.







As we can see, A is now passed by reference.

Note that we can only pass aliased objects to aliased parameters. If we try to
pass a non-aliased object, we get a compilation error:


show_by_copy_by_ref_params.adb

1with Machine_X; use Machine_X;
2
3procedure Show_By_Copy_By_Ref_Params is
4   A : Integer := 5;
5begin
6   Update_Value (A, A'Address);
7end Show_By_Copy_By_Ref_Params;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.By_Copy_By_Ref_Params
MD5: 9e6586e0b771de68040131cae81799b8








Build output



show_by_copy_by_ref_params.adb:6:18: error: actual for aliased formal "V" must be aliased object
gprbuild: *** compilation phase failed







Again, we discuss more about
aliased parameters and
aliased objects later on in the context of
access types.



Parameter Associations

When actual parameters are associated with formal parameters, some rules are
checked. As a typical example, the type of each actual parameter must match the
type of the corresponding actual parameter. In this section, we see some details
about how this association is made and some of the potential errors.
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Parameter order and association

As we already know, when calling subprograms, we can use positional or named
parameter association — or a mixture of both. Also, parameters can have
default values. Let's see some examples:


operations.ads

1package Operations is
2
3   procedure Add (Left  : in out Integer;
4                  Right :        Float := 1.0);
5
6end Operations;








operations.adb

1package body Operations is
2
3   procedure Add (Left  : in out Integer;
4                  Right :        Float := 1.0) is
5   begin
6      Left := Left + Integer (Right);
7   end Add;
8
9end Operations;








show_param_association.adb

 1with Operations; use Operations;
 2
 3procedure Show_Param_Association is
 4   A : Integer := 5;
 5begin
 6   --  Positional association
 7   Add (A, 2.0);
 8
 9   --  Positional association
10   --  (using default value)
11   Add (A);
12
13   --  Named association
14   Add (Left  => A,
15        Right => 2.0);
16
17   --  Named association (inversed order)
18   Add (Right => 2.0,
19        Left  => A);
20
21   --  Mixed positional / named association
22   Add (A, Right => 2.0);
23end Show_Param_Association;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.Param_Association_1
MD5: 64d3f44ac2bf72317fae22658f6d218e







This code snippet has examples of positional and name parameter association.
Also, it has an example of mixed positional / named parameter association. In
most cases, the actual A parameter is associated with the formal
Left parameter, and the actual 2.0 parameter is associated with the
formal Right parameter.

In addition to that, parameters can have default values, so, when we write
Add (A), the A variable is associated with the Left
parameter and the default value (1.0) is associated with the Right
parameter.

Also, when we use named parameter association, the parameter order is
irrelevant: we can, for example, write the last parameter as the first one.
Therefore, we can write Add (Right => 2.0, Left  => A) instead of
Add (Left  => A, Right => 2.0).



Ambiguous calls

Ambiguous calls can be detected by the compiler during parameter association.
For example, when we have both default values in parameters and subprogram
overloading, the compiler might be unable to decide which subprogram we're
calling:


operations.ads

1package Operations is
2
3   procedure Add (Left  : in out Integer);
4
5   procedure Add (Left  : in out Integer;
6                  Right :        Float := 1.0);
7
8end Operations;








operations.adb

 1package body Operations is
 2
 3   procedure Add (Left  : in out Integer) is
 4   begin
 5      Left := Left + 1;
 6   end Add;
 7
 8   procedure Add (Left  : in out Integer;
 9                  Right :        Float := 1.0) is
10   begin
11      Left := Left + Integer (Right);
12   end Add;
13
14end Operations;








show_param_association.adb

1with Operations; use Operations;
2
3procedure Show_Param_Association is
4   A : Integer := 5;
5begin
6   Add (A);
7   --  ERROR: cannot decide which
8   --         procedure to take
9end Show_Param_Association;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.Param_Association_1
MD5: 2725517f82d4068b669028eca1815079








Build output



show_param_association.adb:6:04: error: ambiguous expression (cannot resolve "Add")
show_param_association.adb:6:04: error: possible interpretation at operations.ads:5
show_param_association.adb:6:04: error: possible interpretation at operations.ads:3
gprbuild: *** compilation phase failed







As we see in this example, the Add procedure is overloaded. The first
instance has one parameter, and the second instance has two parameters, where
the second parameter has a default value. When we call Add with just one
parameter, the compiler cannot decide whether we intend to call


	the first instance of Add with one parameter




or


	the second instance of Add using the default value for the second
parameter.




In this specific case, there are multiple options to solve the issue, but all of
them involve redesigning the package specification:


	we could just rename one of Add procedures (thereby eliminating the
subprogram overloading);


	we could rename the first parameter of one of the Add procedures and
use named parameter association in the call to the procedure;



	For example, we could rename the parameter to Value and call
Add (Value => A).









	remove the default value from the second parameter of the second instance of
Add.






Overlapping actual parameters

When we have more than one out or in out parameters in a
subprogram, we might run into the situation where the actual parameter overlaps
with another parameter. For example:


machine_x.ads

1package Machine_X is
2
3   procedure Update_Value (V1 : in out Integer;
4                           V2 :    out Integer);
5
6end Machine_X;








machine_x.adb

 1package body Machine_X is
 2
 3   procedure Update_Value (V1 : in out Integer;
 4                           V2 :    out Integer) is
 5   begin
 6      V1 := V1 + 1;
 7      V2 := V2 + 1;
 8   end Update_Value;
 9
10end Machine_X;








show_by_copy_by_ref_params.adb

1with Machine_X; use Machine_X;
2
3procedure Show_By_Copy_By_Ref_Params is
4   A : Integer := 5;
5begin
6   Update_Value (A, A);
7end Show_By_Copy_By_Ref_Params;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Parameter_Modes_Associations.Illegal_Calls
MD5: d18a7056463fee9298dd1fdef0a31daf








Build output



show_by_copy_by_ref_params.adb:6:18: error: writable actual for "V1" overlaps with actual for "V2"
gprbuild: *** compilation phase failed







In this case, we're using A for both output parameters in the call to
Update_Value.
Passing one variable to more than one output parameter in a given call is
forbidden in Ada, so this triggers a compilation error. Depending on the
specific context, you could solve this issue by using temporary variables for
the other output parameters.





Operators

Operators are commonly used for variables of scalar types such as
Integer and Float. In these cases, they replace usual function
calls. (To be more precise, operators are function calls, but written in a
different format.) For example, we simply write A := A + B + C; when we
want to add three integer variables. A hypothetical, non-intuitive version of
this operation could be A := Add (Add (A, B), C);. In such cases,
operators allow for expressing function calls in a more intuitive way.

Many primitive operators exist for scalar types. We classify them as follows:



	Category

	Operators





	Logical

	and, or, xor



	Relational

	=, /=, <, <=, >,
>=



	Unary adding

	+, -



	Binary adding

	+, -, &



	Multiplying

	*, /, mod, rem



	Highest precedence

	**, abs, not
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User-defined operators

For non-scalar types, not all operators are defined. For example, it wouldn't
make sense to expect a compiler to include an addition operator for a record
type with multiple components. Exceptions to this rule are the
equality and inequality operators (= and /=), which are defined
for any type (be it scalar, record types, and array types).

For array types, the concatenation operator (&) is a primitive operator:


integer_arrays.ads

1package Integer_Arrays is
2
3   type Integer_Array is
4     array (Positive range <>) of Integer;
5
6end Integer_Arrays;








show_array_concatenation.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Integer_Arrays; use Integer_Arrays;
 3
 4procedure Show_Array_Concatenation is
 5   A, B : Integer_Array (1 .. 5);
 6   R    : Integer_Array (1 .. 10);
 7begin
 8   A := (1 & 2 & 3 & 4 & 5);
 9   B := (6 & 7 & 8 & 9 & 10);
10   R := A & B;
11
12   for E of R loop
13      Put (E'Image & ' ');
14   end loop;
15   New_Line;
16end Show_Array_Concatenation;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Integer_Arrays_Concat
MD5: 1899e66ec1d0b36b10d8b89fc2dfac0e








Runtime output



 1  2  3  4  5  6  7  8  9  10 







In this example, we're using the primitive & operator to concatenate the
A and B arrays in the assignment to R. Similarly, we're
concatenating individual components (integer values) to create an aggregate
that we assign to A and B.

In contrast to this, the addition operator is not available for arrays:


integer_arrays.ads

1package Integer_Arrays is
2
3   type Integer_Array is
4     array (Positive range <>) of Integer;
5
6end Integer_Arrays;








show_array_addition.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Integer_Arrays; use Integer_Arrays;
 3
 4procedure Show_Array_Addition is
 5   A, B, R : Integer_Array (1 .. 5);
 6begin
 7   A := (1 & 2 & 3 & 4 & 5);
 8   B := (6 & 7 & 8 & 9 & 10);
 9   R := A + B;
10
11   for E of R loop
12      Put (E'Image & ' ');
13   end loop;
14   New_Line;
15
16end Show_Array_Addition;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Integer_Arrays_Addition
MD5: d94f9791523359d390a7cafd900d1268








Build output



show_array_addition.adb:9:11: error: there is no applicable operator "+" for type "Integer_Array" defined at integer_arrays.ads:3
gprbuild: *** compilation phase failed







We can, however, define custom operators for any type. For example, if a
specific type doesn't have a predefined addition operator, we can define our
own + operator for it.

Note that we're limited to the operator symbols that are already defined by the
Ada language (see the previous table for the complete list of operators). In
other words, the operator we define must be selected from one of those existing
symbols; we cannot use new symbols for custom operators.


In other languages

Some programming languages — such as Haskell — allow you to
define and use custom operator symbols. For example, in Haskell, you can
create a new "broken bar" (¦) operator for integer values:

(¦) :: Int -> Int -> Int
a ¦ b = a + a + b

main = putStrLn $ show (2 ¦ 3)





This is not possible in Ada.



Let's define a custom addition operator that adds individual components of the
Integer_Array type:


integer_arrays.ads

 1package Integer_Arrays is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   function "+" (Left, Right : Integer_Array)
 7                 return Integer_Array
 8     with Post =>
 9       (for all I in "+"'Result'Range =>
10          "+"'Result (I) = Left (I) + Right (I));
11
12end Integer_Arrays;








integer_arrays.adb

 1package body Integer_Arrays is
 2
 3   function "+" (Left, Right : Integer_Array)
 4                 return Integer_Array
 5   is
 6      R : Integer_Array (Left'Range);
 7   begin
 8      for I in Left'Range loop
 9         R (I) := Left (I) + Right (I);
10      end loop;
11
12      return R;
13   end "+";
14
15end Integer_Arrays;








show_array_addition.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Integer_Arrays; use Integer_Arrays;
 3
 4procedure Show_Array_Addition is
 5   A, B, R : Integer_Array (1 .. 5);
 6begin
 7   A := (1 & 2 & 3 & 4 & 5);
 8   B := (6 & 7 & 8 & 9 & 10);
 9   R := A + B;
10
11   for E of R loop
12      Put (E'Image & ' ');
13   end loop;
14   New_Line;
15
16end Show_Array_Addition;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Integer_Arrays_Addition
MD5: 6f50fa47270d97d3fb50379b6275777d








Runtime output



 7  9  11  13  15 







Now, the R := A + B line doesn't trigger a compilation error anymore
because the + operator is defined for the Integer_Array type.

In the implementation of the +, we return an array with the range of the
Left array where each component is the sum of the Left and
Right arrays. In the declaration of the + operator, we're
defining the expected behavior in the postcondition. Here, we're saying that,
for each index of the resulting array (for all I in "+"'Result'Range),
the value of each component of the resulting array at that specific index is
the sum of the components from the Left and Right arrays at the
same index ("+"'Result (I) = Left (I) + Right (I)). (for all
denotes a quantified expression.)

Note that, in this implementation, we assume that the range of Right is
a subset of the range of Left. If that is not the case, the
Constraint_Error exception will be raised at runtime in the loop. (You
can test this by declaring B as Integer_Array (5 .. 10), for
example.)

We can also define custom operators for record types. For example, we
could declare two + operators for a record containing the name and
address of a person:


addresses.ads

 1package Addresses is
 2
 3   type Person is private;
 4
 5   function "+" (Name    : String;
 6                 Address : String)
 7                 return Person;
 8   function "+" (Left, Right : Person)
 9                 return Person;
10
11   procedure Display (P : Person);
12
13private
14
15   subtype Name_String    is String (1 .. 40);
16   subtype Address_String is String (1 .. 100);
17
18   type Person is record
19      Name    : Name_String;
20      Address : Address_String;
21   end record;
22
23end Addresses;








addresses.adb

 1with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 2with Ada.Text_IO;       use Ada.Text_IO;
 3
 4package body Addresses is
 5
 6   function "+" (Name    : String;
 7                 Address : String)
 8                 return Person
 9   is
10   begin
11      return (Name    =>
12                Head (Name,
13                      Name_String'Length),
14              Address =>
15                Head (Address,
16                      Address_String'Length));
17   end "+";
18
19   function "+" (Left, Right : Person)
20                 return Person
21   is
22   begin
23      return (Name    => Left.Name,
24              Address => Right.Address);
25   end "+";
26
27   procedure Display (P : Person) is
28   begin
29      Put_Line ("Name:    " & P.Name);
30      Put_Line ("Address: " & P.Address);
31      New_Line;
32   end Display;
33
34end Addresses;








show_address_addition.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Addresses;   use Addresses;
 3
 4procedure Show_Address_Addition is
 5   John : Person := "John" + "4 Main Street";
 6   Jane : Person := "Jane" + "7 High Street";
 7begin
 8   Display (John);
 9   Display (Jane);
10   Put_Line ("----------------");
11
12   Jane := Jane + John;
13   Display (Jane);
14end Show_Address_Addition;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Rec_Operator
MD5: c69ff43ed5a80a0c62bad87eada14301








Runtime output



Name:    John                                    
Address: 4 Main Street                                                                                       

Name:    Jane                                    
Address: 7 High Street                                                                                       

----------------
Name:    Jane                                    
Address: 4 Main Street                                                                                       








In this example, the first + operator takes two strings — with the
name and address of a person — and returns an object of Person
type. We use this operator to initialize the John and Jane
variables.

The second + operator in this example brings two people together. Here,
the person on the left side of the + operator moves to the home of the
person on the right side. In this specific case, Jane is moving to John's
house.

As a small remark, we usually expect that the + operator is commutative.
In other words, changing the order of the elements in the operation doesn't
change the result. However, in our definition above, this is not the case, as
we can confirm by comparing the operation in both orders:


show_address_addition.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Addresses;   use Addresses;
 3
 4procedure Show_Address_Addition is
 5   John : constant Person :=
 6            "John" + "4 Main Street";
 7   Jane : constant Person :=
 8            "Jane" + "7 High Street";
 9begin
10   if Jane + John = John + Jane then
11      Put_Line ("It's commutative!");
12   else
13      Put_Line ("It's not commutative!");
14   end if;
15end Show_Address_Addition;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operators.Rec_Operator
MD5: 2af6e1a31100a1d0fa786d42cc93c09b








Runtime output



It's not commutative!







In this example, we're using the primitive = operator for the
Person to assess whether the result of the addition is commutative.
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Expression functions

Usually, we implement Ada functions with a construct like this:
begin return X; end;. In other words, we create a begin ... end;
block and we have at least one return statement in that block. An
expression function, in contrast, is a function that is implemented with a
simple expression in parentheses, such as (X);. In this case, we don't
use a begin ... end; block or a return statement.

As an example of an expression, let's say we want to implement a function
named Is_Zero that checks if the value of the integer parameter I
is zero. We can implement this function with the expression I = 0. In
the usual approach, we would create the implementation by writing
is begin return I = 0; end Is_Zero;. When using expression functions,
however, we can simplify the implementation by just writing
is (I = 0);. This is the complete code of Is_Zero using an
expression function:


expr_func.ads

1package Expr_Func is
2
3   function Is_Zero (I : Integer)
4                     return Boolean is
5     (I = 0);
6
7end Expr_Func;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_Expression_Function_1
MD5: 44779999566f764279e1c2f292226f95







An expression function has the same effect as the usual version using a block.
In fact, the code above is similar to this implementation of the Is_Zero
function using a block:


expr_func.ads

1package Expr_Func is
2
3   function Is_Zero (I : Integer)
4                     return Boolean;
5
6end Expr_Func;








expr_func.adb

1package body Expr_Func is
2
3   function Is_Zero (I : Integer)
4                     return Boolean is
5   begin
6      return I = 0;
7   end Is_Zero;
8
9end Expr_Func;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_Expression_Function_2
MD5: 4d90b1c63928cbaf9c86a6cc6421bb61







The only difference between these two versions of the Expr_Func packages
is that, in the first version, the package specification contains the
implementation of the Is_Zero function, while, in the second version,
the implementation is in the body of the Expr_Func package.

An expression function can be, at same time, the specification and the
implementation of a function. Therefore, in the first version of the
Expr_Func package above, we don't have a separate implementation of the
Is_Zero function because (I = 0) is the actual implementation of
the function. Note that this is only possible for expression functions; you
cannot have a function implemented with a block in a package specification. For
example, the following code is wrong and won't compile:


expr_func.ads

1package Expr_Func is
2
3   function Is_Zero (I : Integer)
4                     return Boolean is
5   begin
6      return I = 0;
7   end Is_Zero;
8
9end Expr_Func;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_Expression_Function_3
MD5: 919f9c101b3224006e1302130eba8dd2







We can, of course, separate the function declaration from its implementation as
an expression function. For example, we can rewrite the first version of the
Expr_Func package and move the expression function to the body of the
package:


expr_func.ads

1package Expr_Func is
2
3   function Is_Zero (I : Integer)
4                     return Boolean;
5
6end Expr_Func;








expr_func.adb

1package body Expr_Func is
2
3   function Is_Zero (I : Integer)
4                     return Boolean is
5     (I = 0);
6
7end Expr_Func;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Simple_Expression_Function_4
MD5: 491a491da92636a35579f870969aaf08







In addition, we can use expression functions in the private part of a
package specification. For example, the following code declares the
Is_Valid function in the specification of the My_Data package,
while its implementation is an expression function in the private part of the
package specification:


my_data.ads

 1package My_Data is
 2
 3   type Data is private;
 4
 5   function Is_Valid (D : Data)
 6                      return Boolean;
 7
 8private
 9
10   type Data is record
11      Valid : Boolean;
12   end record;
13
14   function Is_Valid (D : Data)
15                      return Boolean is
16     (D.Valid);
17
18end My_Data;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Private_Expression_Function_1
MD5: beb57eca67b3954097e0f7ac00ea70c9







Naturally, we could write the function implementation in the package body
instead:


my_data.ads

 1package My_Data is
 2
 3   type Data is private;
 4
 5   function Is_Valid (D : Data)
 6                      return Boolean;
 7
 8private
 9
10   type Data is record
11      Valid : Boolean;
12   end record;
13
14end My_Data;








my_data.adb

1package body My_Data is
2
3   function Is_Valid (D : Data)
4                      return Boolean is
5     (D.Valid);
6
7end My_Data;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Expression_Functions.Private_Expression_Function_2
MD5: 3c6e2a3c53c7c8e1a7b86efccdc3bf8d








In the Ada Reference Manual


	6.8 Expression functions[#8]








Overloading


Note

This section was originally written by Robert A. Duff and published as
Gem #50: Overload Resolution[#9].



Ada allows overloading of subprograms, which means that two or more
subprogram declarations with the same name can be visible at the same
place. Here, "name" can refer to operator symbols, like "+". Ada
also allows overloading of various other notations, such as literals and
aggregates.

In most languages that support overloading, overload resolution is done
"bottom up" — that is, information flows from inner constructs to outer
constructs. As usual, computer folks draw their trees upside-down, with
the root at the top. For example, if we have two procedures Print:


show_overloading.adb

 1procedure Show_Overloading is
 2
 3   package Types is
 4      type Sequence is null record;
 5      type Set is null record;
 6
 7      procedure Print (S : Sequence) is null;
 8      procedure Print (S : Set) is null;
 9   end Types;
10
11   use Types;
12
13   X : Sequence;
14begin
15
16   --  Compiler selects Print (S : Sequence)
17   Print (X);
18end Show_Overloading;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Overloading
MD5: 020c4f04285c80c1050d8edbaf2dbcae







the type of X determines which Print is meant in the call.

Ada is unusual in that it supports top-down overload resolution as well:


show_top_down_overloading.adb

 1procedure Show_Top_Down_Overloading is
 2
 3   package Types is
 4      type Sequence is null record;
 5      type Set is null record;
 6
 7      function Empty return Sequence is
 8        ((others => <>));
 9
10      function Empty return Set is
11        ((others => <>));
12
13      procedure Print_Sequence (S : Sequence) is
14        null;
15
16      procedure Print_Set (S : Set) is
17        null;
18   end Types;
19
20   use Types;
21
22   X : Sequence;
23begin
24   --  Compiler selects function
25   --  Empty return Sequence
26   Print_Sequence (Empty);
27end Show_Top_Down_Overloading;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Overloading
MD5: 3b776a3efdee3d7e583ddbf5159c9a1b







The type of the formal parameter S of Print_Sequence
determines which Empty is meant in the call. In C++, for example,
the equivalent of the Print (X) example would resolve, but the
Print_Sequence (Empty) would be illegal, because C++ does not use
top-down information.

If we overload things too heavily, we can cause ambiguities:


show_overloading_error.adb

 1procedure Show_Overloading_Error is
 2
 3   package Types is
 4      type Sequence is null record;
 5      type Set is null record;
 6
 7      function Empty return Sequence is
 8        ((others => <>));
 9
10      function Empty return Set is
11        ((others => <>));
12
13      procedure Print (S : Sequence) is
14        null;
15
16      procedure Print (S : Set) is
17        null;
18   end Types;
19
20   use Types;
21
22   X : Sequence;
23begin
24   Print (Empty);  -- Illegal!
25end Show_Overloading_Error;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Overloading
MD5: 5182c517a1afff4568ab2404ac66fda8








Build output



show_overloading_error.adb:24:04: error: ambiguous expression (cannot resolve "Print")
show_overloading_error.adb:24:04: error: possible interpretation at line 16
show_overloading_error.adb:24:04: error: possible interpretation at line 13
show_overloading_error.adb:24:11: error: ambiguous call to "Empty"
show_overloading_error.adb:24:11: error: interpretation at line 10
show_overloading_error.adb:24:11: error: interpretation at line 7
gprbuild: *** compilation phase failed







The call is ambiguous, and therefore illegal, because there are two
possible meanings. One way to resolve the ambiguity is to use a qualified
expression to say which type we mean:

Print (Sequence'(Empty));





Note that we're now using both bottom-up and top-down overload resolution:
Sequence' determines which Empty is meant (top down) and
which Print is meant (bottom up). You can qualify an expression,
even if it is not ambiguous according to Ada rules — you might want
to clarify the type because it might be ambiguous for human readers.

Of course, you could instead resolve the Print (Empty) example by
modifying the source code so the names are unique, as in the earlier
examples. That might well be the best solution, assuming you can modify
the relevant sources. Too much overloading can be confusing. How much is
"too much" is in part a matter of taste.

Ada really needs to have top-down overload resolution, in order to resolve
literals. In some languages, you can tell the type of a literal by looking
at it, for example appending L (letter el) means "the type of this
literal is long int". That sort of kludge won't work in Ada, because we
have an open-ended set of integer types:


show_literal_resolution.adb

1procedure Show_Literal_Resolution is
2
3   type Apple_Count is range 0 .. 100;
4
5   procedure Peel (Count : Apple_Count) is null;
6begin
7   Peel (20);
8end Show_Literal_Resolution;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Literal_Resolution
MD5: f428b6b4c642c44ede6bc21e7522c532







You can't tell by looking at the literal 20 what its type is. The
type of formal parameter Count tells us that 20 is an
Apple_Count, as opposed to some other type, such as
Standard.Long_Integer.

Technically, the type of 20 is universal_integer, which is
implicitly converted to Apple_Count — it's really the result
type of that implicit conversion that is at issue. But that's an obscure
point — you won't go too far wrong if you think of the integer
literal notation as being overloaded on all integer types.

Developers sometimes wonder why the compiler can't resolve something that
seems obvious. For example:


show_literal_resolution_error.adb

 1procedure Show_Literal_Resolution_Error is
 2
 3   type Apple_Count is range 0 .. 100;
 4   procedure Slice (Count : Apple_Count) is null;
 5
 6   type Orange_Count is range 0 .. 10_000;
 7   procedure Slice (Count : Orange_Count) is null;
 8begin
 9   Slice (Count => (10_000));  --  Illegal!
10end Show_Literal_Resolution_Error;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Literal_Resolution_Error
MD5: 4789d8eea9b82649ba8e453bb861688a








Build output



show_literal_resolution_error.adb:9:04: error: ambiguous expression (cannot resolve "Slice")
show_literal_resolution_error.adb:9:04: error: possible interpretation at line 7
show_literal_resolution_error.adb:9:04: error: possible interpretation at line 4
gprbuild: *** compilation phase failed







This call is ambiguous, and therefore illegal. But why? Clearly the
developer must have meant the Orange_Count one, because
10_000 is out of range for Apple_Count. And all the relevant
expressions happen to be static.

Well, a good rule of thumb in language design (for languages with
overloading) is that the overload resolution rules should not be
"too smart". We want this example to be illegal to avoid confusion on the
part of developers reading the code. As usual, a qualified expression
fixes it:

Slice (Count => Orange_Count'(10_000));





Another example, similar to the literal, is the aggregate. Ada uses a
simple rule: the type of an aggregate is determined top down (i.e., from
the context in which the aggregate appears). Bottom-up information is not
used; that is, the compiler does not look inside the aggregate in order to
determine its type.


show_record_resolution_error.adb

 1procedure Show_Record_Resolution_Error is
 2
 3   type Complex is record
 4      Re, Im : Float;
 5   end record;
 6
 7   procedure Grind (X : Complex) is null;
 8   procedure Grind (X : String) is null;
 9begin
10   Grind (X => (Re => 1.0, Im => 1.0));
11   --  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12   --  Illegal!
13end Show_Record_Resolution_Error;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Overloading.Record_Resolution_Error
MD5: e3dd1f1d0c403bcf672f4bab881b8ef9








Build output



show_record_resolution_error.adb:10:04: error: ambiguous expression (cannot resolve "Grind")
show_record_resolution_error.adb:10:04: error: possible interpretation at line 8
show_record_resolution_error.adb:10:04: error: possible interpretation at line 7
gprbuild: *** compilation phase failed







There are two Grind procedures visible, so the type of the
aggregate could be Complex or String, so it is ambiguous and
therefore illegal. The compiler is not required to notice that there is
only one type with components Re and Im, of some real type
— in fact, the compiler is not allowed to notice that, for
overloading purposes.

We can qualify as usual:

Grind (X => Complex'(Re => 1.0, Im => 1.0));





Only after resolving that the type of the aggregate is Complex can
the compiler look inside and make sure Re and Im make sense.

This not-too-smart rule for aggregates helps prevent confusion on the part
of developers reading the code. It also simplifies the compiler, and
makes the overload resolution algorithm reasonably efficient.



Operator Overloading

We've seen previously that we can define custom
operators for any type. We've also seen that subprograms can be
overloaded. Since operators are functions, we're
essentially talking about operator overloading, as we're defining the same
operator (say + or -) for different types.

As another example of operator overloading, in the Ada standard library,
operators are defined for the Complex type of the
Ada.Numerics.Generic_Complex_Types package. This package contains not
only the definition of the + operator for two objects of Complex
type, but also for combination of Complex and other types. For instance,
we can find these declarations:

function "+" (Left, Right : Complex)
              return Complex;
function "+" (Left : Complex;   Right : Real'Base)
              return Complex;
function "+" (Left : Real'Base; Right : Complex)
              return Complex;





This example shows that the + operator — as well as other
operators — are being overloaded in the Generic_Complex_Types
package.
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	6.6 Overloading of Operators[#10]


	G.1.1 Complex Types[#11]








Operator Overriding

We can also override operators of derived types. This allows for modifying the
behavior of operators for the corresponding derived types.

To override an operator of a derived type, we simply implement a function for
that operator. This is the same as how we implement custom operators (as we've
seen previously).

As an example, when adding two fixed-point values, the result might be out of
range, which causes an exception to be raised. A common strategy to avoid
exceptions in this case is to saturate the resulting value. This strategy is
typically employed in signal processing algorithms, for example.

In this example, we declare and use the 32-bit fixed-point type TQ31:


fixed_point.ads

1package Fixed_Point is
2
3   D : constant := 2.0 ** (-31);
4   type TQ31 is delta D range -1.0 .. 1.0 - D;
5
6end Fixed_Point;








show_sat_op.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Fixed_Point; use Fixed_Point;
 3
 4procedure Show_Sat_Op is
 5   A, B, C : TQ31;
 6begin
 7   A := TQ31'Last;
 8   B := TQ31'Last;
 9   C := A + B;
10
11   Put_Line (A'Image   & " + "
12             & B'Image & " = "
13             & C'Image);
14
15   A := TQ31'First;
16   B := TQ31'First;
17   C := A + B;
18
19   Put_Line (A'Image   & " + "
20             & B'Image & " = "
21             & C'Image);
22
23end Show_Sat_Op;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operator_Overriding.Fixed_Point_Exception
MD5: 15d8860773ec7c0e505d0ee94781ae14








Runtime output




raised CONSTRAINT_ERROR : show_sat_op.adb:9 overflow check failed







Here, we're using the standard + operator, which raises a
Constraint_Error exception in the C := A + B; statement due to an
overflow. Let's now override the addition operator and enforce saturation when
the result is out of range:


fixed_point.ads

1package Fixed_Point is
2
3   D : constant := 2.0 ** (-31);
4   type TQ31 is delta D range -1.0 .. 1.0 - D;
5
6   function "+" (Left, Right : TQ31)
7                 return TQ31;
8
9end Fixed_Point;








fixed_point.adb

 1package body Fixed_Point is
 2
 3   function "+" (Left, Right : TQ31)
 4                 return TQ31
 5   is
 6      type TQ31_2 is
 7        delta TQ31'Delta
 8        range TQ31'First * 2.0 .. TQ31'Last * 2.0;
 9
10      L   : constant TQ31_2 := TQ31_2 (Left);
11      R   : constant TQ31_2 := TQ31_2 (Right);
12      Res : TQ31_2;
13   begin
14      Res := L + R;
15
16      if Res > TQ31_2 (TQ31'Last) then
17         return TQ31'Last;
18      elsif Res < TQ31_2 (TQ31'First) then
19         return TQ31'First;
20      else
21         return TQ31 (Res);
22      end if;
23   end "+";
24
25end Fixed_Point;








show_sat_op.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Fixed_Point; use Fixed_Point;
 3
 4procedure Show_Sat_Op is
 5   A, B, C : TQ31;
 6begin
 7   A := TQ31'Last;
 8   B := TQ31'Last;
 9   C := A + B;
10
11   Put_Line (A'Image   & " + "
12             & B'Image & " = "
13             & C'Image);
14
15   A := TQ31'First;
16   B := TQ31'First;
17   C := A + B;
18
19   Put_Line (A'Image   & " + "
20             & B'Image & " = "
21             & C'Image);
22
23end Show_Sat_Op;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Operator_Overriding.Fixed_Point_Operator_Overloading
MD5: 6317bcf9c278c01f86dbdcb761d86240








Runtime output



 0.9999999995 +  0.9999999995 =  0.9999999995
-1.0000000000 + -1.0000000000 = -1.0000000000







In the implementation of the overridden + operator of the TQ31
type, we declare another type (TQ31_2) with a wider range than
TQ31. We use variables of the TQ31_2 type to perform the actual
addition, and then we verify whether the result is still in TQ31's
range. If it is, we simply convert the result back to the TQ31 type.
Otherwise, we saturate it — using either the first or last value of the
TQ31 type.

When overriding operators, the overridden operator replaces the original
one. For example, in the A + B operation of the Show_Sat_Op
procedure above, we're using the overridden version of the + operator,
which performs saturation. Therefore, this operation doesn't raise an
exception (as it was the case with the original + operator).



Nonreturning procedures

Usually, when calling a procedure P, we expect that it returns to the
caller's thread of control after performing some action in the body of
P. However, there are situations where a procedure never returns. We can
indicate this fact by using the No_Return aspect in the subprogram
declaration.

A typical example is that of a server that is designed to run forever until the
process is killed or the machine where the server runs is switched off. This
server can be implemented as an endless loop. For example:


servers.ads

1package Servers is
2
3   procedure Run_Server
4     with No_Return;
5
6end Servers;








servers.adb

 1package body Servers is
 2
 3   procedure Run_Server is
 4   begin
 5      pragma Warnings
 6        (Off,
 7         "implied return after this statement");
 8      while True loop
 9         --  Processing happens here...
10         null;
11      end loop;
12   end Run_Server;
13
14end Servers;








show_endless_loop.adb

1with Servers; use Servers;
2
3procedure Show_Endless_Loop is
4begin
5   Run_Server;
6end Show_Endless_Loop;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Nonreturning_Procedures.Server_Proc
MD5: 3f859b6e2aca8e31367658632e84126c







In this example, Run_Server doesn't exit from the while True
loop, so it never returns to the Show_Endless_Loop procedure.

The same situation happens when we call a procedure that raises an exception
unconditionally. In that case, exception handling is triggered, so that the
procedure never returns to the caller. An example is that of a logging
procedure that writes a message before raising an exception internally:


loggers.ads

1package Loggers is
2
3   Logged_Failure : exception;
4
5   procedure Log_And_Raise (Msg : String)
6     with No_Return;
7
8end Loggers;








loggers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Loggers is
 4
 5   procedure Log_And_Raise (Msg : String) is
 6   begin
 7      Put_Line (Msg);
 8      raise Logged_Failure;
 9   end Log_And_Raise;
10
11end Loggers;








show_no_return_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Loggers;     use Loggers;
 3
 4procedure Show_No_Return_Exception is
 5   Check_Passed : constant Boolean := False;
 6begin
 7   if not Check_Passed then
 8      Log_And_Raise ("Check failed!");
 9      Put_Line ("This line will not be reached!");
10   end if;
11end Show_No_Return_Exception;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Nonreturning_Procedures.Log_Exception
MD5: 10b4933d8c862d14ade54935cbd2b541







In this example, Log_And_Raise writes a message to the user and raises
the Logged_Failure, so it never returns to the
Show_No_Return_Exception procedure.

We could implement exception handling in the Show_No_Return_Exception
procedure, so that the Logged_Failure exception could be handled there
after it's raised in Log_And_Raise. However,  this wouldn't be
considered a normal return to the procedure because it wouldn't return to the
point where it should (i.e. to the point where Put_Line is about to be
called, right after the call to the Log_And_Raise procedure).

If a nonreturning procedure returns nevertheless, this is considered a program
error, so that the Program_Error exception is raised. For example:


loggers.ads

1package Loggers is
2
3   Logged_Failure : exception;
4
5   procedure Log_And_Raise (Msg : String)
6     with No_Return;
7
8end Loggers;








loggers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Loggers is
 4
 5   procedure Log_And_Raise (Msg : String) is
 6   begin
 7      Put_Line (Msg);
 8   end Log_And_Raise;
 9
10end Loggers;








show_no_return_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Loggers;     use Loggers;
 3
 4procedure Show_No_Return_Exception is
 5   Check_Passed : constant Boolean := False;
 6begin
 7   if not Check_Passed then
 8      Log_And_Raise ("Check failed!");
 9      Put_Line ("This line will not be reached!");
10   end if;
11end Show_No_Return_Exception;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Nonreturning_Procedures.Erroneous_Log_Exception
MD5: e44fd8df0529dda5749e85b9e300a999








Build output



show_no_return_exception.adb:9:07: warning: unreachable code [enabled by default]
loggers.adb:7:07: warning: implied return after this statement will raise Program_Error [enabled by default]
loggers.adb:7:07: warning: procedure "Log_And_Raise" is marked as No_Return [enabled by default]








Runtime output



Check failed!

raised PROGRAM_ERROR : loggers.adb:7 implicit return with No_Return







Here, Program_Error is raised when Log_And_Raise returns to the
Show_No_Return_Exception procedure.
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	6.5.1 Nonreturning Subprograms[#12]








Inline subprograms

Inlining[#13] refers to a kind
of optimization where the code of a subprogram is expanded at the point of
the call in place of the call itself.

In modern compilers, inlining depends on the optimization level selected by the
user. For example, if we select the higher optimization level, the compiler
will perform automatic inlining agressively.


In the GNAT toolchain

The highest optimization level (-O3) of GNAT performs aggressive
automatic inlining. This could mean that this level inlines too much rather
than not enough. As a result, the cache may become an issue and the overall
performance may be worse than the one we would achieve by compiling the
same code with optimization level 2 (-O2). Therefore, the general
recommendation is to not just select -O3 for the optimized version of
an application, but instead compare it the optimized version built with
-O2.



It's important to highlight that the inlining we're referring above happens
automatically, so the decision about which subprogram is inlined depends
entirely on the compiler. However, in some cases, it's better to reduce the
optimization level and perform manual inlining instead of automatic inlining.
We do that by using the Inline aspect.

Let's look at this example:


float_arrays.ads

 1package Float_Arrays is
 2
 3   type Float_Array is
 4     array (Positive range <>) of Float;
 5
 6   function Average (Data : Float_Array)
 7                     return Float
 8     with Inline;
 9
10end Float_Arrays;








float_arrays.adb

 1package body Float_Arrays is
 2
 3   function Average (Data : Float_Array)
 4                     return Float
 5   is
 6      Total : Float := 0.0;
 7   begin
 8      for Value of Data loop
 9         Total := Total + Value;
10      end loop;
11      return Total / Float (Data'Length);
12   end Average;
13
14end Float_Arrays;








compute_average.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Float_Arrays; use Float_Arrays;
 4
 5procedure Compute_Average is
 6   Values        : constant Float_Array :=
 7                     (10.0, 11.0, 12.0, 13.0);
 8   Average_Value : Float;
 9begin
10   Average_Value := Average (Values);
11   Put_Line ("Average = "
12             & Float'Image (Average_Value));
13end Compute_Average;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Inline_Subprograms.Inlining_Float_Arrays
MD5: 246bc11e8a969d69873f416f583f450e








Runtime output



Average =  1.15000E+01







When compiling this example, the compiler will most probably inline
Average in the Compute_Average procedure. Note, however, that the
Inline aspect is just a recommendation to the compiler. Sometimes, the
compiler might not be able to follow this recommendation, so it won't inline
the subprogram.

These are some examples of situations where the compiler might not be able to
inline a subprogram:


	when the code is too large,


	when it's too complicated — for example, when it involves exception
handling —, or


	when it contains tasks, etc.





In the GNAT toolchain

In order to effectively use the Inline aspect, we need to set the
optimization level to at least -O1 and use the -gnatn switch, which
instructs the compiler to take the Inline aspect into account.

In addition to the Inline aspect, in GNAT, we also have the
(implementation-defined) Inline_Always aspect. In contrast to the
former aspect, however, the Inline_Always aspect isn't primarily
related to performance. Instead, it should be used when the functionality
would be incorrect if inlining was not performed by the compiler. Examples
of this are procedures that insert Assembly instructions that only make
sense when the procedure is inlined, such as memory barriers.

Similar to the Inline aspect, there might be situations where a
subprogram has the Inline_Always aspect, but the compiler is unable
to inline it. In this case, we get a compilation error from GNAT.



Note that we can use the Inline aspect for generic subprograms as well.
When we do this, we indicate to the compiler that we wish it inlines all
instances of that generic subprogram.


In the Ada Reference Manual
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Null Procedures

Null procedures are procedures that don't have any effect, as their body is
empty. We declare a null procedure by simply writing is null in its
declaration. For example:


null_procs.ads

1package Null_Procs is
2
3   procedure Do_Nothing (Msg : String) is null;
4
5end Null_Procs;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Null_Proc_1
MD5: a8a801e6c71d8177db61e4aa131b8832







As expected, calling a null procedure doesn't have any effect. For example:


show_null_proc.adb

1with Null_Procs; use Null_Procs;
2
3procedure Show_Null_Proc is
4begin
5   Do_Nothing ("Hello");
6end Show_Null_Proc;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Null_Proc_1
MD5: 274eed0b0952b9aa7e422933ece42d86







Null procedures are equivalent to implementing a procedure with a body that
only contains null. Therefore, the Do_Nothing procedure above is
equivalent to this:


null_procs.ads

1package Null_Procs is
2
3   procedure Do_Nothing (Msg : String);
4
5end Null_Procs;








null_procs.adb

1package body Null_Procs is
2
3   procedure Do_Nothing (Msg : String) is
4   begin
5      null;
6   end Do_Nothing;
7
8end Null_Procs;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Null_Proc_1
MD5: d0c9dc9265ebbaa9603681182dee1d92








Null procedures and overriding

We can use null procedures as a way to simulate interfaces for non-tagged
types — similar to what actual interfaces do for tagged types. For
example, we may start by declaring a type and null procedures that operate on
that type. For example, let's model a very simple API:


simple_storage.ads

1package Simple_Storage is
2
3   type Storage_Model is null record;
4
5   procedure Set (S : in out Storage_Model;
6                  V :        String) is null;
7   procedure Display (S : Storage_Model) is null;
8
9end Simple_Storage;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Simple_Storage_Model
MD5: 553e78bc15dcec1302be4b5f484ac21f







Here, the API of the Storage_Model type consists of the Set and
Display procedures. Naturally, we can use objects of the
Storage_Model type in an application, but this won't have any effect:


show_null_proc.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Simple_Storage; use Simple_Storage;
 3
 4procedure Show_Null_Proc is
 5   S : Storage_Model;
 6begin
 7   Put_Line ("Setting 24...");
 8   Set (S, "24");
 9   Display (S);
10end Show_Null_Proc;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Simple_Storage_Model
MD5: 523b3e7239e683f2d879caa9139106ca








Runtime output



Setting 24...







By itself, the Storage_Model type is not very useful. However, we can
derive other types from it and override the null procedures. Let's say we want
to implement the Integer_Storage type to store an integer value:


simple_storage.ads

 1package Simple_Storage is
 2
 3   type Storage_Model is null record;
 4
 5   procedure Set (S : in out Storage_Model;
 6                  V :        String) is null;
 7   procedure Display (S : Storage_Model) is null;
 8
 9   type Integer_Storage is private;
10
11   procedure Set (S : in out Integer_Storage;
12                  V :        String);
13   procedure Display (S : Integer_Storage);
14
15private
16
17   type Integer_Storage is record
18      V : Integer := 0;
19   end record;
20
21end Simple_Storage;








simple_storage.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Storage is
 4
 5   procedure Set (S : in out Integer_Storage;
 6                  V :        String) is
 7   begin
 8      S.V := Integer'Value (V);
 9   end Set;
10
11   procedure Display (S : Integer_Storage) is
12   begin
13      Put_Line ("Value: " & S.V'Image);
14   end Display;
15
16end Simple_Storage;








show_null_proc.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Simple_Storage; use Simple_Storage;
 3
 4procedure Show_Null_Proc is
 5   S : Integer_Storage;
 6begin
 7   Put_Line ("Setting 24...");
 8   Set (S, "24");
 9   Display (S);
10end Show_Null_Proc;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Subprograms.Null_Procedures.Simple_Storage_Model
MD5: 55d491d1ef72fb7be2bf0d2a212f335b








Runtime output



Setting 24...
Value:  24







In this example, we can view Storage_Model as a sort of interface for
derived non-tagged types, while the derived types — such as
Integer_Storage — provide the actual implementation.

The section on null records contains an extended example
that makes use of null procedures.
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Exceptions


Classification of Errors

When we talk about errors and erroneous behavior in Ada, we can classify them
in one of the four categories:


	compilation errors — i.e. errors that an Ada compiler must detect at
compilation time;


	runtime errors — i.e. errors that are detected by an Ada-based
application using checks at runtime;


	bounded errors;


	erroneous execution.




In this section, we discuss each of these categories.
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Compilation errors

In the category of compilation errors, the goal is to prevent compilers from
accepting illegal programs. Here, any program that doesn't follow the rules
described in the Ada Reference Manual is considered illegal. Those rules
include not only simple syntax errors, but also more complicated semantic
rules, such as the ones concerning
accessibility levels for access
types.

Note that Ada — in contrast to many programming languages, which can be
quite permissive — tries to prevent as many errors as possible at
compilation time because of its focus on safety. However, even though a wide
range of errors can be detected at compilation time, this doesn't mean that a
legal Ada program is free of errors. Therefore, using methods such as static
analysis or unit testing is important.



Runtime errors

When a rule cannot be verified at compilation time, a common strategy is to
have the compiler insert runtime checks into the resulting application. We see
details about these checks later on when we discuss
checks and exceptions.

A typical example is an overflow check.
Consider a calculation using variables: if this calculation leads to a result
that isn't representable with the underlying data types, we cannot possibly
store a value  into a register or memory that can be considered correct —
so we have to detect this situation. Unfortunately, because we're using
variables, we obviously cannot verify the result of the calculation at
compilation time, so we have to verify it at runtime.

As we've mentioned before, Ada strives for detecting as many erroneous
conditions as possible, while other programming language would allow errors
such as overflow errors to remain undetected — which would likely lead
the application to misbehave. Those checks raise an exception if an erroneous
condition is detected, so the programmer has the means — and the
responsibility — to catch that exception and handle the situation
properly (Note, however, that some of the runtime checks can be deactivated.
We will discuss this topic later on.)



Bounded errors

For certain kinds of errors, the compiler might not be able to detect the error
— neither at compilation time, nor with checks at runtime. Such errors
are called bounded errors because their possible effects are bounded.
In fact, the
Ada Reference Manual describes each bounded error and its possible effects
— one of those effects is raising the Program_Error exception.

Just as an example, consider the bounded error described in section
13.9.1 Data Validity[#2], paragraphs 9:


If the representation of a scalar object does not represent a value of the
object's subtype (perhaps because the object was not initialized), the
object is said to have an invalid representation. It is a bounded error to
evaluate the value of such an object. If the error is detected, either
Constraint_Error or Program_Error is raised. Otherwise,
execution continues using the invalid representation. The rules of the
language outside this subclause assume that all objects have valid
representations.




Let's see a code example:


show_bounded_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Bounded_Error is
 4   subtype Int_1_10 is
 5     Integer range 1 .. 10;
 6
 7   I1         : Int_1_10;
 8   I1_Overlay : Integer
 9     with Address => I1'Address,
10                     Import,
11                     Volatile;
12begin
13   I1_Overlay := 0;
14   --  ^^^^^^^^^^^
15   --  We use this overlay to write an invalid
16   --  value to I1.
17
18   Put_Line ("I1 = " & I1'Image);
19   --                  ^^^^^^^^
20   --  Bounded error: value in
21   --  I1 is out of range.
22
23   I1 := I1 + 1;
24   --    ^^
25   --  Bounded error: using value
26   --  in operation that is out of
27   --  range.
28
29   Put_Line ("I1 = " & I1'Image);
30end Show_Bounded_Error;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Classification_Of_Errors.Data_Validity_Bounded_Error
MD5: 770ebb7b6e0015e373e96c0dce250caa








Runtime output



I1 =  0
I1 =  1







In this example, we simulate a missing initialization by using an overlay
(I1_Overlay). As a consequence, I1 has an invalid value that is
out of the allowed range of the Int_1_10 subtype. This situation causes
two bounded errors:


	a bounded error when I1 is evaluated in the call to Image; and


	a bounded error when the value of the right-sided I1 is evaluated
— in the increment I1 := I1 + 1.
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Erroneous execution

Erroneous execution is similar to bounded errors in the sense that having the
compiler detect the erroneous condition at compilation time or at runtime isn't
possible. However, unlike bounded errors, the effects are usually
nondeterministic: a bound on possible effects is not described by the language.

Again, as an example of erroneous execution, consider the description from
section 13.9.1 Data Validity[#4], paragraph 12/3, which discusses
the implications of using the Unchecked_Conversion function. Let's see a
code example:


show_erroneous_execution.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Unchecked_Conversion;
 3
 4procedure Show_Erroneous_Execution is
 5   subtype Int_1_10 is
 6     Integer range 1 .. 10;
 7
 8   function To_Int_1_10 is new
 9     Ada.Unchecked_Conversion
10       (Source => Integer,
11        Target => Int_1_10);
12
13   I1 : Int_1_10 := To_Int_1_10 (0);
14   --               ^^^^^^^^^^^^^^^
15   --  Bounded error
16begin
17   Put_Line ("I1 = " & I1'Image);
18
19   I1 := I1 + 1;
20   --    ^^^^^^
21   --  Erroneous execution: using value
22   --  in operation that is out of range.
23
24   Put_Line ("I1 = " & I1'Image);
25end Show_Erroneous_Execution;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Classification_Of_Errors.Data_Validity_Erroneous_Execution
MD5: 19218e9bb2e153366dea9114a5e59314








Build output



show_erroneous_execution.adb:8:04: warning: types for unchecked conversion have different sizes [-gnatwz]








Runtime output



I1 =  0
I1 =  1







It is considered to be a bounded error to use the To_Int_1_10 function
(based on Unchecked_Conversion) with a value that is invalid for the
target data type. However, if we use the invalid value of I1 in an
operation such as the I1 := I1 + 1 assignment, this leads to erroneous
execution, and the effects are unpredictable: they aren't described in the Ada
Reference Manual, as they are nondeterministic.
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Asserts

When we want to indicate a condition in the code that must always be valid, we
can use the pragma Assert. As the name implies, when we use this pragma,
we're asserting some truth about the source-code. (We can also use the
procedural form, as we'll see later.)


Important

Another method to assert the truth about the source-code is to use
pre and post-conditions.



A simple assert has this form:


show_pragma_assert.adb

1procedure Show_Pragma_Assert is
2   I : constant Integer := 10;
3
4   pragma Assert (I = 10);
5begin
6   null;
7end Show_Pragma_Assert;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Pragma_Assert_1
MD5: 8d40817304515169d0d5670904ca1e01







In this example, we're asserting that the value of I is always 10. We
could also display a message if the assertion is false:


show_pragma_assert.adb

1procedure Show_Pragma_Assert is
2   I : constant Integer := 11;
3
4   pragma Assert (I = 10, "I is not 10");
5begin
6   null;
7end Show_Pragma_Assert;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Pragma_Assert_2
MD5: b70fa67c92542ade39c388964ce12302








Build output



show_pragma_assert.adb:4:19: warning: assertion will fail at run time [-gnatw.a]








Runtime output




raised ADA.ASSERTIONS.ASSERTION_ERROR : I is not 10







Similarly, we can use the procedural form of Assert. For example, the
code above can implemented as follows:


show_procedure_assert.adb

1with Ada.Assertions; use Ada.Assertions;
2
3procedure Show_Procedure_Assert is
4   I : constant Integer := 11;
5
6begin
7   Assert (I = 10, "I is not 10");
8end Show_Procedure_Assert;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Procedure_Assert
MD5: cbab23645ff89d4adffcaaddaeb6f0e3








Runtime output




raised ADA.ASSERTIONS.ASSERTION_ERROR : I is not 10







Note that a call to Assert is simply translated to a check — and
the Assertion_Error exception from the Ada.Assertions package
being raised in the case that the check fails. For example, the code above
roughly corresponds to this:


show_assertion_error.adb

 1with Ada.Assertions; use Ada.Assertions;
 2
 3procedure Show_Assertion_Error is
 4   I : constant Integer := 11;
 5
 6begin
 7   if I /= 10 then
 8      raise Assertion_Error with "I is not 10";
 9   end if;
10
11end Show_Assertion_Error;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Asserts.Assertion_Error
MD5: 9c846acf998ca7adabd47c3b5a6ce39f








Runtime output




raised ADA.ASSERTIONS.ASSERTION_ERROR : I is not 10
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Assertion policies

We can activate and deactivate assertions based on assertion policies. We can do
that by using the pragma Assertion_Policy. As an argument to this pragma,
we indicate whether a specific policy must be checked or ignored.

For example, we can deactivate assertion checks by specifying
Assert => Ignore. Similarly, we can activate assertion checks by
specifying Assert => Check. Let's see a code example:


show_pragma_assertion_policy.adb

1procedure Show_Pragma_Assertion_Policy is
2   I : constant Integer := 11;
3
4   pragma Assertion_Policy (Assert => Ignore);
5begin
6   pragma Assert (I = 10);
7end Show_Pragma_Assertion_Policy;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Assertion_Policies.Pragma_Assertion_Policy_1
MD5: 39b8aa4a34b6169c03b54074f4136519








Build output



show_pragma_assertion_policy.adb:6:19: warning: assertion would fail at run time [-gnatw.a]







Here, we're specifying that asserts shall be ignored. Therefore, the call to the
pragma Assert doesn't raise an exception. If we replace Ignore
with Check in the call to Assertion_Policy, the assert will raise
the Assertion_Error exception.

The following table presents all policies that we can set:



	Policy

	Descripton





	Assert

	Check assertions



	Static_Predicate

	Check static predicates



	Dynamic_Predicate

	Check dynamic predicates



	Pre

	Check pre-conditions



	Pre'Class

	Check pre-condition of classes of tagged
types



	Post

	Check post-conditions



	Post'Class

	Check post-condition of classes of tagged
types



	Type_Invariant

	Check type invariants



	Type_Invariant'Class

	Check type invariant of classes of tagged
types







In the GNAT toolchain

Compilers are free to include policies that go beyond the ones listed above.
For example, GNAT includes the following policies — called
assertion kinds in this context:


	Assertions


	Assert_And_Cut


	Assume


	Contract_Cases


	Debug


	Ghost


	Initial_Condition


	Invariant


	Invariant'Class


	Loop_Invariant


	Loop_Variant


	Postcondition


	Precondition


	Predicate


	Refined_Post


	Statement_Assertions


	Subprogram_Variant




Also, in addtion to Check and Ignore, GNAT allows you to set
a policy to Disable and Suppressible.

You can read more about them in the
GNAT Reference Manual[#7].



You can specify multiple policies in a single call to Assertion_Policy.
For example, you can activate all policies by writing:


show_multiple_assertion_policies.adb

 1procedure Show_Multiple_Assertion_Policies is
 2   pragma Assertion_Policy
 3     (Assert               => Check,
 4      Static_Predicate     => Check,
 5      Dynamic_Predicate    => Check,
 6      Pre                  => Check,
 7      Pre'Class            => Check,
 8      Post                 => Check,
 9      Post'Class           => Check,
10      Type_Invariant       => Check,
11      Type_Invariant'Class => Check);
12begin
13   null;
14end Show_Multiple_Assertion_Policies;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Assertion_Policies.Multiple_Assertion_Policies
MD5: 3abbf97160b755b84cc4f7e652ca5551








In the GNAT toolchain

With GNAT, policies can be specified in multiple ways. In addition to calls
to Assertion_Policy, you can use
configuration pragmas files[#8].
You can use these files to specify all pragmas that are relevant to your
application, including Assertion_Policy. In addition, you can manage
the granularity for those pragmas. For example, you can use a global
configuration pragmas file for your complete application, or even different
files for each source-code file you have.

Also, by default, all policies listed in the table above are deactivated,
i.e. they're all set to Ignore. You can use the command-line switch
-gnata to activate them.



Note that the Assert procedure raises an exception independently of the
assertion policy (Assertion_Policy (Assert => Ignore)). For example:


show_assert_procedure_policy.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Ada.Assertions; use Ada.Assertions;
 3
 4procedure Show_Assert_Procedure_Policy is
 5   pragma Assertion_Policy (Assert => Ignore);
 6
 7   I : constant Integer := 1;
 8begin
 9   Put_Line ("------ Pragma Assert -----");
10   pragma Assert (I = 0);
11
12   Put_Line ("---- Procedure Assert ----");
13   Assert (I = 0);
14
15   Put_Line ("Finished.");
16end Show_Assert_Procedure_Policy;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Assertion_Policies.Assert_Procedure_Policy
MD5: 7be3bab24d856081afeddabe40afc84f








Build output



show_assert_procedure_policy.adb:10:19: warning: assertion would fail at run time [-gnatw.a]








Runtime output



------ Pragma Assert -----
---- Procedure Assert ----

raised ADA.ASSERTIONS.ASSERTION_ERROR : a-assert.adb:42







Here, the pragma Assert is ignored due to the assertion policy. However,
the call to Assert is not ignored.


In the Ada Reference Manual


	11.4.2 Pragmas Assert and Assertion_Policy[#9]








Checks and exceptions

This table shows all language-defined checks and the associated exceptions:



	Check

	Exception





	Access_Check

	Constraint_Error



	Discriminant_Check

	Constraint_Error



	Division_Check

	Constraint_Error



	Index_Check

	Constraint_Error



	Length_Check

	Constraint_Error



	Overflow_Check

	Constraint_Error



	Range_Check

	Constraint_Error



	Tag_Check

	Constraint_Error



	Accessibility_Check

	Program_Error



	Allocation_Check

	Program_Error



	Elaboration_Check

	Program_Error



	Program_Error_Check

	Program_Error



	Storage_Check

	Storage_Error



	Tasking_Check

	Tasking_Error






In addition, we can use All_Checks to refer to all those checks above at
once.

Let's discuss each check and see code examples where those checks are
performed. Note that all examples are erroneous, so please avoid reusing them
elsewhere.


Access Check

As you know, an object of an access type might be null. It would be an error to
dereference this object, as it doesn't indicate a valid position in memory.
Therefore, the access check verifies that an access object is not null when
dereferencing it. For example:


show_access_check.adb

1procedure Show_Access_Check is
2
3   type Integer_Access is access Integer;
4
5   AI : Integer_Access;
6begin
7   AI.all := 10;
8end Show_Access_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Access_Check
MD5: 4db8b63efb23caa7da926d4ec9f204bf








Build output



show_access_check.adb:5:04: warning: variable "AI" is read but never assigned [-gnatwv]
show_access_check.adb:7:04: warning: null value not allowed here [enabled by default]
show_access_check.adb:7:04: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_access_check.adb:7 access check failed







Here, the value of AI is null by default, so we cannot dereference it.

The access check also performs this verification when assigning to a subtype
that excludes null (not null access). (You can find more information
about this topic in the section about
not null access.) For example:


show_access_check.adb

 1procedure Show_Access_Check is
 2
 3   type Integer_Access is
 4     access all Integer;
 5
 6   type Safe_Integer_Access is
 7     not null access all Integer;
 8
 9   AI  : Integer_Access;
10   SAI : Safe_Integer_Access := new Integer;
11
12begin
13   SAI := Safe_Integer_Access (AI);
14end Show_Access_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Access_Check_2
MD5: 47895a404e2a111476cd67f43c12d4b5








Build output



show_access_check.adb:9:04: warning: variable "AI" is read but never assigned [-gnatwv]
show_access_check.adb:13:32: warning: null value not allowed here [enabled by default]
show_access_check.adb:13:32: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_access_check.adb:13 access check failed







Here, the value of AI is null (by default), so we cannot assign it to
SAI because its type excludes null.

Note that, if we remove the := new Integer assignment from the
declaration of SAI, the null exclusion fails in the declaration
itself (because the default value of the access type is null).



Discriminant Check

As we've seen earlier, a variant record is a record with discriminants that
allows for changing its structure. In operations such as an assignment, it's
important to ensure that the discriminants of the objects match — i.e. to
ensure that the structure of the objects matches. The discriminant check
verifies whether this is the case. For example:


show_discriminant_check.adb

 1procedure Show_Discriminant_Check is
 2
 3   type Rec (Valid : Boolean) is record
 4      case Valid is
 5         when True =>
 6            Counter : Integer;
 7         when False =>
 8            null;
 9      end case;
10   end record;
11
12   R : Rec (Valid => False);
13begin
14   R := (Valid  => True,
15         Counter => 10);
16end Show_Discriminant_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Discriminant_Check
MD5: 665ab37962f8f9c129acac543b1eb15d








Build output



show_discriminant_check.adb:14:09: warning: incorrect value for discriminant "Valid" [enabled by default]
show_discriminant_check.adb:14:09: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_discriminant_check.adb:14 discriminant check failed







Here, R's discriminant (Valid) is False, so we cannot
assign an object whose Valid discriminant is True.

Also, when accessing a component, the discriminant check ensures that this
component exists for the current discriminant value:


show_discriminant_check.adb

 1procedure Show_Discriminant_Check is
 2
 3   type Rec (Valid : Boolean) is record
 4      case Valid is
 5         when True =>
 6            Counter : Integer;
 7         when False =>
 8            null;
 9      end case;
10   end record;
11
12   R : Rec (Valid => False);
13   I : Integer;
14begin
15   I := R.Counter;
16end Show_Discriminant_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Discriminant_Check_2
MD5: 440973b0be7c4261ddf3c2211a2c1325








Build output



show_discriminant_check.adb:15:10: warning: component not present in subtype of "Rec" defined at line 12 [enabled by default]
show_discriminant_check.adb:15:10: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_discriminant_check.adb:15 discriminant check failed







Here, R's discriminant (Valid) is False, so we cannot
access the Counter component, for it only exists when the Valid
discriminant is True.



Division Check

The division check verifies that we're not trying to divide a value by zero
when using the /, rem and mod operators. For example:


ops.ads

 1package Ops is
 2   function Div_Op (A, B : Integer)
 3                    return Integer is
 4     (A / B);
 5
 6   function Rem_Op (A, B : Integer)
 7                    return Integer is
 8     (A rem B);
 9
10   function Mod_Op (A, B : Integer)
11                    return Integer is
12     (A mod B);
13end Ops;








show_division_check.adb

1with Ops; use Ops;
2
3procedure Show_Division_Check is
4   I : Integer;
5begin
6   I := Div_Op (10, 0);
7   I := Rem_Op (10, 0);
8   I := Mod_Op (10, 0);
9end Show_Division_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Division_Check
MD5: 6ec0856be947eea6610cffaa0e875d45








Runtime output




raised CONSTRAINT_ERROR : ops.ads:4 divide by zero







All three calls in the Show_Division_Check procedure — to
the Div_Op, Rem_Op and Mod_Op functions — can raise
an exception because we're using 0 as the second argument, which makes the
division check in those functions fail.



Index Check

We use indices to access components of an array. An index check verifies that
the index we're using to access a specific component is within the array's
bounds. For example:


show_index_check.adb

 1procedure Show_Index_Check is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   function Value_Of (A : Integer_Array;
 7                      I : Integer)
 8                      return Integer
 9   is
10      type Half_Integer_Array is new
11        Integer_Array (A'First ..
12                       A'First + A'Length / 2);
13
14      A_2 : Half_Integer_Array := (others => 0);
15   begin
16      return A_2 (I);
17   end Value_Of;
18
19   Arr_1 : Integer_Array (1 .. 10) :=
20             (others => 1);
21
22begin
23   Arr_1 (10) := Value_Of (Arr_1, 10);
24
25end Show_Index_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Index_Check
MD5: fa791718701c4ac805badf368df9064e








Runtime output




raised CONSTRAINT_ERROR : show_index_check.adb:16 index check failed







The range of A_2 — which is passed as an argument to the
Value_Of function — is 1 to 6. However, in that function call,
we're trying to access position 10, which is outside A_2 's bounds.



Length Check

In array assignments, both arrays must have the same length. To ensure that
this is the case, a length check is performed. For example:


show_length_check.adb

 1procedure Show_Length_Check is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   procedure Assign (To   : out Integer_Array;
 7                     From :     Integer_Array) is
 8   begin
 9      To := From;
10   end Assign;
11
12   Arr_1 : Integer_Array (1 .. 10);
13   Arr_2 : Integer_Array (1 .. 9) :=
14             (others => 1);
15
16begin
17   Assign (Arr_1, Arr_2);
18end Show_Length_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Length_Check
MD5: a521afd0a46a67d260e8b0bd5f046ce4








Runtime output




raised CONSTRAINT_ERROR : show_length_check.adb:9 length check failed







Here, the length of Arr_1 is 10, while the length of Arr_2 is 9,
so we cannot assign Arr_2 (From parameter) to Arr_1
(To parameter) in the Assign procedure.



Overflow Check

Operations on scalar objects might lead to overflow, which, if not checked,
lead to wrong information being computed and stored. Therefore, an overflow
check verifies that the value of a scalar object is within the base range of
its type. For example:


show_overflow_check.adb

1procedure Show_Overflow_Check is
2   A, B : Integer;
3begin
4   A := Integer'Last;
5   B := 1;
6
7   A := A + B;
8end Show_Overflow_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Overflow_Check
MD5: baa46d9085cbd14863aaa7e24dc7b9cc








Build output



show_overflow_check.adb:7:11: warning: value not in range of type "Standard.Integer" [enabled by default]
show_overflow_check.adb:7:11: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_overflow_check.adb:7 overflow check failed







In this example, A already has the last possible value of the
Integer'Base range, so increasing it by one causes an overflow error.



Range Check

The range check verifies that a scalar value is within a specific range —
for instance, the range of a subtype. Let's see an example:


show_range_check.adb

1procedure Show_Range_Check is
2
3   subtype Int_1_10 is Integer range 1 .. 10;
4
5   I : Int_1_10;
6
7begin
8   I := 11;
9end Show_Range_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Range_Check
MD5: 54b1d67d98d97a58d4265a854fcfa992








Build output



show_range_check.adb:8:09: warning: value not in range of type "Int_1_10" defined at line 3 [enabled by default]
show_range_check.adb:8:09: warning: Constraint_Error will be raised at run time [enabled by default]








Runtime output




raised CONSTRAINT_ERROR : show_range_check.adb:8 range check failed







In this example, we're trying to assign 11 to the variable I of the
Int_1_10 subtype, which has a range from 1 to 10. Since 11 is outside
that range, the range check fails.



Tag Check

The tag check ensures that the tag of a tagged object matches the expected tag
in a dispatching operation. For example:


p.ads

1package P is
2
3   type T is tagged null record;
4   type T1 is new T with null record;
5   type T2 is new T with null record;
6
7end P;








show_tag_check.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Tags;
 3
 4with P;           use P;
 5
 6procedure Show_Tag_Check is
 7
 8   A1 : T'Class := T1'(null record);
 9   A2 : T'Class := T2'(null record);
10
11begin
12   Put_Line ("A1'Tag: "
13             & Ada.Tags.Expanded_Name (A1'Tag));
14   Put_Line ("A2'Tag: "
15             & Ada.Tags.Expanded_Name (A2'Tag));
16
17   A2 := A1;
18
19end Show_Tag_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Tag_Check
MD5: 5a685be7804200a884649f54c175ee42








Runtime output



A1'Tag: P.T1
A2'Tag: P.T2

raised CONSTRAINT_ERROR : show_tag_check.adb:17 tag check failed







Here, A1 and A2 have different tags:


	A1'Tag = T1'Tag, while


	A2'Tag = T2'Tag.




Since the tags don't match, the tag check fails in the assignment of A1
to A2.



Accessibility Check

The accessibility check verifies that the accessibility level of an entity
matches the expected level. We discuss accessibility levels
in a later chapter.

Let's look at an example that mixes access types and anonymous access types.
Here, we use an anonymous access type in the declaration of A1 and a
named access type in the declaration of A2:


p.ads

1package P is
2
3   type T is tagged null record;
4   type T_Class is access all T'Class;
5
6end P;








show_accessibility_check.adb

 1with P; use P;
 2
 3procedure Show_Accessibility_Check is
 4
 5   A1 : access T'Class := new T;
 6   A2 : T_Class;
 7
 8begin
 9   A2 := T_Class (A1);
10
11end Show_Accessibility_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Accessibility_Check
MD5: 7120d908b55ef576db93e9a15db257f2








Build output



show_accessibility_check.adb:9:19: warning: accessibility check fails [enabled by default]
show_accessibility_check.adb:9:19: warning: Program_Error will be raised at run time [enabled by default]








Runtime output




raised PROGRAM_ERROR : show_accessibility_check.adb:9 accessibility check failed







The anonymous type (access T'Class), which is used in the declaration of
A1, doesn't have the same accessibility level as the T_Class
type. Therefore, the accessibility check fails during the T_Class (A1)
conversion.

We can see the accessibility check failing in this example as well:


show_accessibility_check.adb

 1with P; use P;
 2
 3procedure Show_Accessibility_Check is
 4
 5   A : access T'Class := new T;
 6
 7   procedure P (A : T_Class) is null;
 8
 9begin
10   P (T_Class (A));
11
12end Show_Accessibility_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Accessibility_Check
MD5: 97db82410dd3459249d0e7a97118b7ef








Build output



show_accessibility_check.adb:10:16: warning: accessibility check fails [enabled by default]
show_accessibility_check.adb:10:16: warning: Program_Error will be raised at run time [enabled by default]








Runtime output




raised PROGRAM_ERROR : show_accessibility_check.adb:10 accessibility check failed







Again, the check fails in the T_Class (A) conversion and raises a
Program_Error exception.



Allocation Check

The allocation check ensures, when a task is about to be created, that its
master has not been completed. Also, it ensures that the finalization has not
started.

This is an example adapted from
AI-00280[#10]:


p.ads

 1with Ada.Finalization;
 2with Ada.Unchecked_Deallocation;
 3
 4package P is
 5   type T1 is new
 6     Ada.Finalization.Controlled with null record;
 7   procedure Finalize (X : in out T1);
 8
 9   type T2 is new
10     Ada.Finalization.Controlled with null record;
11   procedure Finalize (X : in out T2);
12
13   X1 : T1;
14
15   type T2_Ref is access T2;
16   procedure Free is new
17     Ada.Unchecked_Deallocation (T2, T2_Ref);
18end P;








p.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body P is
 4
 5   procedure Finalize (X : in out T1) is
 6      X2 : T2_Ref := new T2;
 7   begin
 8      Put_Line ("Finalizing T1...");
 9      Free (X2);
10   end Finalize;
11
12   procedure Finalize (X : in out T2) is
13   begin
14      Put_Line ("Finalizing T2...");
15   end Finalize;
16
17end P;








show_allocation_check.adb

1with P; use P;
2
3procedure Show_Allocation_Check is
4   X2 : T2_Ref := new T2;
5begin
6   Free (X2);
7end Show_Allocation_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Allocation_Check
MD5: 915e8ab21e550c981503c014bcceade1








Runtime output



Finalizing T2...

raised PROGRAM_ERROR : finalize/adjust raised exception







Here, in the finalization of the X1 object of T1 type, we're
trying to create an object of T2 type while the finalization of the
master has already started. (Note that X1 was declared in the P
package.) This is forbidden, so the allocation check raises a
Program_Error exception.



Elaboration Check

The elaboration check verifies that subprograms — or protected entries,
or task activations — have been elaborated before being called.

This is an example adapted from
AI-00064[#11]:


p.ads

1function P return Integer;








p.adb

1function P return Integer is
2begin
3   return 1;
4end P;








show_elaboration_check.adb

 1with P;
 2
 3procedure Show_Elaboration_Check is
 4
 5   function F return Integer;
 6
 7   type Pointer_To_Func is
 8     access function return Integer;
 9
10   X : constant Pointer_To_Func := P'Access;
11
12   Y : constant Integer := F;
13   Z : constant Pointer_To_Func := X;
14
15   --  Renaming-as-body
16   function F return Integer renames Z.all;
17begin
18   null;
19end Show_Elaboration_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Elaboration_Check
MD5: 80a39df912aae8788296f81ee9d4a79e








Build output



show_elaboration_check.adb:12:28: warning: cannot call "F" before body seen [enabled by default]
show_elaboration_check.adb:12:28: warning: Program_Error will be raised at run time [enabled by default]








Runtime output




raised PROGRAM_ERROR : show_elaboration_check.adb:12 access before elaboration







This is a curious example: first, we declare a function F and assign the
value returned by this function to constant Y in its declaration. Then,
we declare F as a renamed function, thereby providing a body to F
— this is called renaming-as-body. Consequently, the compiler doesn't
complain that a body is missing for function F. (If you comment out the
function renaming, you'll see that the compiler can then detect the missing
body.) Therefore,  at runtime, the elaboration check fails because the body of
the first declaration of the F function is actually missing.



Program_Error_Check


Note

This concept was introduced in Ada 2022.



As we've seen before, there are three checks that may raise a
Program_Error exception: the Accessibility_Check, the
Allocation_Check and the Elaboration_Check. In addition to that,
we have the Program_Error_Check, which is actually a collection of
various different checks that may raise a Program_Error, but don't have
a category for themselves.

For completeness, these are the error conditions checked by the
Program_Error_Check (listed in the
Action Item (AI) 12-0309 document[#12]),
according to their definition in the Ada Reference Manual:



	Ada Reference Manual

	Paragraph

	Description





	3.2.4 Subtype Predicates[#13]

	(29.1/4)

	It checks that subtypes with predicates are
not used to index an array in generic units.



	5.5 Loop Statements[#14]

	(8.1/5)

	It checks that the maximum number of chunks for
statement-level parallelism is
greater than zero.



	6.4.1 Parameter Associations[#15]

	(13.4/4)

	It checks that the default value of an out
parameter is convertible: an error occurs when
we have an out parameter with
Default_Value, and the actual is a
view conversion of an unrelated type that does
not have Default_Value.



	12.5.1 Formal Private and Derived Types[#16]

	(23.3/2)

	It checks that there is no misuse of functions
in a generic with a class-wide actual type.



	13.3 Operational and Representation Attributes[#17]

	(75.1/3)

	It checks that there are no colliding
External_Tag values.



	B.3.3 Unchecked Union Types[#18]

	(22/2)

	It checks that there is no misuse of
operations of Unchecked_Unions without
inferable discriminants.







In the Ada Reference Manual


	11.5 Suppressing Checks[#19]


	3.2.4 Subtype Predicates[#20]


	5.5 Loop Statements[#21]


	6.4.1 Parameter Associations[#22]


	12.5.1 Formal Private and Derived Types[#23]


	13.3 Operational and Representation Attributes[#24]


	B.3.3 Unchecked Union Types[#25]







Example of a Program_Error_Check

Just as an example, let's look at the check for subtype predicates in generic
units:


some_generic_package.ads

1generic
2   type R is (<>);
3package Some_Generic_Package is
4   procedure Process;
5end Some_Generic_Package;








some_generic_package.adb

 1package body Some_Generic_Package is
 2
 3   procedure Process is
 4      type Arr is
 5        array (R) of Integer;
 6
 7      Dummy : Arr := (others => 0);
 8   begin
 9      null;
10   end Process;
11
12end Some_Generic_Package;








show_subtype_predicate_programm_error.adb

 1with Some_Generic_Package;
 2
 3procedure Show_Subtype_Predicate_Programm_Error is
 4
 5   type Custom_Range is range 1 .. 5
 6     with Dynamic_Predicate =>
 7            4 not in Custom_Range;
 8
 9   package P is new
10     Some_Generic_Package (Custom_Range);
11   use P;
12begin
13   Process;
14end Show_Subtype_Predicate_Programm_Error;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Subtype_Predicate_Programm_Error
MD5: b1a5cc579393162dedecb6b65b75eef4








Build output



show_subtype_predicate_programm_error.adb:9:04: warning: in instantiation at some_generic_package.adb:5 [enabled by default]
show_subtype_predicate_programm_error.adb:9:04: warning: subtype "R" has predicate, not allowed as index subtype [enabled by default]
show_subtype_predicate_programm_error.adb:9:04: warning: Program_Error will be raised at run time [enabled by default]








Runtime output




raised PROGRAM_ERROR : some_generic_package.adb:5 improper use of generic subtype with predicate







Here, we're using the Custom_Range type for the formal type R
in the instantiation of the generic package Some_Generic_Package. Since
we use R as an index for the array type Arr (in the procedure
Process), we cannot map a type to R that uses a predicate.
Therefore, because Custom_Range type has a dynamic predicate, the
Program_Error exception is raised.




Storage Check

The storage check ensures that the storage pool has enough space when
allocating memory. Let's revisit an example that we
discussed earlier:


custom_types.ads

1package Custom_Types is
2
3   type UInt_7 is range 0 .. 127;
4
5   type UInt_7_Reserved_Access is access UInt_7
6     with Storage_Size => 8;
7
8end Custom_Types;








show_storage_check.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2
 3with Custom_Types; use Custom_Types;
 4
 5procedure Show_Storage_Check is
 6
 7   RAV1, RAV2 : UInt_7_Reserved_Access;
 8
 9begin
10   Put_Line ("Allocating RAV1...");
11   RAV1 := new UInt_7;
12
13   Put_Line ("Allocating RAV2...");
14   RAV2 := new UInt_7;
15
16   New_Line;
17end Show_Storage_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Storage_Check
MD5: 4e4bd284adb1c1d97f8f7563068c18de








Runtime output



Allocating RAV1...
Allocating RAV2...

raised STORAGE_ERROR : s-poosiz.adb:108 explicit raise







On each allocation (new UInt_7), a storage check is performed. Because
there isn't enough reserved storage space before the second allocation, the
checks fails and raises a Storage_Error exception.



Tasking_Check

The Tasking_Check ensures that all tasks have been activated
successfully and that no terminated task is called. If the check fails, a
Tasking_Error exception is raised.


Note

This concept was introduced in Ada 2022. It was created to group all checks
that might raise the Tasking_Error exception.



Let's look at a simple example:


workers.ads

1package Workers is
2
3    task type Worker  is
4        entry Start;
5    end Worker;
6
7end Workers;








workers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Workers is
 4
 5    task body Worker  is
 6    begin
 7       Put_Line ("Task has started.");
 8       delay 1.0;
 9       Put_Line ("Task has finished.");
10    end Worker;
11
12end Workers;








show_tasking_check_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Workers;     use Workers;
 3
 4procedure Show_Tasking_Check_Error is
 5    W : Worker;
 6begin
 7    Put_Line ("W.Start...");
 8    W.Start;
 9    Put_Line ("Finished");
10end Show_Tasking_Check_Error;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Checks_And_Exceptions.Tasking_Check_Error
MD5: 38f9093082d3fe545847ea3d22376e39








Build output



workers.adb:5:05: warning: no accept for entry "Start" [enabled by default]








Runtime output



W.Start...
Task has started.
Task has finished.

raised TASKING_ERROR







In this example, the body of Worker doesn't have an accept.
Therefore, no rendezvous can happen for the W.Start call. Since the
task eventually terminates (as you can see in the user messages), the call
to Start constitutes a call to a terminated task. This condition is
checked by the Tasking_Check, which fails in this case, thereby
raising a Tasking_Error.




Ada.Exceptions package


Note

Parts of this section were originally published as
Gem #142 : Exception-ally[#26]



The standard Ada run-time library provides the package Ada.Exceptions.
This package provides a number of services to help analyze exceptions.

Each exception is associated with a (short) message that can be set by the code
that raises the exception, as in the following code:

raise Constraint_Error with "some message";






Historically

Since Ada 2005, we can use the
raise Constraint_Error with "some message" syntax.
In Ada 95, you had to call the Raise_Exception procedure:

Ada.Exceptions.Raise_Exception         --  Ada 95
  (Constraint_Error'Identity, "some message");





In Ada 83, there was no way to do it at all.

The new syntax is now very convenient, and developers should be encouraged
to provide as much information as possible along with the exception.




In the GNAT toolchain

The length of the message is limited to 200 characters by default in GNAT,
and messages longer than that will be truncated.




In the Ada Reference Manual


	11.4.1 The Package Exceptions[#27]







Retrieving exception information

Exceptions also embed information set by the run-time itself that can be
retrieved by calling the Exception_Information function. The function
Exception_Information also displays the Exception_Message.

For example:

exception
   when E : others =>
     Put_Line
       (Ada.Exceptions.Exception_Information (E));






In the GNAT toolchain

In the case of GNAT, the information provided by an exception might include
the source location where the exception was raised and a nonsymbolic
traceback.



You can also retrieve this information individually. Here, you can use:



	the Exception_Name functions — and its derivatives
Wide_Exception_Name and Wide_Wide_Exception_Name — to
retrieve the name of an exception.


	the Exception_Message function to retrieve the message associated
with an exception.







Let's see a complete example:


show_exception_info.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4procedure Show_Exception_Info is
 5
 6   Custom_Exception : exception;
 7
 8   procedure Nested is
 9   begin
10      raise Custom_Exception
11        with "We got a problem";
12   end Nested;
13
14begin
15   Nested;
16
17exception
18   when E : others =>
19      Put_Line ("Exception info: "
20                & Exception_Information (E));
21      Put_Line ("Exception name: "
22                & Exception_Name (E));
23      Put_Line ("Exception msg:  "
24                & Exception_Message (E));
25end Show_Exception_Info;









Collecting exceptions


Save_Occurrence

You can save an exception occurrence using the Save_Occurrence procedure.
(Note that a Save_Occurrence function exists as well.)

For example, the following application collects exceptions into a list and
displays them after running the Test_Exceptions procedure:


exception_tests.ads

 1with Ada.Exceptions; use Ada.Exceptions;
 2
 3package Exception_Tests is
 4
 5   Custom_Exception : exception;
 6
 7   type All_Exception_Occur is
 8     array (Positive range <>) of
 9       Exception_Occurrence;
10
11   procedure Test_Exceptions
12     (All_Occur  : in out All_Exception_Occur;
13      Last_Occur :    out Integer);
14
15end Exception_Tests;








exception_tests.adb

 1package body Exception_Tests is
 2
 3   procedure Save_To_List
 4     (E          :        Exception_Occurrence;
 5      All_Occur  : in out All_Exception_Occur;
 6      Last_Occur : in out Integer)
 7   is
 8      L : Integer renames Last_Occur;
 9      O : All_Exception_Occur renames All_Occur;
10   begin
11      L := L + 1;
12      if L > O'Last then
13         raise Constraint_Error
14           with "Cannot save occurrence";
15      end if;
16
17      Save_Occurrence (Target => O (L),
18                       Source => E);
19   end Save_To_List;
20
21   procedure Test_Exceptions
22     (All_Occur  : in out All_Exception_Occur;
23      Last_Occur :    out Integer)
24   is
25
26      procedure Nested_1 is
27      begin
28         raise Custom_Exception
29           with "We got a problem";
30      exception
31         when E : others =>
32            Save_To_List (E,
33                          All_Occur,
34                          Last_Occur);
35      end Nested_1;
36
37      procedure Nested_2 is
38      begin
39         raise Constraint_Error
40           with "Constraint is not correct";
41      exception
42         when E : others =>
43            Save_To_List (E,
44                          All_Occur,
45                          Last_Occur);
46      end Nested_2;
47
48   begin
49      Last_Occur := 0;
50
51      Nested_1;
52      Nested_2;
53   end Test_Exceptions;
54
55end Exception_Tests;








show_exception_info.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4with Exception_Tests; use Exception_Tests;
 5
 6procedure Show_Exception_Info is
 7   L : Integer;
 8   O : All_Exception_Occur (1 .. 10);
 9begin
10   Test_Exceptions (O, L);
11
12   for I in O 'First .. L loop
13      Put_Line (Exception_Information (O (I)));
14   end loop;
15end Show_Exception_Info;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Save_Occurrence
MD5: da0cc5db7039e1458dbcf8be49db969d








Runtime output



raised EXCEPTION_TESTS.CUSTOM_EXCEPTION : We got a problem

raised CONSTRAINT_ERROR : Constraint is not correct








In the Save_To_List procedure of the Exception_Tests package, we
call the Save_Occurrence procedure to store the exception occurrence to
the All_Occur array. In the Show_Exception_Info, we display all
the exception occurrences that we collected.



Read and Write attributes

Similarly, we can use files to read and write exception occurrences. To do that,
we can simply use the Read and Write attributes.


exception_occurrence_stream.adb

 1with Ada.Text_IO;
 2
 3with Ada.Streams.Stream_IO;
 4use  Ada.Streams.Stream_IO;
 5
 6with Ada.Exceptions;
 7use  Ada.Exceptions;
 8
 9procedure Exception_Occurrence_Stream is
10
11   Custom_Exception : exception;
12
13   S : Stream_Access;
14
15   procedure Nested_1 is
16   begin
17      raise Custom_Exception
18        with "We got a problem";
19   exception
20      when E : others =>
21         Exception_Occurrence'Write (S, E);
22   end Nested_1;
23
24   procedure Nested_2 is
25   begin
26      raise Constraint_Error
27        with "Constraint is not correct";
28   exception
29      when E : others =>
30         Exception_Occurrence'Write (S, E);
31   end Nested_2;
32
33   F         : File_Type;
34   File_Name : constant String :=
35                 "exceptions_file.bin";
36begin
37   Create (F, Out_File, File_Name);
38   S := Stream (F);
39
40   Nested_1;
41   Nested_2;
42
43   Close (F);
44
45   Read_Exceptions : declare
46      E : Exception_Occurrence;
47   begin
48      Open (F, In_File, File_Name);
49      S := Stream (F);
50
51      while not End_Of_File (F) loop
52         Exception_Occurrence'Read (S, E);
53
54         Ada.Text_IO.Put_Line
55           (Exception_Information (E));
56      end loop;
57      Close (F);
58   end Read_Exceptions;
59
60end Exception_Occurrence_Stream;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Exception_Occurrence_Stream
MD5: 3d9f2bd9480aa6dcc250b249b9ef4870








Runtime output



raised EXCEPTION_OCCURRENCE_STREAM.CUSTOM_EXCEPTION : We got a problem

raised CONSTRAINT_ERROR : Constraint is not correct








In this example, we store the exceptions raised in the application in the
exceptions_file.bin file. In the exception part of procedures Nested_1
and Nested_2, we call Exception_Occurrence'Write to store an
exception occurence in the file. In the Read_Exceptions block, we read
the exceptions from the the file by calling Exception_Occurrence'Read.




Debugging exceptions in the GNAT toolchain

Here is a typical exception handler that catches all unexpected exceptions in
the application:


main.adb

 1with Ada.Exceptions;
 2with Ada.Text_IO;   use Ada.Text_IO;
 3
 4procedure Main is
 5
 6   procedure Nested is
 7   begin
 8      raise Constraint_Error
 9              with "some message";
10   end Nested;
11
12begin
13   Nested;
14
15exception
16   when E : others =>
17      Put_Line
18       (Ada.Exceptions.Exception_Information (E));
19end Main;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Exception_Information
MD5: f95068ca90d79b92a7c2031322349153








Runtime output



raised CONSTRAINT_ERROR : some message








The output we get when running the application is not very informative. To get
more information, we need to rerun the program in the debugger. To make the
session more interesting though, we should add debug information in the
executable, which means using the -g switch in the
gnatmake command.

The session would look like the following (omitting some of the output from the
debugger):

> rm *.o      # Cleanup previous compilation
> gnatmake -g main.adb
> gdb ./main
(gdb)  catch exception
(gdb)  run
Catchpoint 1, CONSTRAINT_ERROR at 0x0000000000402860 in main.nested () at main.adb:8
8               raise Constraint_Error with "some message";

(gdb) bt
#0  <__gnat_debug_raise_exception> (e=0x62ec40 <constraint_error>) at s-excdeb.adb:43
#1  0x000000000040426f in ada.exceptions.complete_occurrence (x=x@entry=0x637050)
at a-except.adb:934
#2  0x000000000040427b in ada.exceptions.complete_and_propagate_occurrence (
x=x@entry=0x637050) at a-except.adb:943
#3  0x00000000004042d0 in <__gnat_raise_exception> (e=0x62ec40 <constraint_error>,
message=...) at a-except.adb:982
#4  0x0000000000402860 in main.nested ()
#5  0x000000000040287c in main ()





And we now know exactly where the exception was raised. But in fact, we could
have this information directly when running the application. For this, we need
to bind the application with the switch -E, which tells the
binder to store exception tracebacks in exception occurrences. Let's recompile
and rerun the application.

> rm *.o   # Cleanup previous compilation
> gnatmake -g main.adb -bargs -E
> ./main

Exception name: CONSTRAINT_ERROR
Message: some message
Call stack traceback locations:
0x10b7e24d1 0x10b7e24ee 0x10b7e2472





The traceback, as is, is not very useful. We now need to use another tool that
is bundled with GNAT, called addr2line. Here is an example of its
use:

> addr2line -e main --functions --demangle 0x10b7e24d1 0x10b7e24ee 0x10b7e2472
/path/main.adb:8
_ada_main
/path/main.adb:12
main
/path/b~main.adb:240





This time we do have a symbolic backtrace, which shows information similar to
what we got in the debugger.

For users on OSX machines, addr2line does not exist. On these
machines, however, an equivalent solution exists. You need to link your
application with an additional switch, and then use the tool atos,
as in:

> rm *.o
> gnatmake -g main.adb -bargs -E -largs -Wl,-no_pie
> ./main

Exception name: CONSTRAINT_ERROR
Message: some message
Call stack traceback locations:
0x1000014d1 0x1000014ee 0x100001472
> atos -o main 0x1000014d1 0x1000014ee 0x100001472
main__nested.2550 (in main) (main.adb:8)
_ada_main (in main) (main.adb:12)
main (in main) + 90





We will now discuss a relatively new switch of the compiler, namely
-gnateE. When used, this switch will generate extra
information in exception messages.

Let's amend our test program to:


main.adb

 1with Ada.Exceptions;
 2with Ada.Text_IO;      use Ada.Text_IO;
 3
 4procedure Main is
 5
 6   procedure Nested (Index : Integer) is
 7      type T_Array is array (1 .. 2) of Integer;
 8      T : constant T_Array := (10, 20);
 9   begin
10      Put_Line (T (Index)'Img);
11   end Nested;
12
13begin
14   Nested (3);
15
16exception
17   when E : others =>
18      Put_Line
19       (Ada.Exceptions.Exception_Information (E));
20end Main;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exceptions_Package.Exception_Information
MD5: 3590f2bf48f6ed1cf7745d576924cad4








Runtime output



raised CONSTRAINT_ERROR : main.adb:10:17 index check failed
index 3 not in 1..2








When running the application, we see that the exception information (traceback)
is the same as before, but this time the exception message is set automatically
by the compiler. So we know we got a Constraint_Error because an
incorrect index was used at the named source location
(main.adb, line 10). But the significant addition is the second
line of the message, which indicates exactly the cause of the error. Here, we
wanted to get the element at index 3, in an array whose range of valid indexes
is from 1 to 2. (No need for a debugger in this case.)

The column information on the first line of the exception message is also very
useful when dealing with null pointers. For instance, a line such as:

A := Rec1.Rec2.Rec3.Rec4.all;





where each of the Rec is itself a pointer, might raise
Constraint_Error with a message "access check failed". This indicates for
sure that one of the pointers is null, and by using the column information it is
generally easy to find out which one it is.




Exception renaming

We can rename exceptions by using the an exception renaming declaration in this
form Renamed_Exception : exception renames Existing_Exception;. For
example:


show_exception_renaming.adb

1procedure Show_Exception_Renaming is
2   CE : exception renames Constraint_Error;
3begin
4   raise CE;
5end Show_Exception_Renaming;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exception_Renaming.Exception_Renaming
MD5: ff20825162ee9eef6ac8ed329da2a80f








Runtime output




raised CONSTRAINT_ERROR : show_exception_renaming.adb:4







Exception renaming creates a new view of the original exception. If we rename an
exception from package A in package B, that exception will become
visible in package B. For example:


internal_exceptions.ads

1package Internal_Exceptions is
2
3   Int_E : exception;
4
5end Internal_Exceptions;








test_constraints.ads

1with Internal_Exceptions;
2
3package Test_Constraints is
4
5   Ext_E : exception renames
6             Internal_Exceptions.Int_E;
7
8end Test_Constraints;








show_exception_renaming_view.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Ada.Exceptions; use Ada.Exceptions;
 3
 4with Test_Constraints; use Test_Constraints;
 5
 6procedure Show_Exception_Renaming_View is
 7begin
 8   raise Ext_E;
 9exception
10   when E : others =>
11      Put_Line
12       (Ada.Exceptions.Exception_Information (E));
13end Show_Exception_Renaming_View;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Exception_Renaming.Exception_Renaming_View
MD5: a44e2698170c6fab79241d0f33ef8c2e








Runtime output



raised INTERNAL_EXCEPTIONS.INT_E : show_exception_renaming_view.adb:8








Here, we're renaming the Int_E exception in the Test_Constraints
package. The Int_E exception isn't directly visible in the
Show_Exception_Renaming procedure because we're not withing the
Internal_Exceptions package. However, it is indirectly visible
in that procedure via the renaming (Ext_E) in the Test_Constraints
package.


In the Ada Reference Manual


	8.5.2 Exception Renaming Declarations[#28]








Out and Uninitialized


Note

This section was originally written by Robert Dewar and published as
Gem #150: Out and Uninitialized[#29]



Perhaps surprisingly, the Ada standard indicates cases where objects passed to
out and in out parameters might not be updated when a procedure
terminates due to an exception. Let's take an example:


show_out_uninitialized.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2procedure Show_Out_Uninitialized is
 3
 4   procedure Local (A     : in out Integer;
 5                    Error : Boolean) is
 6   begin
 7      A := 1;
 8
 9      if Error then
10         raise Program_Error;
11      end if;
12   end Local;
13
14   B : Integer := 0;
15
16begin
17   Local (B, Error => True);
18exception
19   when Program_Error =>
20      Put_Line ("Value for B is"
21                & Integer'Image (B));  --  "0"
22end Show_Out_Uninitialized;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_Uninitialized_1
MD5: cebcf14e9fd088e38b98a5132d9fd998








Runtime output



Value for B is 0







This program outputs a value of 0 for B, whereas the code indicates that
A is assigned before raising the exception, and so the reader might
expect B to also be updated.

The catch, though, is that a compiler must by default pass objects of
elementary types (scalars and access types) by copy and might choose to do so
for other types (records, for example), including when passing out and
in out parameters. So what happens is that while the formal parameter
A is properly initialized, the exception is raised before the new value
of A has been copied back into B (the copy will only happen on a
normal return).


In the GNAT toolchain

In general, any code that reads the actual object passed to an out or
in out parameter after an exception is suspect and should be avoided.
GNAT has useful warnings here, so that if we simplify the above code to:


show_out_uninitialized_warnings.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2
 3procedure Show_Out_Uninitialized_Warnings is
 4
 5    procedure Local (A : in out Integer) is
 6    begin
 7       A := 1;
 8       raise Program_Error;
 9    end Local;
10
11   B : Integer := 0;
12
13begin
14   Local (B);
15exception
16   when others =>
17      Put_Line ("Value for B is"
18                & Integer'Image (B));
19end Show_Out_Uninitialized_Warnings;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_Uninitialized_2
MD5: 5b6960974c729ea37a70fb313d6e5084








Build output



show_out_uninitialized_warnings.adb:7:10: warning: assignment to pass-by-copy formal may have no effect [enabled by default]
show_out_uninitialized_warnings.adb:7:10: warning: "raise" statement may result in abnormal return (RM 6.4.1(17)) [enabled by default]








Runtime output



Value for B is 0







We now get a compilation warning that the pass-by-copy formal may have no
effect.

Of course, GNAT is not able to point out all such errors (see first example
above), which in general would require full flow analysis.



The behavior is different when using parameter types that the standard mandates
be passed by reference, such as tagged types for instance. So the following
code will work as expected, updating the actual parameter despite the
exception:


show_out_initialized_rec.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2
 3procedure Show_Out_Initialized_Rec is
 4
 5   type Rec is tagged record
 6      Field : Integer;
 7   end record;
 8
 9   procedure Local (A : in out Rec) is
10   begin
11      A.Field := 1;
12      raise Program_Error;
13   end Local;
14
15   V : Rec;
16
17begin
18   V.Field := 0;
19   Local (V);
20exception
21   when others =>
22      Put_Line ("Value of Field is"
23                & V.Field'Img); -- "1"
24end Show_Out_Initialized_Rec;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_Uninitialized_3
MD5: 370031a404657ea18ffabf3c1d507cd4








Runtime output



Value of Field is 1








In the GNAT toolchain

It's worth mentioning that GNAT provides a pragma called
Export_Procedure that forces reference semantics on out
parameters. Use of this pragma would ensure updates of the actual parameter
prior to abnormal completion of the procedure. However, this pragma only
applies to library-level procedures, so the examples above have to be
rewritten to avoid the use of a nested procedure, and really this pragma is
intended mainly for use in interfacing with foreign code. The code below
shows an example that ensures that B is set to 1 after the call to
Local:


exported_procedures.ads

1package Exported_Procedures is
2
3  procedure Local (A     : in out Integer;
4                   Error : Boolean);
5  pragma Export_Procedure
6    (Local,
7    Mechanism => (A => Reference));
8
9end Exported_Procedures;








exported_procedures.adb

 1package body Exported_Procedures is
 2
 3   procedure Local (A     : in out Integer;
 4                    Error : Boolean) is
 5   begin A := 1;
 6      if Error then
 7         raise Program_Error;
 8      end if;
 9   end Local;
10
11end Exported_Procedures;








show_out_reference.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Exported_Procedures;
 4use  Exported_Procedures;
 5
 6procedure Show_Out_Reference is
 7   B : Integer := 0;
 8begin
 9   Local (B, Error => True);
10exception
11   when Program_Error =>
12      Put_Line ("Value for B is"
13                & Integer'Image (B)); -- "1"
14end Show_Out_Reference;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Out_Uninitialized.Out_Uninitialized_4
MD5: aed2788be2b3ceeec19b28421c53fc66








Runtime output



Value for B is 1









In the case of direct assignments to global variables, the behavior in the
presence of exceptions is somewhat different. For predefined exceptions, most
notably Constraint_Error, the optimization permissions allow some
flexibility in whether a global variable is or is not updated when an exception
occurs (see Ada RM 11.6[#30]). For
instance, the following code makes an incorrect assumption:

X := 0;     -- about to try addition
Y := Y + 1; -- see if addition raises exception
X := 1      -- addition succeeded





A program is not justified in assuming that X = 0 if the addition raises
an exception (assuming X is a global here). So any such assumptions in a
program are incorrect code which should be fixed.
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	11.6 Exceptions and Optimization[#31]








Suppressing checks


pragma Suppress


Note

This section was originally written by Gary Dismukes and published as
Gem #63: The Effect of Pragma Suppress[#32].



One of Ada's key strengths has always been its strong typing. The language
imposes stringent checking of type and subtype properties to help prevent
accidental violations of the type system that are a common source of program
bugs in other less-strict languages such as C. This is done using a combination
of compile-time restrictions (legality rules), that prohibit mixing values of
different types, together with run-time checks to catch violations of various
dynamic properties. Examples are checking values against subtype constraints
and preventing dereferences of null access values.

At the same time, Ada does provide certain "loophole" features, such as
Unchecked_Conversion, that allow selective bypassing of the normal
safety features, which is sometimes necessary when interfacing with hardware or
code written in other languages.

Ada also permits explicit suppression of the run-time checks that are there to
ensure that various properties of objects are not violated. This suppression
can be done using pragma Suppress, as well as by using a compile-time
switch on most implementations — in the case of GNAT, with the -gnatp
switch.

In addition to allowing all checks to be suppressed, pragma Suppress
supports suppression of specific forms of check, such as Index_Check for
array indexing, Range_Check for scalar bounds checking, and
Access_Check for dereferencing of access values. (See section 11.5 of
the Ada Reference Manual for further details.)

Here's a simple example of suppressing index checks within a specific
subprogram:

procedure Main is
   procedure Sort_Array (A : in out Some_Array) is
      pragma Suppress (Index_Check);
      --     ^^^^^^^^^^^^^^^^^^^^^
      --   eliminate check overhead
   begin
     ...
   end Sort_Array;
end Main;





Unlike a feature such as Unchecked_Conversion, however, the purpose of
check suppression is not to enable programs to subvert the type system, though
many programmers seem to have that misconception.

What's important to understand about pragma Suppress is that it only
gives permission to the implementation to remove checks, but doesn't require
such elimination. The intention of Suppress is not to allow bypassing of
Ada semantics, but rather to improve efficiency, and the Ada Reference Manual
has a clear statement to that effect in the note in RM-11.5, paragraph 29:


There is no guarantee that a suppressed check is actually removed; hence a
pragma Suppress should be used only for efficiency reasons.




There is associated Implementation Advice that recommends that implementations
should minimize the code executed for checks that have been suppressed, but
it's still the responsibility of the programmer to ensure that the correct
functioning of the program doesn't depend on checks not being performed.

There are various reasons why a compiler might choose not to remove a check. On
some hardware, certain checks may be essentially free, such as null pointer
checks or arithmetic overflow, and it might be impractical or add extra cost to
suppress the check. Another example where it wouldn't make sense to remove
checks is for an operation implemented by a call to a run-time routine, where
the check might be only a small part of a more expensive operation done out of
line.

Furthermore, in many cases GNAT can determine at compile time that a given
run-time check is guaranteed to be violated. In such situations, it gives a
warning that an exception will be raised, and generates code specifically to
raise the exception. Here's an example:

X : Integer range 1..10 := ...;

..

if A > B then
   X := X + 1;
  ..
end if;





For the assignment incrementing X, the compiler will normally generate
machine code equivalent to:

Temp := X + 1;
if Temp > 10 then
   raise Constraint_Error;
end if;
X := Temp;





If range checks are suppressed, then the compiler can just generate the
increment and assignment. However, if the compiler is able to somehow prove
that X = 10 at this point, it will issue a warning, and replace the
entire assignment with simply:

raise Constraint_Error;





even though checks are suppressed. This is appropriate, because



	we don't care about the efficiency of buggy code, and


	there is no "extra" cost to the check, because if we reach that point,
the code will unconditionally fail.







One other important thing to note about checks and pragma Suppress is
this statement in the Ada RM (RM-11.5, paragraph 26):


If a given check has been suppressed, and the corresponding error situation
occurs, the execution of the program is erroneous.




In Ada, erroneous execution is a bad situation to be in, because it means that
the execution of your program could have arbitrary nasty effects, such as
unintended overwriting of memory. Note also that a program whose "correct"
execution somehow depends on a given check being suppressed might work as the
programmer expects, but could still fail when compiled with a different
compiler, or for a different target, or even with a newer version of the same
compiler. Other changes such as switching on optimization or making a change to
a totally unrelated part of the code could also cause the code to start
failing.

So it's definitely not wise to write code that relies on checks being removed.
In fact, it really only makes sense to suppress checks once there's good reason
to believe that the checks can't fail, as a result of testing or other
analysis. Otherwise, you're removing an important safety feature of Ada that's
intended to help catch bugs.



pragma Unsuppress

We can use pragma Unsuppress to reverse the effect of a
pragma Suppress. While pragma Suppress gives permission to the
compiler to remove a specific check, pragma Unsuppress revokes that
permission.

Let's see an example:


show_index_check.adb

 1procedure Show_Index_Check is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   pragma Suppress (Index_Check);
 7   --  from now on, the compiler may
 8   --  eliminate index checks...
 9
10   function Unchecked_Value_Of
11     (A : Integer_Array;
12      I : Integer)
13      return Integer
14   is
15      type Half_Integer_Array is new
16        Integer_Array (A'First ..
17                       A'First + A'Length / 2);
18
19      A_2 : Half_Integer_Array := (others => 0);
20   begin
21      return A_2 (I);
22   end Unchecked_Value_Of;
23
24   pragma Unsuppress (Index_Check);
25   --  from now on, index checks are
26   --  typically performed...
27
28   function Value_Of
29     (A : Integer_Array;
30      I : Integer)
31      return Integer
32   is
33      type Half_Integer_Array is new
34        Integer_Array (A'First ..
35                       A'First + A'Length / 2);
36
37      A_2 : Half_Integer_Array := (others => 0);
38   begin
39      return A_2 (I);
40   end Value_Of;
41
42   Arr_1 : Integer_Array (1 .. 10) :=
43             (others => 1);
44
45begin
46   Arr_1 (10) := Unchecked_Value_Of (Arr_1, 10);
47   Arr_1 (10) := Value_Of (Arr_1, 10);
48
49end Show_Index_Check;








Code block metadata



Project: Courses.Advanced_Ada.Control_Flow.Exceptions.Pragma_Unsuppress.Pragma_Unsuppress
MD5: 0585b78fd57913d3172c7ab1ea6f4864








Runtime output




raised CONSTRAINT_ERROR : show_index_check.adb:39 index check failed







In this example, we first use a pragma Suppress (Index_Check), so the
compiler is allowed to remove the index check from the
Unchecked_Value_Of function. (Therefore, depending on the compiler, the
call to the Unchecked_Value_Of function may complete without raising an
exception.) Of course, in this specific example, suppressing the index check
masks a severe issue.

In contrast, an index check is performed in the Value_Of function
because of the pragma Unsuppress. As a result, the index checks fails in
the call to this function, which raises a Constraint_Error exception.
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	11.5 Suppressing Checks[#33]
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Packages


Package renaming

We've seen in the Introduction to Ada course
that we can rename packages[#1].
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	10.1.1 Compilation Units - Library Units[#2]







Grouping packages

A use-case that we haven't mentioned in that course is that we can apply
package renaming to group individual packages into a common hierarchy. For
example:


driver_m1.ads

1package Driver_M1 is
2
3end Driver_M1;








driver_m2.ads

1package Driver_M2 is
2
3end Driver_M2;








drivers.ads

1package Drivers
2  with Pure is
3
4end Drivers;








drivers-m1.ads

1with Driver_M1;
2
3package Drivers.M1 renames Driver_M1;








drivers-m2.ads

1with Driver_M2;
2
3package Drivers.M2 renames Driver_M2;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_Renaming_1
MD5: 8d6a6bec32f7ec4397de1faf9f0b44d9







Here, we're renaming the Driver_M1 and Driver_M2 packages as
child packages of the Drivers package, which is a
pure package.


Important

Note that a package that is renamed as a child package cannot refer to
information from its (non-renamed) parent. In other words,
Driver_M1 (renamed as Drivers.M1) cannot refer to information
from the Drivers package. For example:


driver_m1.ads

1package Driver_M1 is
2
3   Counter_2 : Integer := Drivers.Counter;
4
5end Driver_M1;








drivers.ads

1package Drivers is
2
3   Counter : Integer := 0;
4
5end Drivers;








drivers-m1.ads

1with Driver_M1;
2
3package Drivers.M1 renames Driver_M1;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_Renaming_1_Refer_To_Parent
MD5: d174746d8151d9a2cd048ad44e853850








Build output



driver_m1.ads:3:27: error: "Drivers" is undefined
gprbuild: *** compilation phase failed







As expected, compilation fails here because Drivers.Counter isn't
visible in Driver_M1, even though the renaming (Drivers.M1)
creates a virtual hierarchy.





Child of renamed package

Note that we cannot create a child package using a parent package name that was
introduced by a renaming. For example, let's say we want to create a child
package Ext for the Drivers.M1 package we've seen earlier. We
cannot just declare a Drivers.M1.Ext package like this:

package Drivers.M1.Ext is

end Drivers.M1.Ext;





because the parent unit cannot be a renaming. The solution is to actually
extend the original (non-renamed) package:


driver_m1-ext.ads

1package Driver_M1.Ext is
2
3end Driver_M1.Ext;








dummy.adb

1--  A package called Drivers.M1.Ext is
2--  automatically available!
3
4with Drivers.M1.Ext;
5
6procedure Dummy is
7begin
8   null;
9end Dummy;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_Renaming_1
MD5: e338d668dbd98b1a3917a8d3d948a439







This works fine because any child package of a package P is also a child
package of a renamed version of P. (Therefore, because Ext is a
child package of Driver_M1, it is also a child package of the renamed
Drivers.M1 package.)



Backwards-compatibility via renaming

We can also use renaming to ensure backwards-compatibility when changing the
package hierarchy. For example, we could adapt the previous source-code by:


	converting Driver_M1 and Driver_M2 to child packages of
Drivers, and


	using package renaming to mimic the original names (Driver_M1 and
Driver_M2).




This is the adapted code:


drivers.ads

1package Drivers
2  with Pure is
3
4end Drivers;








drivers-m1.ads

1--  We've converted Driver_M1 to
2--  Drivers.M1:
3
4package Drivers.M1 is
5
6end Drivers.M1;








drivers-m2.ads

1--  We've converted Driver_M2 to
2--  Drivers.M2:
3
4package Drivers.M2 is
5
6end Drivers.M2;








driver_m1.ads

1--  Original Driver_M1 package still
2--  available via package renaming:
3
4with Drivers.M1;
5
6package Driver_M1 renames Drivers.M1;








driver_m2.ads

1--  Original Driver_M2 package still
2--  available via package renaming:
3
4with Drivers.M2;
5
6package Driver_M2 renames Drivers.M2;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Package_Renaming.Package_Renaming_2
MD5: 27f8066b5f5954514fea51b6e9b9de81







Now, M1 and M2 are actual child packages of Drivers, but
their original names are still available. By doing so, we ensure that existing
software that makes use of the original packages doesn't break.




Private packages

In this section, we discuss the concept of private packages. However, before we
proceed with the discussion, let's recapitulate some important ideas that we've
seen earlier.

In the
Introduction to Ada course[#3],
we've seen that encapsulation plays an important role in modular programming.
By using the private part of a package specification, we can disclose some
information, but, at the same time, prevent that this information gets
accessed where it shouldn't be used directly. Similarly, we've seen that we can
use the private part of a package to distinguish between the
partial and full view of a data type.

The main application of private packages is to create private child packages,
whose purpose is to serve as internal implementation packages within a
package hierarchy. By doing so, we can expose the internals to other public
child packages, but prevent that external clients can directly access them.

As we'll see next, there are many rules that ensure that internal visibility is
enforced for those private child packages. At the same time, the same rules
ensure that private packages aren't visible outside of the package hierarchy.


Declaration and usage

We declare private packages by using the private keyword. For example,
let's say we have a package named Data_Processing:


data_processing.ads

1package Data_Processing is
2
3--  ...
4
5end Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_Decl
MD5: 502811212890785d90c6f891d7f8e557







We simply write private package to declare a private child package named
Calculations:


data_processing-calculations.ads

1private package Data_Processing.Calculations is
2
3--  ...
4
5end Data_Processing.Calculations;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_Decl
MD5: 20df8b2ac4c9aa93f03a12afd9b7ef30







Let's see a complete example:


data_processing.ads

 1package Data_Processing is
 2
 3   type Data is private;
 4
 5   procedure Process (D : in out Data);
 6
 7private
 8
 9   type Data is null record;
10
11end Data_Processing;








data_processing-calculations.ads

1private package Data_Processing.Calculations is
2
3   procedure Calculate (D : in out Data);
4
5end Data_Processing.Calculations;








data_processing.adb

 1with Data_Processing.Calculations;
 2use  Data_Processing.Calculations;
 3
 4package body Data_Processing is
 5
 6   procedure Process (D : in out Data) is
 7   begin
 8      Calculate (D);
 9   end Process;
10
11end Data_Processing;








data_processing-calculations.adb

1package body Data_Processing.Calculations is
2
3   procedure Calculate (D : in out Data) is
4   begin
5      --  Dummy implementation...
6      null;
7   end Calculate;
8
9end Data_Processing.Calculations;








test_data_processing.adb

1with Data_Processing; use Data_Processing;
2
3procedure Test_Data_Processing is
4   D : Data;
5begin
6   Process (D);
7end Test_Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package
MD5: 3edd5f73938e809994347b5876014d0d







In this example, we refer to the private child package Calculations in
the body of the Data_Processing package — by simply writing
with Data_Processing.Calculations. After that, we can call the
Calculate procedure normally in the Process procedure.



Private sibling packages

We can introduce another private package Advanced_Calculations as a
child of Data_Processing and refer to the Calculations package
in its specification:


data_processing.ads

 1package Data_Processing is
 2
 3   type Data is private;
 4
 5   procedure Process (D : in out Data);
 6
 7private
 8
 9   type Data is null record;
10
11end Data_Processing;








data_processing-calculations.ads

1private package Data_Processing.Calculations is
2
3   procedure Calculate (D : in out Data);
4
5end Data_Processing.Calculations;








data_processing-advanced_calculations.ads

 1with Data_Processing.Calculations;
 2use  Data_Processing.Calculations;
 3
 4private
 5package Data_Processing.Advanced_Calculations is
 6
 7   procedure Advanced_Calculate (D : in out Data)
 8     renames Calculate;
 9
10end Data_Processing.Advanced_Calculations;








data_processing.adb

 1with Data_Processing.Advanced_Calculations;
 2use  Data_Processing.Advanced_Calculations;
 3
 4package body Data_Processing is
 5
 6   procedure Process (D : in out Data) is
 7   begin
 8      Advanced_Calculate (D);
 9   end Process;
10
11end Data_Processing;








data_processing-calculations.adb

1package body Data_Processing.Calculations is
2
3   procedure Calculate (D : in out Data) is
4   begin
5      --  Dummy implementation...
6      null;
7   end Calculate;
8
9end Data_Processing.Calculations;








test_data_processing.adb

1with Data_Processing; use Data_Processing;
2
3procedure Test_Data_Processing is
4   D : Data;
5begin
6   Process (D);
7end Test_Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_2
MD5: 32fc76ae13f1eecdd854a029793034d8







Note that, in the body of the Data_Processing package, we're now
referring to the new Advanced_Calculations package instead of the
Calculations package.

Referring to a private child package in the specification of another private
child package is OK, but we cannot do the same in the specification of a
non-private package. For example, let's change the specification of the
Advanced_Calculations and make it non-private:


data_processing-advanced_calculations.ads

1with Data_Processing.Calculations;
2use  Data_Processing.Calculations;
3
4package Data_Processing.Advanced_Calculations is
5
6   procedure Advanced_Calculate (D : in out Data)
7     renames Calculate;
8
9end Data_Processing.Advanced_Calculations;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_2
MD5: 27fd3bdb063a11ed7797cc44fa1e8349








Build output



data_processing-advanced_calculations.ads:1:06: error: current unit must also be private descendant of "Data_Processing"
gprbuild: *** compilation phase failed







Now, the compilation doesn't work anymore. However, we could still refer to
Calculations packages in the body of the Advanced_Calculations
package:


data_processing-advanced_calculations.ads

1package Data_Processing.Advanced_Calculations is
2
3   procedure Advanced_Calculate (D : in out Data);
4
5end Data_Processing.Advanced_Calculations;








data_processing-advanced_calculations.adb

 1with Data_Processing.Calculations;
 2use  Data_Processing.Calculations;
 3
 4package body Data_Processing.Advanced_Calculations
 5is
 6
 7   procedure Advanced_Calculate (D : in out Data)
 8   is
 9   begin
10     Calculate (D);
11   end Advanced_Calculate;
12
13end Data_Processing.Advanced_Calculations;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_2
MD5: 3f37c129a6994c6b71a25ad17dcb440e







This works fine as expected: we can refer to private child packages in the body
of another package — as long as both packages belong to the same package
tree.



Outside the package tree

While we can use a with-clause of a private child package in the body of the
Data_Processing package, we cannot do the same outside the package tree.
For example, we cannot refer to it in the Test_Data_Processing
procedure:


test_data_processing.adb

 1with Data_Processing; use Data_Processing;
 2
 3with Data_Processing.Calculations;
 4use  Data_Processing.Calculations;
 5
 6procedure Test_Data_Processing is
 7   D : Data;
 8begin
 9   Calculate (D);
10end Test_Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package
MD5: c844327995b28d60c9a79b138a0f21d2








Build output



test_data_processing.adb:3:06: error: unit in with clause is private child unit
test_data_processing.adb:3:06: error: current unit must also have parent "Data_Processing"
gprbuild: *** compilation phase failed







As expected, we get a compilation error because Calculations is only
accessible within the Data_Processing, but not in the
Test_Data_Processing procedure.

The same restrictions apply to child packages of private packages. For example,
if we implement a child package of the Calculations package —
let's name it Calculations.Child —, we cannot refer to it in the
Test_Data_Processing procedure:


data_processing-calculations-child.ads

1package Data_Processing.Calculations.Child is
2
3   procedure Process (D : in out Data);
4
5end Data_Processing.Calculations.Child;








data_processing-calculations-child.adb

1package body Data_Processing.Calculations.Child is
2
3   procedure Process (D : in out Data) is
4   begin
5      Calculate (D);
6   end Process;
7
8end Data_Processing.Calculations.Child;








test_data_processing.adb

 1with Data_Processing; use Data_Processing;
 2
 3with Data_Processing.Calculations.Child;
 4use  Data_Processing.Calculations.Child;
 5
 6procedure Test_Data_Processing is
 7   D : Data;
 8begin
 9   Calculate (D);
10end Test_Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package
MD5: 2eaf23ddbab72578246ac07424008d9d








Build output



test_data_processing.adb:3:06: error: unit in with clause is private child unit
test_data_processing.adb:3:06: error: current unit must also have parent "Data_Processing"
test_data_processing.adb:9:04: error: "Calculate" is not visible
test_data_processing.adb:9:04: error: non-visible declaration at data_processing-calculations.ads:3
gprbuild: *** compilation phase failed







Again, as expected, we get an error because Calculations.Child —
being a child of a private package — has the same restricted view as its
parent package. Therefore, it cannot be visible in the
Test_Data_Processing procedure as well. We'll discuss more about
visibility later.

Note that subprograms can also be declared private. We'll see this
in another section.


Important

We've discussed package renaming
in a previous section. We can rename a
package as a private package, too. For example:


driver_m1.ads

1package Driver_M1 is
2
3end Driver_M1;








drivers.ads

1package Drivers
2  with Pure is
3
4end Drivers;








drivers-m1.ads

1with Driver_M1;
2
3private package Drivers.M1 renames Driver_M1;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_Renaming
MD5: c03584dc26abb108c9c04074234b9637







Obviously, Drivers.M1 has the same restrictions as any private
package:


test_driver.adb

1with Driver_M1;
2with Drivers.M1;
3
4procedure Test_Driver is
5begin
6   null;
7end Test_Driver;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_Packages.Private_Package_Renaming
MD5: 55415978604ccea4eeaeb02df13cd2f4








Build output



test_driver.adb:2:06: error: unit in with clause is private child unit
test_driver.adb:2:06: error: current unit must also have parent "Drivers"
gprbuild: *** compilation phase failed







As expected, although we can have the Driver_M1 package in a with
clause of the Test_Driver procedure, we cannot do the same in the
case of the Drivers.M1 package because it is private.




In the Ada Reference Manual


	10.1.1 Compilation Units - Library Units[#4]









Private with clauses


Definition and usage

A private with clause allows us to refer to a package in the private part of
another package. For example, if we want to refer to package P in the
private part of Data, we can write private with P:


p.ads

1package P is
2
3   type T is null record;
4
5end P;








data.ads

 1private with P;
 2
 3package Data is
 4
 5   type T2 is private;
 6
 7private
 8
 9   --  Information from P is
10   --  visible here
11   type T2 is new P.T;
12
13end Data;








main.adb

1with Data; use Data;
2
3procedure Main is
4   A : T2;
5begin
6   null;
7end Main;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Simple_Private_With_Clause
MD5: d0705add0dd7861c83822b0d35dacba4







As you can see in the example, as the information from P is available in
the private part of Data, we can derive a new type T2 based on
T from P. However, we cannot do the same in the visible part of
Data:


data.ads

 1private with P;
 2
 3package Data is
 4
 5   --  ERROR: information from P
 6   --  isn't visible here
 7
 8   type T2 is new P.T;
 9
10end Data;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Simple_Private_With_Clause
MD5: b454e875f73432f5632a20ab40ae7da6








Build output



data.ads:8:19: error: "P" is not visible
data.ads:8:19: error: non-visible declaration at p.ads:1
gprbuild: *** compilation phase failed







Also, the information from P is available in the package body. For
example, let's declare a Process procedure in the P package and
use it in the body of the Data package:


p.ads

1package P is
2
3   type T is null record;
4
5   procedure Process (A : T) is null;
6
7end P;








data.ads

 1private with P;
 2
 3package Data is
 4
 5   type T2 is private;
 6
 7   procedure Process (A : T2);
 8
 9private
10
11   --  Information from P is
12   --  visible here
13   type T2 is new P.T;
14
15end Data;








data.adb

1package body Data is
2
3   procedure Process (A : T2) is
4   begin
5      P.Process (P.T (A));
6   end Process;
7
8end Data;








main.adb

1with Data; use Data;
2
3procedure Main is
4   A : T2;
5begin
6   null;
7end Main;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Simple_Private_With_Clause
MD5: cecc09f95bd43dd7fd34a9e289bd2674







In the body of the Data, we can access information from the P
package — as we do in the P.Process (P.T (A)) statement of the
Process procedure.



Referring to private child package

There's one case where using a private with clause is the only way to refer to
a package: when we want to refer to a private child package in another child
package. For example, here we have a package P and its two child
packages: Private_Child and Public_Child:


p.ads

1package P is
2
3end P;








p-private_child.ads

1private package P.Private_Child is
2
3   type T is null record;
4
5end P.Private_Child;








p-public_child.ads

 1private with P.Private_Child;
 2
 3package P.Public_Child is
 4
 5   type T2 is private;
 6
 7private
 8
 9   type T2 is new P.Private_Child.T;
10
11end P.Public_Child;








test_parent_child.adb

1with P.Public_Child; use P.Public_Child;
2
3procedure Test_Parent_Child is
4   A : T2;
5begin
6   null;
7end Test_Parent_Child;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Private_With_Clause
MD5: a6028416a957184be55a54f96a319e61







In this example, we're referring to the P.Private_Child package in the
P.Public_Child package. As expected, this works fine. However, using a
normal with clause doesn't work in this case:


p-public_child.ads

 1with P.Private_Child;
 2
 3package P.Public_Child is
 4
 5   type T2 is private;
 6
 7private
 8
 9   type T2 is new P.Private_Child.T;
10
11end P.Public_Child;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Private_With_Clauses.Private_With_Clause
MD5: 2f32f29ecb4ae13bb4487c94d3bf18d9








Build output



p-public_child.ads:1:06: error: current unit must also be private descendant of "P"
gprbuild: *** compilation phase failed







This gives an error because the information from the P.Private_Child,
being a private child package, cannot be accessed in the public part of another
child package. In summary, unless both packages are private packages, it's only
possible to access the information from a private package in the private part
of a non-private child package.


In the Ada Reference Manual


	10.1.2 Context Clauses - With Clauses[#5]









Limited Visibility

Sometimes, we might face the situation where two packages depend on
information from each other. Let's consider a package A that depends
on a package B, and vice-versa:


a.ads

1with B; use B;
2
3package A is
4
5   type T1 is record
6      Value : T2;
7   end record;
8
9end A;








b.ads

1with A; use A;
2
3package B is
4
5   type T2 is record
6      Value : T1;
7   end record;
8
9end B;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Circular_Dependency
MD5: ae64f33706f1c58603aff2c33b02c910








Build output



b.ads:1:06: error: circular unit dependency
b.ads:1:06: error: "B (spec)" depends on "A (spec)"
b.ads:1:06: error: "A (spec)" depends on "B (spec)"
b.ads:1:06: error: "B (spec)" depends on "B (spec)"
gprbuild: *** compilation phase failed







Here, we have two
mutually dependent types T1
and T2, which are declared in two packages A and B that
refer to each other. These with clauses constitute a circular dependency, so
the compiler cannot compile either of those packages.

One way to solve this problem is by transforming this circular dependency into
a partial dependency. We do this by limiting the visibility — using a
limited with clause. To use a limited with clause for a package P, we
simply write limited with P.

If a package A has limited visibility to a package B, then all
types from package B are visible as if they had been declared as
incomplete types. For the specific case of
the previous source-code example, this would be the limited visibility to
package B from package A's perspective:

package B is

   --  Incomplete type
   type T2;

end B;





As we've seen previously,


	we cannot declare objects of incomplete types, but we can declare access
types and anonymous access objects of incomplete types. Also,


	we can use anonymous access types to declare
mutually dependent types.




Keeping this information in mind, we can now correct the previous code by using
limited with clauses for package A and declaring the component of the
T1 record using an anonymous access type:


a.ads

1limited with B;
2
3package A is
4
5   type T1 is record
6      Ref : access B.T2;
7   end record;
8
9end A;








b.ads

1with A; use A;
2
3package B is
4
5   type T2 is record
6      Value : T1;
7   end record;
8
9end B;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_Visibility
MD5: 48591850665085a6fbb184f51b658a1b







As expected, we can now compile the code without issues.

Note that we can also use limited with clauses for both packages. If we do
that, we must declare all components using anonymous access types:


a.ads

1limited with B;
2
3package A is
4
5   type T1 is record
6      Ref : access B.T2;
7   end record;
8
9end A;








b.ads

1limited with A;
2
3package B is
4
5   type T2 is record
6      Ref : access A.T1;
7   end record;
8
9end B;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_Visibility_2
MD5: 3884086e89400245346acfbbf0691906







Now, both packages A and B have limited visibility to each other.
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	10.1.2 Context Clauses - With Clauses[#6]







Limited visibility and private with clauses

We can limit the visibility and use
private with clauses at the same time.
For a package P, we do this by simply writing
limited private with P.

Let's reuse the previous source-code example and convert types T1 and
T2 to private types:


a.ads

 1limited private with B;
 2
 3package A is
 4
 5   type T1 is private;
 6
 7private
 8
 9   --  Here, we have limited visibility
10   --  of package B
11
12   type T1 is record
13      Ref : access B.T2;
14   end record;
15
16end A;








b.ads

 1private with A;
 2
 3package B is
 4
 5   type T2 is private;
 6
 7private
 8
 9   use A;
10
11   --  Here, we have full visibility
12   --  of package A
13
14   type T2 is record
15      Value : T1;
16   end record;
17
18end B;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_Private_Visibility
MD5: b3ac546e2f55fb91229e834ca7a9783d







In this updated version of the source-code example, we have not only limited
visibility to package B, but also, each package is just visible
in the private part of the other package.



Limited visibility and other elements

It's important to mention that the limited visibility we've been discussing so
far is restricted to type declarations — which are seen as incomplete
types. In fact, when we use a limited with clause, all other declarations have
no visibility at all! For example, let's say we have a package Info that
declares a constant Zero_Const and a function Zero_Func:


info.ads

1package Info is
2
3   function Zero_Func return Integer is (0);
4
5   Zero_Const : constant := 0;
6
7end Info;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_Private_Visibility_Other_Elements
MD5: e9b01b4d59db5982532634f9162518ce







Also, let's say we want to use the information (from package Info) in
package A. If we have limited visibility to package Info,
however, this information won't be visible. For example:


a.ads

 1limited private with Info;
 2
 3package A is
 4
 5   type T1 is private;
 6
 7private
 8
 9   type T1 is record
10      V : Integer := Info.Zero_Const;
11      W : Integer := Info.Zero_Func;
12   end record;
13
14end A;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Limited_Visibility.Limited_Private_Visibility_Other_Elements
MD5: 61ecb5dc2617eecac62a05d7d2c6c0df








Build output



a.ads:10:26: error: "Zero_Const" not declared in "Info"
a.ads:11:26: error: "Zero_Func" not declared in "Info"
gprbuild: *** compilation phase failed







As expected, compilation fails because of the limited visibility — as
Zero_Const and Zero_Func from the Info package are not
visible in the private part of A. (Of course, if we revert to full
visibility by simply removing the limited keyword from the example, the
code compiles just fine.)




Visibility

In the previous sections, we already discussed visibility from various angles.
However, it can be interesting to recapitulate this information with the help
of diagrams that illustrate the different parts of a package and its relation
with other units.


Automatic visibility

First, let's consider we have a package A, its children (A.G and
A.H), and the grandchild A.G.T. As we've seen before, information
of a parent package is automatically visible in its children. The following
diagrams illustrates this:



[image: allow_mixing  skinparam ArrowColor DarkBlue  namespace A {    node Public #white    node Private #lightgray    node Body #blue     Private -up--> Public     Body -up--> Public    Body -up--> Private }  namespace A.G #lightyellow {    node Public #white    node Private #lightgray    node Body #blue     Public -up--> A.Public     Private -up--> Public    Private -up--> A.Public    Private -up--> A.Private     Body -up--> Public    Body -up--> Private    Body ---> A.Public    Body ---> A.Private }  namespace A.H {    node Public #white    node Private #lightgray    node Body #blue     Public -up--> A.Public     Private -up--> Public    Private -up--> A.Public    Private -up--> A.Private     Body -up--> Public    Body -up--> Private    Body ---> A.Public    Body ---> A.Private }  namespace A.G.T #white {    node Public #white    node Private #lightgray    node Body #blue     Public -up--> A.Public    Public -up--> A.G.Public     Private -up--> Public    Private -up--> A.Public    Private -up--> A.Private    Private -up--> A.G.Public    Private -up--> A.G.Private     Body -up--> Public    Body -up--> Private    Body ---> A.Public    Body ---> A.Private    Body ---> A.G.Public    Body ---> A.G.Private }]



Because of this automatic visibility, many with clauses would be redundant in
child packages. For example, we don't have to write
with A; package A.G is, since the specification of package A is
already visible in its child packages.

If we focus on package A.G (highlighted in the figure above), we see
that it only has automatic visibility to its parent A, but not its child
A.G.T. Also, it doesn't have visibility to its sibling A.H.



With clauses and visibility

In the rest of this section, we discuss all the situations where using with
clauses is necessary to access the information of a package. Let's consider
this example where we refer to a package B in the specification of a
package A (using with B):



[image: allow_mixing  skinparam ArrowColor DarkBlue  namespace B {    node Public #white    node Private #lightgray    node Body #blue     Private -up--> Public     Body -up--> Public    Body -up--> Private }  namespace A {    node Public #white    node Private #lightgray    node Body #blue     Public -up--> B.Public #line:DarkGreen;line.bold;text:DarkGreen : with B; package A is     Private -up--> Public    Private -up--> B.Public #line:DarkGreen;line.dotted;text:DarkGreen     Body -up--> Public    Body -up--> Private    Body -up--> B.Public #line:DarkGreen;line.dotted;text:DarkGreen }]



As we already know, the information from the public part of package B is
visible in the public part of package A. In addition to that, it's also
visible in the private part and in the body of package A. This is
indicated by the dotted green arrows in the figure above.

Now, let's see the case where we refer to package B in the private
part of package A (using private with B):



[image: allow_mixing  skinparam ArrowColor DarkBlue  namespace B {    node Public #white    node Private #lightgray    node Body #blue     Private -up--> Public     Body -up--> Public    Body -up--> Private }  namespace A {    node Public #white    node Private #lightgray    node Body #blue     Private -up--> Public    Private -up-> B.Public #line:DarkGreen;line.bold;text:DarkGreen : private with B; package A is     Body -up--> Public    Body -up--> Private    Body -up--> B.Public #line:DarkGreen;line.dotted;text:DarkGreen }]



Here, the information is visible in the private part of package A, as
well as in its body. Finally, let's see the case where we refer to
package B in the body of package A:



[image: allow_mixing  skinparam ArrowColor DarkBlue  namespace B {    node Public #white    node Private #lightgray    node Body #blue     Private -up--> Public     Body -up--> Public    Body -up--> Private }  namespace A {    node Public #white    node Private #lightgray    node Body #blue     Private -up--> Public     Body -up--> Public    Body -up--> Private    Body -up--> B.Public #line:DarkGreen;line.bold;text:DarkGreen : with B; package body A is }]



Here, the information is only visible in the body of package A.



Circular dependency

Let's return to package A and its descendants. As we've seen in previous
sections, we cannot refer to a child package in the specification of its parent
package because that would constitute circular dependency. (For example, we
cannot write with A.G; package A is.) This situation — which
causes a compilation error — is indicated by the red arrows in the figure
below:



[image: allow_mixing  skinparam ArrowColor DarkBlue  namespace A {    node Public #white    node Private #lightgray    node Body #blue     Private -up--> Public     Body -up--> Public    Body -up--> Private }  namespace A.G {    node Public #white    node Private #lightgray    node Body #blue     Public -up--> A.Public     Private -up--> Public    Private -up--> A.Public    Private -up--> A.Private     Body -up--> Public    Body -up--> Private    Body ---> A.Public    Body ---> A.Private     Public x-up- A.Public #line:DarkRed;line.bold;text:DarkRed : with A.G; package A is    Public x-- A.Private #line:DarkRed;line.bold;text:DarkRed : private with A.G; package A is    Public <--- A.Body #line:DarkGreen;line.bold;text:DarkGreen : with A.G; package body A is }]



Note that referring to the child package A.G in the body of its parent
is perfectly fine.



Private packages

The previous examples of this section only showed public packages. As we've
seen before, we cannot refer to private packages outside of a package
hierarchy, as we can see in the following example where we try to refer to
package A and its descendants in the Test procedure:



[image: allow_mixing  left to right direction scale 0.75  namespace A {    node Public #white    node Private #lightgray    node Body #blue }  namespace A.G << private A.G >> #lightgray {    node Public #white    node Private #lightgray    node Body #blue }  namespace A.H {    node Public #white    node Private #lightgray    node Body #blue }  namespace A.G.T #white {    node Public #white    node Private #lightgray    node Body #blue }  node "procedure Test" as Procedure_Test  Procedure_Test -up--> A.Public #line:DarkGreen;line.bold;text:DarkGreen   : with A; Procedure_Test -up--> A.H.Public #line:DarkGreen;line.bold;text:DarkGreen   : with A.H; Procedure_Test -up--x A.G.Public #line:DarkRed;line.bold;text:DarkRed : with A.G; Procedure_Test -up--x A.G.T.Public #line:DarkRed;line.bold;text:DarkRed : with A.G.T;]



As indicated by the red arrows, we cannot refer to the private child packages
of A in the Test procedure, only the public child packages.
Within the package hierarchy itself, we cannot refer to the private package
A.G in public sibling packages. For example:



[image: allow_mixing  left to right direction scale 0.75  namespace A {    node Public #white    node Private #lightgray    node Body #blue }  namespace A.G << private A.G >> #lightgray {    node Public #white    node Private #lightgray    node Body #blue     Public <--- A.Body #line:DarkGreen;line.bold;text:DarkGreen : with A.G; package body A is }  namespace A.H {    node Public #white    node Private #lightgray    node Body #blue     Public --x A.G.Public #line:DarkRed;line.bold;text:DarkRed : with A.G; package A.H is    Private ---> A.G.Public #line:DarkGreen;line.bold;text:DarkGreen : private with A.G; package A.H is    Body ---> A.G.Public #line:DarkGreen;line.bold;text:DarkGreen : with A.G; package body A.H is }  namespace A.I << private A.I >> #lightgray {    node Public #white    node Private #lightgray    node Body #blue     Public ---> A.G.Public #line:DarkGreen;line.bold;text:DarkGreen : with A.G; private package A.I is }]



Here, we cannot refer to the private package A.G in the public package
A.H — as indicated by the red arrow. However, we can refer to the
private package A.G in other private packages, such as A.I
— as indicated by the green arrows.




Use type clause

Back in the Introduction to Ada course[#7], we saw
that use clauses provide direct visibility — in the scope where they're
used — to the content of a package's visible part.

For example, consider this simple procedure:


display_message.adb

1with Ada.Text_IO;
2
3procedure Display_Message is
4begin
5   Ada.Text_IO.Put_Line ("Hello World!");
6end Display_Message;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.No_Use_Clause
MD5: 4c6ff19809c13ebd2fdfda482914e5f8








Runtime output



Hello World!







By adding use Ada.Text_IO to this code, we make the visible part of the
Ada.Text_IO package directly visible in the scope of the
Display_Message procedure, so we can now just write Put_Line
instead of Ada.Text_IO.Put_Line:


display_message.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Display_Message is
4begin
5   Put_Line ("Hello World!");
6end Display_Message;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Clause
MD5: b105a777a1afd79008f8580cda432cfe








Runtime output



Hello World!







In this section, we discuss another example of use clauses. In addition, we
introduce two specific forms of use clauses: use type and
use all type.


In the Ada Reference Manual


	8.4 Use Clauses[#8]







Another use clause example

Let's now consider a simple package called Points, which contains the
declaration of the Point type and two primitive: an Init function
and an addition operator.


points.ads

 1package Points is
 2
 3   type Point is private;
 4
 5   function Init return Point;
 6
 7   function "+" (P : Point;
 8                 I : Integer) return Point;
 9
10private
11
12   type Point is record
13      X, Y : Integer;
14   end record;
15
16   function Init return Point is (0, 0);
17
18   function "+" (P : Point;
19                 I : Integer) return Point is
20     (P.X + I, P.Y + I);
21
22end Points;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: 1a43740d7231a3cc497e778866a12c55







We can implement a simple procedure that makes use of this package:


show_point.adb

1with Points; use Points;
2
3procedure Show_Point is
4   P : Point;
5begin
6   P := Init;
7   P := P + 1;
8end Show_Point;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: f5d44dd1fee8cf4d1a7e730f9a7c64cc







Here, we have a use clause, so we have direct visibility to the content of
Points's visible part.



Visibility and Readability

In certain situations, however, we might want to avoid the use clause. If
that's the case, we can rewrite the previous implementation by removing the use
clause and specifying the Points package in the prefixed form:


show_point.adb

1with Points;
2
3procedure Show_Point is
4   P : Points.Point;
5begin
6   P := Points.Init;
7   P := Points."+" (P, 1);
8end Show_Point;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: ca896b456a90c19b29ec4f262144c131







Although this code is correct, it might be difficult to read, as we have to
specify the package whenever we're referring to a type or a subprogram from
that package. Even worse: we now have to write operators in the prefixed form
— such as Points."+" (P, 1).



use type

As a compromise, we can have direct visibility to the operators of a certain
type. We do this by using a use clause in the form use type. This allows
us to simplify the previous example:


show_point.adb

 1with Points;
 2
 3procedure Show_Point is
 4   use type Points.Point;
 5
 6   P : Points.Point;
 7begin
 8   P := Points.Init;
 9   P := P + 1;
10end Show_Point;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: a9527276c27a67be8b5a59efcf6e5cfd







Note that use type just gives us direct visibility to the operators of a
certain type, but not other primitives. For this reason, we still have to write
Points.Init in the code example.



use all type

If we want to have direct visibility to all primitives of a certain type (and
not just its operators), we need to write a use clause in the form
use all type. This allows us to simplify the previous example even
further:


show_point.adb

 1with Points;
 2
 3procedure Show_Point is
 4   use all type Points.Point;
 5
 6   P : Points.Point;
 7begin
 8   P := Init;
 9   P := P + 1;
10end Show_Point;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Type_Clause.Use_Type_Clause
MD5: 4a8f6edd4e1811c4e8acb24393690282







Now, we've removed the prefix from all operations on the P variable.




Use clauses and naming conflicts

Visibility issues may arise when we have multiple use clauses. For instance,
we might have types with the same name declared in multiple packages. This
constitutes a naming conflict; in this case, the types become hidden — so
they're not directly visible anymore, even if we have a use clause.


In the Ada Reference Manual


	8.4 Use Clauses[#9]







Code example

Let's start with a code example. First, we declare and implement a generic
procedure that shows the value of a Complex object:


show_any_complex.ads

1with Ada.Numerics.Generic_Complex_Types;
2
3generic
4   with package Complex_Types is new
5     Ada.Numerics.Generic_Complex_Types (<>);
6procedure Show_Any_Complex
7  (Msg : String;
8   Val : Complex_Types.Complex);








show_any_complex.adb

 1with Ada.Text_IO;
 2with Ada.Text_IO.Complex_IO;
 3
 4procedure Show_Any_Complex
 5  (Msg : String;
 6   Val : Complex_Types.Complex)
 7is
 8   package Complex_Float_Types_IO is new
 9     Ada.Text_IO.Complex_IO (Complex_Types);
10   use Complex_Float_Types_IO;
11
12   use Ada.Text_IO;
13begin
14   Put (Msg & " ");
15   Put (Val);
16   New_Line;
17end Show_Any_Complex;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: 2527291906d3a600eecd6d36e4359c1a







Then, we implement a test procedure where we declare the
Complex_Float_Types package as an instance of the
Generic_Complex_Types package:


show_use.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3with Ada.Numerics.Generic_Complex_Types;
 4
 5with Show_Any_Complex;
 6
 7procedure Show_Use is
 8   package Complex_Float_Types is new
 9     Ada.Numerics.Generic_Complex_Types
10       (Real => Float);
11   use Complex_Float_Types;
12
13   procedure Show_Complex_Float is new
14     Show_Any_Complex (Complex_Float_Types);
15
16   C, D, X : Complex;
17begin
18   C := Compose_From_Polar (3.0, Pi / 2.0);
19   D := Compose_From_Polar (5.0, Pi / 2.0);
20   X := C + D;
21
22   Show_Complex_Float ("C:", C);
23   Show_Complex_Float ("D:", D);
24   Show_Complex_Float ("X:", X);
25end Show_Use;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: cc2a612c9884539f33154680854a4c82








Runtime output



C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)







In this example, we declare variables of the Complex type, initialize
them and use them in operations. Note that we have direct visibility to the
package instance because we've added a simple use clause after the package
instantiation — see use Complex_Float_Types in the example.



Naming conflict

Now, let's add the declaration of the Complex_Long_Float_Types package
— a second instantiation of the Generic_Complex_Types package
— to the code example:


show_use.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3with Ada.Numerics.Generic_Complex_Types;
 4
 5with Show_Any_Complex;
 6
 7procedure Show_Use is
 8   package Complex_Float_Types is new
 9     Ada.Numerics.Generic_Complex_Types
10       (Real => Float);
11   use Complex_Float_Types;
12
13   package Complex_Long_Float_Types is new
14     Ada.Numerics.Generic_Complex_Types
15       (Real => Long_Float);
16   use Complex_Long_Float_Types;
17
18   procedure Show_Complex_Float is new
19     Show_Any_Complex (Complex_Float_Types);
20
21   C, D, X : Complex;
22   --        ^ ERROR: type is hidden!
23begin
24   C := Compose_From_Polar (3.0, Pi / 2.0);
25   D := Compose_From_Polar (5.0, Pi / 2.0);
26   X := C + D;
27
28   Show_Complex_Float ("C:", C);
29   Show_Complex_Float ("D:", D);
30   Show_Complex_Float ("X:", X);
31end Show_Use;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: 30b562e2f81ae62912ec4e067150d5cd








Build output



show_use.adb:21:14: error: "Complex" is not visible
show_use.adb:21:14: error: multiple use clauses cause hiding
show_use.adb:21:14: error: hidden declaration at a-ngcoty.ads:42, instance at line 13
show_use.adb:21:14: error: hidden declaration at a-ngcoty.ads:42, instance at line 8
gprbuild: *** compilation phase failed







This example doesn't compile because we have direct visibility to both
Complex_Float_Types and Complex_Long_Float_Types packages, and
both of them declare the Complex type. In this case, the type
declaration becomes hidden, as the compiler cannot decide which declaration of
Complex it should take.



Circumventing naming conflicts

As we know, a simple fix for this compilation error is to add the package
prefix in the variable declaration:


show_use.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3with Ada.Numerics.Generic_Complex_Types;
 4
 5with Show_Any_Complex;
 6
 7procedure Show_Use is
 8   package Complex_Float_Types is new
 9     Ada.Numerics.Generic_Complex_Types
10       (Real => Float);
11   use Complex_Float_Types;
12
13   package Complex_Long_Float_Types is new
14     Ada.Numerics.Generic_Complex_Types
15       (Real => Long_Float);
16   use Complex_Long_Float_Types;
17
18   procedure Show_Complex_Float is new
19     Show_Any_Complex (Complex_Float_Types);
20
21   C, D, X : Complex_Float_Types.Complex;
22   --        ^ SOLVED: package is now specified.
23begin
24   C := Compose_From_Polar (3.0, Pi / 2.0);
25   D := Compose_From_Polar (5.0, Pi / 2.0);
26   X := C + D;
27
28   Show_Complex_Float ("C:", C);
29   Show_Complex_Float ("D:", D);
30   Show_Complex_Float ("X:", X);
31end Show_Use;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: 0b3285364ea0188a678db2fc406741b8








Runtime output



C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)







Another possibility is to write a use clause in the form use all type:


show_use.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3with Ada.Numerics.Generic_Complex_Types;
 4
 5with Show_Any_Complex;
 6
 7procedure Show_Use is
 8   package Complex_Float_Types is new
 9     Ada.Numerics.Generic_Complex_Types
10       (Real => Float);
11   use all type Complex_Float_Types.Complex;
12
13   package Complex_Long_Float_Types is new
14     Ada.Numerics.Generic_Complex_Types
15       (Real => Long_Float);
16   use all type Complex_Long_Float_Types.Complex;
17
18   procedure Show_Complex_Float is new
19     Show_Any_Complex (Complex_Float_Types);
20
21   C, D, X : Complex_Float_Types.Complex;
22begin
23   C := Compose_From_Polar (3.0, Pi / 2.0);
24   D := Compose_From_Polar (5.0, Pi / 2.0);
25   X := C + D;
26
27   Show_Complex_Float ("C:", C);
28   Show_Complex_Float ("D:", D);
29   Show_Complex_Float ("X:", X);
30end Show_Use;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: 90333ff41e25afb1399f7f94f7e2b566








Runtime output



C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)







For the sake of completeness, let's declare and use variables of both
Complex types:


show_use.adb

 1with Ada.Numerics; use Ada.Numerics;
 2
 3with Ada.Numerics.Generic_Complex_Types;
 4
 5with Show_Any_Complex;
 6
 7procedure Show_Use is
 8   package Complex_Float_Types is new
 9     Ada.Numerics.Generic_Complex_Types
10       (Real => Float);
11   use all type Complex_Float_Types.Complex;
12
13   package Complex_Long_Float_Types is new
14     Ada.Numerics.Generic_Complex_Types
15       (Real => Long_Float);
16   use all type Complex_Long_Float_Types.Complex;
17
18   procedure Show_Complex_Float is new
19     Show_Any_Complex (Complex_Float_Types);
20
21   procedure Show_Complex_Long_Float is new
22     Show_Any_Complex (Complex_Long_Float_Types);
23
24   C, D, X : Complex_Float_Types.Complex;
25   E, F, Y : Complex_Long_Float_Types.Complex;
26begin
27   C := Compose_From_Polar (3.0, Pi / 2.0);
28   D := Compose_From_Polar (5.0, Pi / 2.0);
29   X := C + D;
30
31   Show_Complex_Float ("C:", C);
32   Show_Complex_Float ("D:", D);
33   Show_Complex_Float ("X:", X);
34
35   E := Compose_From_Polar (3.0, Pi / 2.0);
36   F := Compose_From_Polar (5.0, Pi / 2.0);
37   Y := E + F;
38
39   Show_Complex_Long_Float ("E:", E);
40   Show_Complex_Long_Float ("F:", F);
41   Show_Complex_Long_Float ("Y:", Y);
42end Show_Use;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Packages.Use_Clause_Naming_Conflicts.Use_Type_Clause_Complex_Types
MD5: 48f31250116f107d3143703debb3107d








Runtime output



C: (-1.31134E-07, 3.00000E+00)
D: (-2.18557E-07, 5.00000E+00)
X: (-3.49691E-07, 8.00000E+00)
E: ( 1.83697019872103E-16, 3.00000000000000E+00)
F: ( 3.06161699786838E-16, 5.00000000000000E+00)
Y: ( 4.89858719658941E-16, 8.00000000000000E+00)







As expected, the code compiles correctly.




Footnotes



[#1]
https://learn.adacore.com/courses/intro-to-ada/chapters/modular_programming.html#intro-ada-package-renaming



[#2]
http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html



[#3]
https://learn.adacore.com/courses/intro-to-ada/chapters/privacy.html#intro-ada-course-privacy



[#4]
http://www.ada-auth.org/standards/22rm/html/RM-10-1-1.html



[#5]
http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html



[#6]
http://www.ada-auth.org/standards/22rm/html/RM-10-1-2.html



[#7]
https://learn.adacore.com/courses/intro-to-ada/chapters/modular_programming.html#intro-ada-use-clause



[#8]
http://www.ada-auth.org/standards/22rm/html/RM-8-4.html



[#9]
http://www.ada-auth.org/standards/22rm/html/RM-8-4.html





            

          

      

      

    

  

    
      
          
            
  
Subprograms and Modularity


Private subprograms

We've seen previously that we can declare
private packages. Because packages and subprograms can both be library units,
we can declare private subprograms as well. We do this by using the
private keyword. For example:


test.ads

1private procedure Test;








test.adb

1procedure Test is
2begin
3   null;
4end Test;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_Subprograms.Private_Test_Procedure
MD5: 2ea1770a5fd5dee40f015b9d33d2f309







Such a subprogram as the one above isn't really useful. For example, we cannot
write a with clause that refers to the Test procedure, as it's not
visible anywhere:


show_test.adb

1with Test;
2
3procedure Show_Test is
4begin
5   Test;
6end Show_Test;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_Subprograms.Private_Test_Procedure
MD5: 0702378a034f65a69a4c5b5258f7b32e








Build output



show_test.adb:1:06: error: current unit must also be private descendant of "Standard"
gprbuild: *** compilation phase failed







As expected, since Test is private, we get a compilation error because
this procedure cannot be referenced in the Show_Test procedure.
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	10.1.1 Compilation Units - Library Units[#1]


	10.1.2 Context Clauses - With Clauses[#2]







Private subprograms of a package

A more useful example is to declare private subprograms of a package. For
example:


data_processing.ads

 1package Data_Processing is
 2
 3   type Data is private;
 4
 5   procedure Process (D : in out Data);
 6
 7private
 8
 9    type Data is record
10       F : Float;
11    end record;
12
13end Data_Processing;








data_processing.adb

 1with Data_Processing.Calculate;
 2
 3package body Data_Processing is
 4
 5   procedure Process (D : in out Data) is
 6   begin
 7      Calculate (D);
 8   end Process;
 9
10end Data_Processing;








data_processing-calculate.ads

1private
2procedure Data_Processing.Calculate
3  (D : in out Data);








data_processing-calculate.adb

1procedure Data_Processing.Calculate
2  (D : in out Data)
3is
4begin
5   --  Dummy implementation...
6   D.F := 0.0;
7end Data_Processing.Calculate;








test_data_processing.adb

1with Data_Processing; use Data_Processing;
2
3procedure Test_Data_Processing is
4   D : Data;
5begin
6   Process (D);
7end Test_Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_Subprograms.Private_Package_Procedure
MD5: 0f6af1b02f37e011abac5b2a6dfc482d







In this example, we declare Calculate as a private procedure of the
Data_Processing package. Therefore, it's visible in that package (but
not in the Test_Data_Processing procedure). Also, in the
Calculate procedure, we're able to initialize the private component
F of the D object because the child subprogram has access to the
private part of its parent package.



Private subprograms and private packages

We can also use private subprograms to test private packages. As we know, in
most cases, we cannot access private packages in external clients — such
as external subprograms. However, by declaring a subprogram private, we're
allowed to access private packages. This can be very useful to create
applications that we can use to test private packages. (Note that these
applications must be library-level parameterless subprograms, because only
those can be main programs.)

Let's see an example:


private_data_processing.ads

 1private package Private_Data_Processing is
 2
 3   type Data is private;
 4
 5   procedure Process (D : in out Data);
 6
 7private
 8
 9    type Data is record
10       F : Float;
11    end record;
12
13end Private_Data_Processing;








private_data_processing.adb

1package body Private_Data_Processing is
2
3   procedure Process (D : in out Data) is
4   begin
5      D.F := 0.0;
6   end Process;
7
8end Private_Data_Processing;








test_private_data_processing.ads

1private procedure Test_Private_Data_Processing;








test_private_data_processing.adb

1with Private_Data_Processing;
2use  Private_Data_Processing;
3
4procedure Test_Private_Data_Processing is
5   D : Data;
6begin
7   Process (D);
8end Test_Private_Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_Subprograms.Private_Subprogram_Private_Package
MD5: 3527e54f99eb2cb52317c987b499caaf







In this code example, we have the private Private_Data_Processing
package. In order to test it, we implement the private
procedure Test_Private_Data_Processing. The fact that this procedure is
private allows us to use the Private_Data_Processing package as if it
was a non-private package. We then use the private
Test_Private_Data_Processing procedure as our main application, so we can
run it to test application the private package.


Child subprograms of private packages

We could also implement the Test subprogram that we use to test a
private package P as a child subprogram of that package. In other words,
we could write a procedure P.Test and use it as our main application.
The advantage here is that this allows us to access the private part of the
parent package P in the test procedure.

Let's rewrite the Test_Private_Data_Processing procedure from the
previous example as the child procedure Private_Data_Processing.Test:


private_data_processing.ads

 1private package Private_Data_Processing is
 2
 3   type Data is private;
 4
 5   procedure Process (D : in out Data);
 6
 7private
 8
 9    type Data is record
10       F : Float;
11    end record;
12
13end Private_Data_Processing;








private_data_processing.adb

1package body Private_Data_Processing is
2
3   procedure Process (D : in out Data) is
4   begin
5      null;
6   end Process;
7
8end Private_Data_Processing;








private_data_processing-test.ads

1procedure Private_Data_Processing.Test;








private_data_processing-test.adb

1procedure Private_Data_Processing.Test is
2   D : Data := (F => 0.0);
3begin
4   Process (D);
5end Private_Data_Processing.Test;








Code block metadata



Project: Courses.Advanced_Ada.Modular_Prog.Subprograms_Modularity.Private_Subprograms.Private_Package_Child_Subprogram
MD5: 0726f5890a5b3847244d1ae08989e158







In this code example, we now implement the Test procedure as a child of
the Private_Data_Processing package. In this procedure, we're able to
initialize the private component F of the D object. As we know,
this initialization of a private component wouldn't be possible if Test
wasn't a child procedure. (For instance, writing such an initialization in the
Test_Private_Data_Processing procedure from the previous code example
would trigger a compilation error.)





Footnotes
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Access Types

We discussed access types back in the
Introduction to Ada course[#1]. In
this chapter, we discuss further details about access types and techniques when
using them. Before we dig into details, however, we're going to make sure
we understand the terminology.


Access types: Terminology

In this section, we discuss some of the terminology associated with access
types. Usually, the terms used in Ada when discussing references and dynamic
memory allocation are different than the ones you might encounter in other
languages, so it's necessary you understand what each term means.


Access type, designated subtype and profile

The first term we encounter is (obviously) access type, which is a type that
provides us access to an object or a subprogram. We declare access types by
using the access keyword:


show_access_type_declaration.ads

 1package Show_Access_Type_Declaration is
 2
 3   --
 4   --  Declaring access types:
 5   --
 6
 7   --  Access-to-object type
 8   type Integer_Access is access Integer;
 9
10   --  Access-to-subprogram type
11   type Init_Integer_Access is access
12     function return Integer;
13
14end Show_Access_Type_Declaration;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Terminology.Access_Type_Declaration
MD5: 64e4e0847a73a9ed23e29e09798934de







Here, we're declaring two access types: the access-to-object type
Integer_Access and the access-to-subprogram type
Init_Integer_Access. (We discuss access-to-subprogram types
later on).

In the declaration of an access type, we always specify — after the
access keyword — the kind of thing we want to designate. In the
case of an access-to-object type declaration, we declare a subtype we want to
access, which is known as the designated subtype of an access type. In the
case of an access-to-subprogram type declaration, the subprogram prototype is
known as the designated profile.

In our previous code example, Integer is the designated subtype of the
Integer_Access type, and function return Integer is the
designated profile of the Init_Integer_Access type.


Important

In contrast to other programming languages, an access type is not a
pointer, and it doesn't just indicate an address in memory. We discuss more
about addresses later on.





Access object and designated object

We use an access-to-object type by first declaring a variable (or constant) of
an access type and then allocating an object. (This is actually just one way of
using access types; we discuss other methods later in this chapter.) The actual
variable or constant of an access type is called access object, while the
object we allocate (via new) is the designated object.

For example:


show_simple_allocation.adb

 1procedure Show_Simple_Allocation is
 2
 3   --  Access-to-object type
 4   type Integer_Access is access Integer;
 5
 6   --  Access object
 7   I1 : Integer_Access;
 8
 9begin
10   I1 := new Integer;
11   --    ^^^^^^^^^^^ allocating an object,
12   --                which becomes the designated
13   --                object for I1
14
15end Show_Simple_Allocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Terminology.Simple_Allocation
MD5: 32ca8cf523e19b25dabb55da6df1f18d







In this example, I1 is an access object and the object allocated via
new Integer is its designated object.



Access value and designated value

An access object and a designated (allocated) object, both store values. The
value of an access object is the access value and the value of a designated
object is the designated value. For example:


show_values.adb

 1procedure Show_Values is
 2
 3   --  Access-to-object type
 4   type Integer_Access is access Integer;
 5
 6   I1, I2, I3 : Integer_Access;
 7
 8begin
 9   I1 := new Integer;
10   I3 := new Integer;
11
12   --  Copying the access value of I1 to I2
13   I2 := I1;
14
15   --  Copying the designated value of I1
16   I3.all := I1.all;
17
18end Show_Values;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Terminology.Values
MD5: a152ee813b8ed9fad985cf4e2c25d847







In this example, the assignment I2 := I1 copies the access value of
I1 to I2. The assignment I3.all := I1.all copies
I1's designated value to I3's designated object.
(As we already know, .all is used to dereference an access object. We
discuss this topic again later in this chapter.)
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Access types: Allocation

Ada makes the distinction between pool-specific and general access types, as
we'll discuss in this section. Before doing so, however, let's talk about
memory allocation.

In general terms, memory can be allocated dynamically on the
heap or statically on the stack. (Strictly speaking, both are dynamic
allocations, in that they occur at run-time with amounts not previously
specified.) For example:


show_simple_allocation.adb

 1procedure Show_Simple_Allocation is
 2
 3   --  Declaring access type:
 4   type Integer_Access is access Integer;
 5
 6   --  Declaring access object:
 7   A1 : Integer_Access;
 8
 9begin
10   --  Allocating an Integer object on the heap
11   A1 := new Integer;
12
13   declare
14      --  Allocating an Integer object on the
15      --  stack
16      I : Integer;
17   begin
18      null;
19   end;
20
21end Show_Simple_Allocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.Simple_Allocation
MD5: 4144feb99e6e0b1a0749fce0b20370a1







When we allocate an object on the heap via new, the allocation happens
in a memory pool that is associated with the access type. In our code example,
there's a memory pool associated with the Integer_Access type, and each
new Integer allocates a new integer object in that pool. Therefore,
access types of this kind are called pool-specific access types. (We discuss
more about these types later.)

It is also possible to access objects that were allocated on the stack. To do
that, however, we cannot use pool-specific access types because — as the
name suggests — they're only allowed to access objects that were
allocated in the specific pool associated with the type. Instead, we have to
use general access types in this case:


show_general_access_type.adb

 1procedure Show_General_Access_Type is
 2
 3   --  Declaring general access type:
 4   type Integer_Access is access all Integer;
 5
 6   --  Declaring access object:
 7   A1 : Integer_Access;
 8
 9   --  Allocating an Integer object on the
10   --  stack:
11   I : aliased Integer;
12
13begin
14   --  Getting access to an Integer object that
15   --  was allocated on the stack
16   A1 := I'Access;
17
18end Show_General_Access_Type;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.General_Access_Types
MD5: f166291ad1975396131775d0aff6ad9d







In this example, we declare the general access type Integer_Access and
the access object A1. To initialize A1, we write I'Access
to get access to an integer object I that was allocated on the stack.
(For the moment, don't worry much about these details: we'll talk about general
access types again when we introduce the topic of
aliased objects later on.)


For further reading...

Note that it is possible to use general access types to allocate objects on
the heap:


show_simple_allocation.adb

 1procedure Show_Simple_Allocation is
 2
 3   --  Declaring general access type:
 4   type Integer_Access is access all Integer;
 5
 6   --  Declaring access object:
 7   A1 : Integer_Access;
 8
 9begin
10   --
11   --  Allocating an Integer object on the heap
12   --  and initializing an access object of
13   --  the general access type Integer_Access.
14   --
15   A1 := new Integer;
16
17end Show_Simple_Allocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.General_Access_Types_Heap
MD5: 3fa5efeac2f66794f066ab29f26bf7ca







Here, we're using a general access type Integer_Access, but
allocating an integer object on the heap.




Important

In many code examples, we have used the Integer type as the
designated subtype of the access types — by writing
access Integer. Although we have used this specific scalar type,
we aren't really limited to those types. In fact, we can use any type as
the designated subtype, including user-defined types, composite types,
task types and protected types.
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Pool-specific access types

We've already discussed many aspects about pool-specific access types. In this
section, we recapitulate some of those aspects, and discuss some new details
that haven't seen yet.

As we know, we cannot directly assign an object Distance_Miles of type
Miles to an object Distance_Meters of type Meters, even if
both share a common Float type ancestor. The assignment is only possible
if we perform a type conversion from Miles to Meters, or
vice-versa — e.g.:
Distance_Meters := Meters (Distance_Miles) * Miles_To_Meters_Factor.

Similarly, in the case of pool-specific access types, a direct assignment
between objects of different access types isn't possible. However, even if
both access types have the same designated subtype (let's say, they are both
declared using is access Integer), it's still not possible to perform
a type conversion between those access types. The only situation when an access
type conversion is allowed is when both types have a common ancestor.

Let's see an example:


show_simple_allocation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Simple_Allocation is
 4
 5   --  Declaring pool-specific access type:
 6   type Integer_Access_1 is access Integer;
 7   type Integer_Access_2 is access Integer;
 8   type Integer_Access_2B is new Integer_Access_2;
 9
10   --  Declaring access object:
11   A1  : Integer_Access_1;
12   A2  : Integer_Access_2;
13   A2B : Integer_Access_2B;
14
15begin
16   A1 := new Integer;
17   Put_Line ("A1  : " & A1'Image);
18   Put_Line ("Pool: " & A1'Storage_Pool'Image);
19
20   A2 := new Integer;
21   Put_Line ("A2:   " & A2'Image);
22   Put_Line ("Pool: " & A2'Storage_Pool'Image);
23
24   --  ERROR: Cannot directly assign access values
25   --         for objects of unrelated access
26   --         types; also, cannot convert between
27   --         these types.
28   --
29   --  A1 := A2;
30   --  A1 := Integer_Access_1 (A2);
31
32   A2B := Integer_Access_2B (A2);
33   Put_Line ("A2B:  " & A2B'Image);
34   Put_Line ("Pool: " & A2B'Storage_Pool'Image);
35
36end Show_Simple_Allocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.Pool_Specific_Access_Types
MD5: 80d0e9764917fa8352b6616e3a8425de








Runtime output



A1  : (access 2f38b2a0)
Pool: SYSTEM.POOL_GLOBAL.UNBOUNDED_NO_RECLAIM_POOL'{SYSTEM.STORAGE_POOLS.TROOT_STORAGE_POOLC object}
A2:   (access 2f38b360)
Pool: SYSTEM.POOL_GLOBAL.UNBOUNDED_NO_RECLAIM_POOL'{SYSTEM.STORAGE_POOLS.TROOT_STORAGE_POOLC object}
A2B:  (access 2f38b360)
Pool: SYSTEM.POOL_GLOBAL.UNBOUNDED_NO_RECLAIM_POOL'{SYSTEM.STORAGE_POOLS.TROOT_STORAGE_POOLC object}







In this example, we declare three access types: Integer_Access_1,
Integer_Access_2 and Integer_Access_2B. Also,
the Integer_Access_2B type is derived from the Integer_Access_2
type. Therefore, we can convert an object of Integer_Access_2 type to
the Integer_Access_2B type — we do this in the
A2B := Integer_Access_2B (A2) assignment. However, we cannot directly
assign to or convert between unrelated types such as Integer_Access_1
and Integer_Access_2. (We would get a compilation error if we included
the A1 := A2 or the A1 := Integer_Access_1 (A2) assignment.)


Important

Remember that:


	As mentioned in the
Introduction to Ada course[#4]:



	an access type can be unconstrained, but the actual object allocation
must be constrained;


	we can use a
qualified expression to
allocate an object.









	We can use the Storage_Size attribute to limit the size of the
memory pool associated with an access type, as discussed previously in
the section about storage size.


	When running out of memory while allocating via new, we get a
Storage_Error exception because of the
storage check.




For example:


show_array_allocation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Array_Allocation is
 4
 5   --  Unconstrained array type:
 6   type Integer_Array is
 7     array (Positive range <>) of Integer;
 8
 9   --  Access type with unconstrained
10   --  designated subtype and limited storage
11   --  size.
12   type Integer_Array_Access is
13     access Integer_Array
14       with Storage_Size => 128;
15
16   --  An access object:
17   A1 : Integer_Array_Access;
18
19   procedure Show_Info
20     (IAA : Integer_Array_Access) is
21   begin
22      Put_Line ("Allocated: " & IAA'Image);
23      Put_Line ("Length:    "
24                & IAA.all'Length'Image);
25      Put_Line ("Values:    "
26                & IAA.all'Image);
27   end Show_Info;
28
29begin
30   --  Allocating an integer array with
31   --  constrained range on the heap:
32   A1 := new Integer_Array (1 .. 3);
33   A1.all := [others => 42];
34   Show_Info (A1);
35
36   --  Allocating an integer array on the
37   --  heap using a qualified expression:
38   A1 := new Integer_Array'(5, 10);
39   Show_Info (A1);
40
41   --  A third allocation fails at run time
42   --  because of the constrained storage
43   --  size:
44   A1 := new Integer_Array (1 .. 100);
45   Show_Info (A1);
46
47exception
48    when Storage_Error =>
49       Put_Line ("Out of memory!");
50
51end Show_Array_Allocation;











Multiple allocation

Up to now, we have seen examples of allocating a single object on the heap.
It's possible to allocate multiple objects at once as well — i.e.
syntactic sugar is available to simplify the code that performs this
allocation. For example:


show_access_array_allocation.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Access_Array_Allocation is
 4
 5   type Integer_Access is access Integer;
 6
 7   type Integer_Access_Array is
 8     array (Positive range <>) of Integer_Access;
 9
10   --  An array of access objects:
11   Arr : Integer_Access_Array (1 .. 10);
12
13begin
14   --
15   --  Allocating 10 access objects and
16   --  initializing the corresponding designated
17   --  object with zero:
18   --
19   Arr := (others => new Integer'(0));
20
21   --  Same as:
22   for I in Arr'Range loop
23      Arr (I) := new Integer'(0);
24   end loop;
25
26   Put_Line ("Arr: " & Arr'Image);
27
28   Put_Line ("Arr (designated values): ");
29   for E of Arr loop
30      Put (E.all'Image);
31   end loop;
32
33end Show_Access_Array_Allocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.Integer_Access_Array
MD5: 4afc9358c8aa9426a97ca8932c75d932








Runtime output



Arr: 
[(access 18bc13e0), (access 18bc1400), (access 18bc1420), (access 18bc1440),
 (access 18bc1460), (access 18bc1480), (access 18bc14a0), (access 18bc14c0),
 (access 18bc14e0), (access 18bc1500)]
Arr (designated values): 
 0 0 0 0 0 0 0 0 0 0







In this example, we have the access type Integer_Access and an array
type of this access type (Integer_Access_Array). We also declare an
array Arr of Integer_Access_Array type. This means that each
component of Arr is an access object. We allocate all ten components of
the Arr array by simply writing Arr := (others => new Integer).
This array aggregate is syntactic sugar for a
loop over Arr that allocates each component. (Note that, by writing
Arr := (others => new Integer'(0)), we're also initializing the
designated objects with zero.)

Let's see another code example, this time with task types:


workers.ads

 1package Workers is
 2
 3   task type Worker is
 4      entry Start (Id : Positive);
 5      entry Stop;
 6   end Worker;
 7
 8   type Worker_Access is access Worker;
 9
10   type Worker_Array is
11     array (Positive range <>) of Worker_Access;
12
13end Workers;








workers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Workers is
 4
 5   task body Worker is
 6      Id : Positive;
 7   begin
 8      accept Start (Id : Positive) do
 9         Worker.Id := Id;
10      end Start;
11      Put_Line ("Started Worker #"
12                & Id'Image);
13
14      accept Stop;
15
16      Put_Line ("Stopped Worker #"
17                & Id'Image);
18   end Worker;
19
20end Workers;








show_workers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Workers; use Workers;
 4
 5procedure Show_Workers is
 6   Worker_Arr : Worker_Array (1 .. 20);
 7begin
 8   --
 9   --  Allocating 20 workers at once:
10   --
11   Worker_Arr := (others => new Worker);
12
13   for I in Worker_Arr'Range loop
14      Worker_Arr (I).Start (I);
15   end loop;
16
17   Put_Line ("Some processing...");
18   delay 1.0;
19
20   for W of Worker_Arr loop
21      W.Stop;
22   end loop;
23
24end Show_Workers;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Types_Allocation.Workers
MD5: d29e3d56585f8d9a63b805c680e5dc54








Runtime output



Started Worker # 1
Started Worker # 2
Started Worker # 3
Started Worker # 4
Started Worker # 5
Started Worker # 6
Started Worker # 7
Started Worker # 8
Started Worker # 9
Started Worker # 10
Started Worker # 11
Started Worker # 12
Started Worker # 13
Started Worker # 14
Started Worker # 15
Started Worker # 16
Started Worker # 17
Started Worker # 18
Started Worker # 19
Started Worker # 20
Some processing...
Stopped Worker # 1
Stopped Worker # 2
Stopped Worker # 3
Stopped Worker # 4
Stopped Worker # 18
Stopped Worker # 6
Stopped Worker # 7
Stopped Worker # 9
Stopped Worker # 10
Stopped Worker # 12
Stopped Worker # 5
Stopped Worker # 13
Stopped Worker # 19
Stopped Worker # 15
Stopped Worker # 16
Stopped Worker # 17
Stopped Worker # 20
Stopped Worker # 14
Stopped Worker # 8
Stopped Worker # 11







In this example, we declare the task type Worker, the access type
Worker_Access and an array of access to tasks Worker_Array.
Using this approach, a task is only created when we allocate an individual
component of an array of Worker_Array type. Thus, when we declare
the Worker_Arr array in this example, we're only preparing a container
of 20 workers, but we don't have any actual tasks yet. We bring the 20 tasks
into existence by writing Worker_Arr := (others => new Worker).




Discriminants as Access Values

We can use access types when declaring discriminants. Let's see an example:


custom_recs.ads

 1package Custom_Recs is
 2
 3   --  Declaring an access type:
 4   type Integer_Access is access Integer;
 5
 6   --  Declaring a discriminant with this
 7   --  access type:
 8   type Rec (IA : Integer_Access) is record
 9
10      I : Integer := IA.all;
11      --          ^^^^^^^^^
12      --  Setting I's default to use the
13      --  designated value of IA:
14   end record;
15
16   procedure Show (R : Rec);
17
18end Custom_Recs;








custom_recs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Recs is
 4
 5   procedure Show (R : Rec) is
 6   begin
 7      Put_Line ("R.IA = "
 8                & Integer'Image (R.IA.all));
 9      Put_Line ("R.I  = "
10                & Integer'Image (R.I));
11   end Show;
12
13end Custom_Recs;








show_discriminants_as_access_values.adb

 1with Custom_Recs; use Custom_Recs;
 2
 3procedure Show_Discriminants_As_Access_Values is
 4
 5   IA : constant Integer_Access :=
 6          new Integer'(10);
 7   R  : Rec (IA);
 8
 9begin
10   Show (R);
11
12   IA.all := 20;
13   R.I    := 30;
14   Show (R);
15
16   --  As expected, we cannot change the
17   --  discriminant. The following line is
18   --  triggers a compilation error:
19   --
20   --  R.IA := new Integer;
21
22end Show_Discriminants_As_Access_Values;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Discriminant_Access_Values
MD5: c7850acefd8e5227f4be654faed13055








Runtime output



R.IA =  10
R.I  =  10
R.IA =  20
R.I  =  30







In the Custom_Recs package from this example, we declare the access
type Integer_Access. We then use this type to declare the discriminant
(IA) of the Rec type. In the
Show_Discriminants_As_Access_Values procedure, we see that (as expected)
we cannot change the discriminant of an object of Rec type: an
assignment such as R.IA := new Integer would trigger a compilation
error.

Note that we can use a default for the discriminant:


custom_recs.ads

 1package Custom_Recs is
 2
 3   type Integer_Access is access Integer;
 4
 5   type Rec (IA : Integer_Access
 6                    := new Integer'(0)) is
 7      --               ^^^^^^^^^^^^^^^
 8      --                default value
 9   record
10      I : Integer := IA.all;
11   end record;
12
13   procedure Show (R : Rec);
14
15end Custom_Recs;








show_discriminants_as_access_values.adb

 1with Custom_Recs; use Custom_Recs;
 2
 3procedure Show_Discriminants_As_Access_Values is
 4
 5   R1 : Rec;
 6   --   ^^^
 7   --   no discriminant: use default
 8
 9   R2 : Rec (new Integer'(20));
10   --        ^^^^^^^^^^^^^^^^
11   --        allocating an unnamed integer object
12
13begin
14   Show (R1);
15   Show (R2);
16end Show_Discriminants_As_Access_Values;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Discriminant_Access_Values
MD5: 968cb88ed7e9e6958ab66fb6f5a7ce2d








Runtime output



R.IA =  0
R.I  =  0
R.IA =  20
R.I  =  20







Here, we've changed the declaration of the Rec type to allocate an
integer object if the type's discriminant isn't provided — we can see
this in the declaration of the R1 object in the
Show_Discriminants_As_Access_Values procedure. Also, in this
procedure, we're allocating an unnamed integer object in the declaration
of R2.
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	3.7.1 Discriminant Constraints[#6]







Unconstrained type as designated subtype

Notice that we were using a scalar type as the designated subtype of the
Integer_Access type. We could have used an unconstrained type as well.
In fact, this is often used for the sake of having the effect of an
unconstrained discriminant type.

Let's see an example:


persons.ads

 1package Persons is
 2
 3   --  Declaring an access type whose
 4   --  designated subtype is unconstrained:
 5   type String_Access is access String;
 6
 7   --  Declaring a discriminant with this
 8   --  access type:
 9   type Person (Name : String_Access) is record
10      Age : Integer;
11   end record;
12
13   procedure Show (P : Person);
14
15end Persons;








persons.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Persons is
 4
 5   procedure Show (P : Person) is
 6   begin
 7      Put_Line ("Name = "
 8                & P.Name.all);
 9      Put_Line ("Age  = "
10                & Integer'Image (P.Age));
11   end Show;
12
13end Persons;








show_person.adb

1with Persons; use Persons;
2
3procedure Show_Person is
4   P : Person (new String'("John"));
5begin
6   P.Age := 30;
7   Show (P);
8end Show_Person;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Persons
MD5: 9b1109d076b6f06632c8685a41616210








Runtime output



Name = John
Age  =  30







In this example, the discriminant of the Person type has an
unconstrained designated type. In the Show_Person procedure, we declare
the P object and specify the constraints of the allocated string object
— in this case, a four-character string initialized with the name "John".


For further reading...

In the previous code example, we used an array — actually, a string
— to demonstrate the advantage of using discriminants as access
values, for we can use an unconstrained type as the designated subtype. In
fact, as we discussed
earlier in another chapter,
we can only use discrete types (or access types) as discriminants.
Therefore, you wouldn't be able to use a string, for example, directly as a
discriminant without using access types:


persons.ads

1package Persons is
2
3   --  ERROR: Declaring a discriminant with an
4   --         unconstrained type:
5   type Person (Name : String) is record
6      Age : Integer;
7   end record;
8
9end Persons;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Persons_Error
MD5: 4144852aaf95da62bc4781b1e8dc2717








Build output



persons.ads:5:24: error: discriminants must have a discrete or access type
gprbuild: *** compilation phase failed







As expected, compilation fails for this code because the discriminant of
the Person type is indefinite.

However, the advantage of discriminants as access values isn't restricted
to being able to use unconstrained types such as arrays: we could really
use any type as the designated subtype! In fact, we can generalized this
to:


gen_custom_recs.ads

1generic
2   type T (<>);  --  any type
3   type T_Access is access T;
4package Gen_Custom_Recs is
5   --  Declare a type whose discriminant D can
6   --  access any type:
7   type T_Rec (D : T_Access) is null record;
8end Gen_Custom_Recs;








custom_recs.ads

 1with Gen_Custom_Recs;
 2
 3package Custom_Recs is
 4
 5    type Incomp;
 6    --  Incomplete type declaration!
 7
 8   type Incomp_Access is access Incomp;
 9
10   --  Instantiating package using
11   --  incomplete type Incomp:
12   package Inst is new
13     Gen_Custom_Recs
14       (T        => Incomp,
15        T_Access => Incomp_Access);
16   subtype Rec is Inst.T_Rec;
17
18   --  At this point, Rec (Inst.T_Rec) uses
19   --  an incomplete type as the designated
20   --  subtype of its discriminant type
21
22   procedure Show (R : Rec) is null;
23
24   --  Now, we complete the Incomp type:
25   type Incomp (B : Boolean := True) is private;
26
27private
28   --  Finally, we have the full view of the
29   --  Incomp type:
30   type Incomp (B : Boolean := True) is
31     null record;
32
33end Custom_Recs;








show_rec.adb

1with Custom_Recs; use Custom_Recs;
2
3procedure Show_Rec is
4   R : Rec (new Incomp);
5begin
6   Show (R);
7end Show_Rec;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Generic_Access
MD5: c65510e8c6a7625cbd08aa9e68f05115







In the Gen_Custom_Recs package, we're using type T (<>)
— which can be any type — for the designated subtype of the
access type T_Access, which is the type of T_Rec's
discriminant. In the Custom_Recs package, we use the incomplete type
Incomp to instantiate the generic package. Only after the
instantiation, we declare the complete type.



Later on, we'll discuss discriminants again when we look into
anonymous access discriminants,
which provide some advantages in terms of
accessibility rules.



Whole object assignments

As expected, we cannot change the discriminant value in whole object
assignments. If we do that, the Constraint_Error exception is raised
at runtime:


show_person.adb

 1with Persons; use Persons;
 2
 3procedure Show_Person is
 4   S1 : String_Access := new String'("John");
 5   S2 : String_Access := new String'("Mark");
 6   P : Person := (Name => S1,
 7                  Age  => 30);
 8begin
 9   P := (Name => S1, Age => 31);
10   --            ^^ OK: we didn't change the
11   --                   discriminant.
12   Show (P);
13
14   --  We can just repeat the discriminant:
15   P := (Name => P.Name, Age => 32);
16   --            ^^^^^^ OK: we didn't change the
17   --                       discriminant.
18   Show (P);
19
20   --  Of course, we can change the string itself:
21   S1.all := "Mark";
22   Show (P);
23
24   P := (Name => S2, Age => 40);
25   --            ^^ ERROR: we changed the
26   --                      discriminant!
27   Show (P);
28end Show_Person;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Discriminants_As_Access_Values.Persons
MD5: 96f4742365eb6a07c377a5dec28b5767








Runtime output



Name = John
Age  =  31
Name = John
Age  =  32
Name = Mark
Age  =  32

raised CONSTRAINT_ERROR : show_person.adb:24 discriminant check failed







The first and the second assignments to P are OK because we didn't
change the discriminant. However, the last assignment raises the
Constraint_Error exception at runtime because we're changing the
discriminant.




Parameters as Access Values

In addition to
using discriminants as access values,
we can use access types for subprogram formal parameters. For example, the
N parameter of the Show procedure below has an access type:


names.ads

1package Names is
2
3   type Name is access String;
4
5   procedure Show (N : Name);
6
7end Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names
MD5: 82ce94987dce9026aed54a0deb3cc548







This is the complete code example:


names.ads

1package Names is
2
3   type Name is access String;
4
5   procedure Show (N : Name);
6
7end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Names is
 4
 5   procedure Show (N : Name) is
 6   begin
 7      Put_Line ("Name: " & N.all);
 8   end Show;
 9
10end Names;








show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   N : Name := new String'("John");
5begin
6   Show (N);
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names
MD5: 526baf1996b4a2970c3fa2e3485dcbad








Runtime output



Name: John







Note that in this example, the Show procedure is basically just
displaying the string. Since the procedure isn't doing anything that justifies
the need for an access type, we could have implemented it with a simpler
type:


names.ads

1package Names is
2
3   type Name is access String;
4
5   procedure Show (N : String);
6
7end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Names is
 4
 5   procedure Show (N : String) is
 6   begin
 7      Put_Line ("Name: " & N);
 8   end Show;
 9
10end Names;








show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   N : Name := new String'("John");
5begin
6   Show (N.all);
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names_String
MD5: 097ec1ff781fda9deed1de23cae39ae5








Runtime output



Name: John







It's important to highlight the difference between passing an access value to
a subprogram and passing an object by reference. In both versions of this code
example, the compiler will make use of a reference for the actual parameter of
the N parameter of the Show procedure. However, the difference
between these two cases is that:


	N : Name is a reference to an object (because it's an access value)
that is passed by value, and


	N : String is an object passed by reference.





Changing the referenced object

Since the Name type gives us access to an object in the Show
procedure, we could actually change this object inside the procedure. To
illustrate this, let's change the Show procedure to lower each
character of the string before displaying it (and rename the procedure to
Lower_And_Show):


names.ads

1package Names is
2
3   type Name is access String;
4
5   procedure Lower_And_Show (N : Name);
6
7end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Characters.Handling;
 4use  Ada.Characters.Handling;
 5
 6package body Names is
 7
 8   procedure Lower_And_Show (N : Name) is
 9   begin
10      for I in N'Range loop
11         N (I) := To_Lower (N (I));
12      end loop;
13      Put_Line ("Name: " & N.all);
14   end Lower_And_Show;
15
16end Names;








show_changed_names.adb

1with Names; use Names;
2
3procedure Show_Changed_Names is
4   N : Name := new String'("John");
5begin
6   Lower_And_Show (N);
7end Show_Changed_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Changed_Names
MD5: 063a507284f5e7ffa669db2c8fdd3d6f








Runtime output



Name: john







Notice that, again, we could have implemented the Lower_And_Show
procedure without using an access type:


names.ads

1package Names is
2
3   type Name is access String;
4
5   procedure Lower_And_Show (N : in out String);
6
7end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Characters.Handling;
 4use  Ada.Characters.Handling;
 5
 6package body Names is
 7
 8   procedure Lower_And_Show (N : in out String) is
 9   begin
10      for I in N'Range loop
11         N (I) := To_Lower (N (I));
12      end loop;
13      Put_Line ("Name: " & N);
14   end Lower_And_Show;
15
16end Names;








show_changed_names.adb

1with Names; use Names;
2
3procedure Show_Changed_Names is
4   N : Name := new String'("John");
5begin
6   Lower_And_Show (N.all);
7end Show_Changed_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Changed_Names_String
MD5: 783ea8c45ed8ad3e0007524c11b6bcc4








Runtime output



Name: john









Replace the access value

Instead of changing the object in the Lower_And_Show procedure, we
could replace the access value by another one — for example, by
allocating a new string inside the procedure. In this case, we have to pass the
access value by reference using the in out parameter mode:


names.ads

1package Names is
2
3   type Name is access String;
4
5   procedure Lower_And_Show (N : in out Name);
6
7end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Ada.Characters.Handling;
 4use  Ada.Characters.Handling;
 5
 6package body Names is
 7
 8   procedure Lower_And_Show (N : in out Name) is
 9   begin
10      N := new String'(To_Lower (N.all));
11      Put_Line ("Name: " & N.all);
12   end Lower_And_Show;
13
14end Names;








show_changed_names.adb

1with Names; use Names;
2
3procedure Show_Changed_Names is
4   N : Name := new String'("John");
5begin
6   Lower_And_Show (N);
7end Show_Changed_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Replaced_Names
MD5: a4abfe6fdb1e5029e8eea17641cd960b








Runtime output



Name: john







Now, instead of changing the object referenced by N, we're actually
replacing it with a new object that we allocate inside the
Lower_And_Show procedure.

As expected, contrary to the previous examples, we cannot implement this
code by relying on parameter modes to replace the object. In fact, we have to
use access types for this kind of operations.

Note that this implementation creates a memory leak. In a proper
implementation, we should make sure to
deallocate the object, as explained
later on.



Side-effects on designated objects

In previous code examples from this section, we've seen that passing a
parameter by reference using the in or in out parameter modes
is an alternative to using access values as parameters. Let's focus on the
subprogram declarations of those code examples and their parameter modes:



	Subprogram

	Parameter type

	Parameter mode





	Show

	Name

	in



	Show

	String

	in



	Lower_And_Show

	Name

	in



	Lower_And_Show

	String

	in out






When we analyze the information from this table, we see that in the case of
using strings with different parameter modes, we have a clear indication
whether the subprogram might change the object or not. For example,
we know that a call to Show (N : String) won't change the string object
that we're passing as the actual parameter.

In the case of passing an access value, we cannot know whether the
designated object is going to be altered by a call to the subprogram. In fact,
in both Show and Lower_And_Show procedures, the parameter is the
same: N : Name — in other words, the parameter mode is in
in both cases. Here, there's no clear indication about the effects of a
subprogram call on the designated object.

The simplest way to ensure that the object isn't changed in the subprogram is
by using
access-to-constant types, which we
discuss later on. In this case, we're basically saying that the object we're
accessing in Show is constant, so we cannot possibly change it:


names.ads

1package Names is
2
3   type Name is access String;
4
5   type Constant_Name is access constant String;
6
7   procedure Show (N : Constant_Name);
8
9end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3--  with Ada.Characters.Handling;
 4--  use  Ada.Characters.Handling;
 5
 6package body Names is
 7
 8   procedure Show (N : Constant_Name) is
 9   begin
10      --  for I in N'Range loop
11      --     N (I) := To_Lower (N (I));
12      --  end loop;
13      Put_Line ("Name: " & N.all);
14   end Show;
15
16end Names;








show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   N : Name := new String'("John");
5begin
6   Show (Constant_Name (N));
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names_Constant
MD5: 77526e0a159bf1bcbef08a21be250f3c








Runtime output



Name: John







In this case, the Constant_Name type ensures that the N
parameter won't be changed in the Show procedure. Note that we need
to convert from Name to Constant_Name to be able to call the
Show procedure (in the Show_Names procedure). Although using
in String is still a simpler solution, this approach works fine.

(Feel free to uncomment the call to To_Lower in the Show
procedure and the corresponding with- and use-clauses to see that the
compilation fails when trying to change the constant object.)

We could also mitigate the problem by using contracts. For example:


names.ads

 1package Names is
 2
 3   type Name is access String;
 4
 5   procedure Show (N : Name)
 6     with Post => N.all'Old = N.all;
 7   --             ^^^^^^^^^^^^^^^^^
 8   --     we promise that we won't change
 9   --     the object
10
11end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3--  with Ada.Characters.Handling;
 4--  use  Ada.Characters.Handling;
 5
 6package body Names is
 7
 8   procedure Show (N : Name) is
 9   begin
10      --  for I in N'Range loop
11      --     N (I) := To_Lower (N (I));
12      --  end loop;
13      Put_Line ("Name: " & N.all);
14   end Show;
15
16end Names;








show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   N : Name := new String'("John");
5begin
6   Show (N);
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names_Postcondition
MD5: 2a70993232baca9d58d36e537a6fd32b








Runtime output



Name: John







Although a bit more verbose than a simple in String, the information in
the specification of Show at least gives us an indication that the
object won't be affected by the call to this subprogram. Note that this code
actually compiles if we try to modify N.all in the Show
procedure, but the post-condition fails at runtime when we do that.

(By uncommentating and building the code again, you'll see an exception being
raised at runtime when trying to change the object.)

In the postcondition above, we're using 'Old to refer to the original
object before the subprogram call. Unfortunately, we cannot use this attribute
when dealing with
limited private types — or limited
types in general. For example, let's change the declaration of Name and
have it as a limited private type instead:


names.ads

 1package Names is
 2
 3   type Name is limited private;
 4
 5   function Init (S : String) return Name;
 6
 7   function Equal (N1, N2 : Name)
 8                   return Boolean;
 9
10   procedure Show (N : Name)
11     with Post => Equal (N'Old = N);
12
13private
14
15   type Name is access String;
16
17   function Init (S : String) return Name is
18     (new String'(S));
19
20   function Equal (N1, N2 : Name)
21                   return Boolean is
22     (N1.all = N2.all);
23
24end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3--  with Ada.Characters.Handling;
 4--  use  Ada.Characters.Handling;
 5
 6package body Names is
 7
 8   procedure Show (N : Name) is
 9   begin
10      --  for I in N'Range loop
11      --     N (I) := To_Lower (N (I));
12      --  end loop;
13      Put_Line ("Name: " & N.all);
14   end Show;
15
16end Names;








show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   N : Name := Init ("John");
5begin
6   Show (N);
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names_Limited_Private
MD5: 39691394d7a934869dc569eb72d1bf3a








Build output



names.ads:11:26: error: attribute "Old" cannot apply to limited objects
gprbuild: *** compilation phase failed







In this case, we have no means to indicate that a call to Show won't
change the internal state of the actual parameter.


For further reading...

As an alternative, we could declare a new Constant_Name type that
is also limited private. If we use this type in Show procedure,
we're at least indicating (in the type name) that the type is supposed to
be constant — even though we're not directly providing means to
actually ensure that no modifications occur in a call to the procedure.
However, the fact that we declare this type as an access-to-constant (in
the private part of the specification) makes it clear that a call to
Show won't change the designated object.

Let's look at the adapted code:


names.ads

 1package Names is
 2
 3   type Name is limited private;
 4
 5   type Constant_Name is limited private;
 6
 7   function Init (S : String) return Name;
 8
 9   function To_Constant_Name
10     (N : Name)
11      return Constant_Name;
12
13   procedure Show (N : Constant_Name);
14
15private
16
17   type Name is
18     access String;
19
20   type Constant_Name is
21     access constant String;
22
23   function Init (S : String) return Name is
24     (new String'(S));
25
26   function To_Constant_Name
27     (N : Name)
28      return Constant_Name is
29        (Constant_Name (N));
30
31end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3--  with Ada.Characters.Handling;
 4--  use  Ada.Characters.Handling;
 5
 6package body Names is
 7
 8   procedure Show (N : Constant_Name) is
 9   begin
10      --  for I in N'Range loop
11      --     N (I) := To_Lower (N (I));
12      --  end loop;
13      Put_Line ("Name: " & N.all);
14   end Show;
15
16end Names;








show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   N : Name := Init ("John");
5begin
6   Show (To_Constant_Name (N));
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Parameters_As_Access_Values.Names_Constant_Limited_Private
MD5: 30da588b57e6b4dfbf9934f77d348473








Runtime output



Name: John







In this version of the source code, the Show procedure doesn't have
any side-effects, as we cannot modify N inside the procedure.



Having the information about the effects of a subprogram call to an object is
very important: we can use this information to set expectations — and
avoid unexpected changes to an object. Also, this information can be used to
prove that a program works as expected. Therefore, whenever possible, we should
avoid access values as parameters. Instead, we can rely on appropriate
parameter modes and pass an object by reference.

There are cases, however, where the design of our application doesn't permit
replacing the access type with simple parameter modes. Whenever we have an
abstract data type encapsulated as a limited private type — such as in
the last code example —, we might have no means to avoid access values
as parameters. In this case, using the access type is of course justifiable.
We'll see such a case in the
next section.




Self-reference

As we've discussed in the section about
incomplete types <Adv_Ada_Incomplete_Types>, we can use incomplete types
to create a recursive, self-referencing type. Let's revisit a code example from
that section:


linked_list_example.ads

 1package Linked_List_Example is
 2
 3   type Integer_List;
 4
 5   type Next is access Integer_List;
 6
 7   type Integer_List is record
 8      I : Integer;
 9      N : Next;
10   end record;
11
12end Linked_List_Example;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Self_Reference.Linked_List_Example
MD5: b2d3a048473d498bbe691bc6e38ca1e9







Here, we're using the incomplete type Integer_List in the declaration of
the Next type, which we then use in the complete declaration of the
Integer_List type.

Self-references are useful, for example, to create unbounded containers —
such as the linked lists mentioned in the example above. Let's extend this code
example and partially implement a generic package for linked lists:


linked_lists.ads

 1generic
 2   type T is private;
 3package Linked_Lists is
 4
 5   type List is limited private;
 6
 7   procedure Append_Front
 8      (L : in out List;
 9       E :        T);
10
11   procedure Append_Rear
12      (L : in out List;
13       E :        T);
14
15   procedure Show (L : List);
16
17private
18
19   --  Incomplete type declaration:
20   type Component;
21
22   --  Using incomplete type:
23   type List is access Component;
24
25   type Component is record
26      Value : T;
27      Next  : List;
28      --      ^^^^
29      --   Self-reference via access type
30   end record;
31
32end Linked_Lists;








linked_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Linked_Lists is
 4
 5   procedure Append_Front
 6      (L : in out List;
 7       E :        T)
 8   is
 9      New_First : constant List := new
10        Component'(Value => E,
11                   Next  => L);
12   begin
13      L := New_First;
14   end Append_Front;
15
16   procedure Append_Rear
17      (L : in out List;
18       E :        T)
19   is
20      New_Last : constant List := new
21        Component'(Value => E,
22                   Next  => null);
23   begin
24      if L = null then
25         L := New_Last;
26      else
27         declare
28            Last : List := L;
29         begin
30            while Last.Next /= null loop
31               Last := Last.Next;
32            end loop;
33            Last.Next := New_Last;
34         end;
35      end if;
36   end Append_Rear;
37
38   procedure Show (L : List) is
39      Curr : List := L;
40   begin
41      if L = null then
42         Put_Line ("[ ]");
43      else
44         Put ("[");
45         loop
46            Put (Curr.Value'Image);
47            Put (" ");
48            exit when Curr.Next = null;
49            Curr := Curr.Next;
50         end loop;
51         Put_Line ("]");
52      end if;
53   end Show;
54
55end Linked_Lists;








test_linked_list.adb

 1with Linked_Lists;
 2
 3procedure Test_Linked_List is
 4    package Integer_Lists is new
 5      Linked_Lists (T => Integer);
 6    use Integer_Lists;
 7
 8    L : List;
 9begin
10    Append_Front (L, 3);
11    Append_Rear (L, 4);
12    Append_Rear (L, 5);
13    Append_Front (L, 2);
14    Append_Front (L, 1);
15    Append_Rear (L, 6);
16    Append_Rear (L, 7);
17
18    Show (L);
19end Test_Linked_List;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Self_Reference.Linked_List_Example
MD5: 6ab1f79c8c3e641eba8057874efc48d7








Runtime output



[ 1  2  3  4  5  6  7 ]







In this example, we declare an incomplete type Component in the private
part of the generic Linked_Lists package. We use this incomplete type to
declare the access type List, which is then used as a self-reference in
the Next component of the Component type.

Note that we're using the List type
as a parameter for the
Append_Front, Append_Rear and Show procedures.


In the Ada Reference Manual


	3.10.1 Incomplete Type Declarations[#7]








Mutually dependent types using access types

In the section on
mutually dependent types, we've seen
a code example where each type depends on the other one. We could rewrite that
code example using access types:


mutually_dependent.ads

 1package Mutually_Dependent is
 2
 3   type T2;
 4   type T2_Access is access T2;
 5
 6   type T1 is record
 7      B : T2_Access;
 8   end record;
 9
10   type T1_Access is access T1;
11
12   type T2 is record
13      A : T1_Access;
14   end record;
15
16end Mutually_Dependent;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Mutually_Dependent_Access_Types.Example
MD5: b21ffc4cdfe3db939dfc841cf8434344







In this example, T1 and T2 are mutually dependent types via the
access types T1_Access and T2_Access —  we're using those
access types in the declaration of the B and A components.



Dereferencing

In the Introduction to Ada course[#8], we
discussed the .all syntax to dereference access values:


show_dereferencing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dereferencing is
 4
 5   --  Declaring access type:
 6   type Integer_Access is access Integer;
 7
 8   --  Declaring access object:
 9   A1 : Integer_Access;
10
11begin
12   A1 := new Integer;
13
14   --  Dereferencing access value:
15   A1.all := 22;
16
17   Put_Line ("A1: " & Integer'Image (A1.all));
18end Show_Dereferencing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Simple_Dereferencing
MD5: 65655768c17a02991ffeda9a853b6ffb








Runtime output



A1:  22







In this example, we declare A1 as an access object, which allows us to
access objects of Integer type. We dereference A1 by writing
A1.all.

Here's another example, this time with an array:


show_dereferencing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dereferencing is
 4
 5   type Integer_Array is
 6     array (Positive range <>) of Integer;
 7
 8   type Integer_Array_Access is
 9     access Integer_Array;
10
11   Arr : constant Integer_Array_Access :=
12                    new Integer_Array (1 .. 6);
13begin
14   Arr.all := (1, 2, 3, 5, 8, 13);
15
16   for I in Arr'Range loop
17      Put_Line ("Arr (: "
18                & Integer'Image (I) & "): "
19                & Integer'Image (Arr.all (I)));
20   end loop;
21end Show_Dereferencing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_Dereferencing
MD5: 0e533dfd8ec1a74af17c99633c292e95








Runtime output



Arr (:  1):  1
Arr (:  2):  2
Arr (:  3):  3
Arr (:  4):  5
Arr (:  5):  8
Arr (:  6):  13







In this example, we dereference the access value by writing Arr.all. We
then assign an array aggregate to it — this becomes
Arr.all := (..., ...);. Similarly, in the loop, we write
Arr.all (I) to access the I component of the array.
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Implicit Dereferencing

Implicit dereferencing allows us to omit the .all suffix without getting
a compilation error. In this case, the compiler knows that the dereferenced
object is implied, not the access value.

Ada supports implicit dereferencing in these use cases:


	when accessing components of a record or an array — including array
slices.


	when accessing subprograms that have at least one parameter (we
discuss this topic later in this chapter);


	when accessing some attributes — such as some array and task
attributes.





Arrays

Let's start by looking into an example of implicit dereferencing of arrays. We
can take the previous code example and replace Arr.all (I) by
Arr (I):


show_dereferencing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dereferencing is
 4
 5   type Integer_Array is
 6     array (Positive range <>) of Integer;
 7
 8   type Integer_Array_Access is
 9     access Integer_Array;
10
11   Arr : constant Integer_Array_Access :=
12                    new Integer_Array (1 .. 6);
13begin
14   Arr.all := (1, 2, 3, 5, 8, 13);
15
16   Arr (1 .. 6) := (1, 2, 3, 5, 8, 13);
17
18   for I in Arr'Range loop
19      Put_Line
20        ("Arr (: "
21         & Integer'Image (I) & "): "
22         & Integer'Image (Arr (I)));
23      --                     ^ .all is implicit.
24   end loop;
25end Show_Dereferencing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_Implicit_Dereferencing
MD5: ade602a9e6976018e0c00f930a2399f1








Runtime output



Arr (:  1):  1
Arr (:  2):  2
Arr (:  3):  3
Arr (:  4):  5
Arr (:  5):  8
Arr (:  6):  13







Both forms — Arr.all (I) and Arr (I) — are
equivalent. Note, however, that there's no implicit dereferencing when we want
to access the whole array. (Therefore, we cannot write
Arr := (1, 2, 3, 5, 8, 13);.) However, as slices are implicitly
dereferenced, we can write Arr (1 .. 6) := (1, 2, 3, 5, 8, 13); instead
of Arr.all (1 .. 6) := (1, 2, 3, 5, 8, 13);. Alternatively, we can
assign to the array components individually and use implicit dereferencing for
each component:

Arr (1) := 1;
Arr (2) := 2;
Arr (3) := 3;
Arr (4) := 5;
Arr (5) := 8;
Arr (6) := 13;





Implicit dereferencing isn't available for the whole array because we have to
distinguish between assigning to access objects and assigning to actual arrays.
For example:


show_array_assignments.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Array_Assignments is
 4
 5   type Integer_Array is
 6     array (Positive range <>) of Integer;
 7
 8   type Integer_Array_Access is
 9     access Integer_Array;
10
11   procedure Show_Array
12     (Name : String;
13      Arr  : Integer_Array_Access) is
14   begin
15      Put (Name);
16      for E of Arr.all loop
17         Put (Integer'Image (E));
18      end loop;
19      New_Line;
20   end Show_Array;
21
22   Arr_1 : constant Integer_Array_Access :=
23                      new Integer_Array (1 .. 6);
24   Arr_2 :          Integer_Array_Access :=
25                      new Integer_Array (1 .. 6);
26begin
27   Arr_1.all := (1,   2,  3,  5,   8,  13);
28   Arr_2.all := (21, 34, 55, 89, 144, 233);
29
30   --  Array assignment
31   Arr_2.all := Arr_1.all;
32
33   Show_Array ("Arr_2", Arr_2);
34
35   --  Access value assignment
36   Arr_2 := Arr_1;
37
38   Arr_1.all := (377, 610, 987, 1597, 2584, 4181);
39
40   Show_Array ("Arr_2", Arr_2);
41end Show_Array_Assignments;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_Assignments
MD5: 9b1f99af081000c28a6bf9b033127ea3








Runtime output



Arr_2 1 2 3 5 8 13
Arr_2 377 610 987 1597 2584 4181







Here, Arr_2.all := Arr_1.all is an array assignment, while
Arr_2 := Arr_1 is an access value assignment. By forcing the usage of
the .all suffix, the distinction is clear. Implicit dereferencing,
however, could be confusing here. (For example, the .all suffix in
Arr_2 := Arr_1.all is an oversight by the programmer when the intention
actually was to use access values on both sides.) Therefore, implicit
dereferencing is only supported in those cases where there's no risk of
ambiguities or oversights.



Records

Let's see an example of implicit dereferencing of a record:


show_dereferencing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dereferencing is
 4
 5   type Rec is record
 6      I : Integer;
 7      F : Float;
 8   end record;
 9
10   type Rec_Access is access Rec;
11
12   R : constant Rec_Access := new Rec;
13begin
14   R.all := (I => 1, F => 5.0);
15
16   Put_Line ("R.I: "
17             & Integer'Image (R.I));
18   Put_Line ("R.F: "
19             & Float'Image (R.F));
20end Show_Dereferencing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Record_Implicit_Dereferencing
MD5: 9af72502d04f128785f77dcc829d5d48








Runtime output



R.I:  1
R.F:  5.00000E+00







Again, we can replace R.all.I by R.I, as record components are
implicitly dereferenced. Also, we could use implicit dereference when assigning
to record components individually:

R.I := 1;
R.F := 5.0;





However, we have to write R.all when assigning to the whole record
R.



Attributes

Finally, let's see an example of implicit dereference when using attributes:


show_dereferencing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dereferencing is
 4
 5   type Integer_Array is
 6     array (Positive range <>) of Integer;
 7
 8   type Integer_Array_Access is
 9     access Integer_Array;
10
11   Arr : constant Integer_Array_Access :=
12                    new Integer_Array (1 .. 6);
13begin
14   Put_Line
15     ("Arr'First: "
16      & Integer'Image (Arr'First));
17   Put_Line
18     ("Arr'Last: "
19      & Integer'Image (Arr'Last));
20
21   Put_Line
22     ("Arr'Component_Size: "
23      & Integer'Image (Arr'Component_Size));
24   Put_Line
25     ("Arr.all'Component_Size: "
26      & Integer'Image (Arr.all'Component_Size));
27
28   Put_Line
29     ("Arr'Size: "
30      & Integer'Image (Arr'Size));
31   Put_Line
32     ("Arr.all'Size: "
33      & Integer'Image (Arr.all'Size));
34end Show_Dereferencing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Dereferencing.Array_Implicit_Dereferencing
MD5: 5730e18c8d2ed5e26a4d7d325a46a7e9








Runtime output



Arr'First:  1
Arr'Last:  6
Arr'Component_Size:  32
Arr.all'Component_Size:  32
Arr'Size:  128
Arr.all'Size:  192







Here, we can write Arr'First and Arr'Last instead of
Arr.all'First and Arr.all'Last, respectively, because Arr
is implicitly dereferenced. The same applies to Arr'Component_Size. Note
that we can write both Arr'Size and Arr.all'Size, but they have
different meanings:


	Arr'Size is the size of the access object; while


	Arr.all'Size indicates the size of the actual array Arr.




In other words, the Size attribute is not implicitly dereferenced.
In fact, any attribute that could potentially be ambiguous is not implicitly
dereferenced. Therefore, in those cases, we must explicitly indicate (by using
.all or not) how we want to use the attribute.



Summary

The following table summarizes all instances where implicit dereferencing is
supported:



	Entities

	Standard Usage

	Implicit Dereference





	Array components

	Arr.all (I)

	Arr (I)



	Array slices

	Arr.all (F .. L)

	Arr (F .. L)



	Record components

	Rec.all.C

	Rec.C



	Array attributes

	Arr.all’First

	Arr’First



	Arr.all’First (N)

	Arr’First (N)



	Arr.all’Last

	Arr’Last



	Arr.all’Last (N)

	Arr’Last (N)



	Arr.all’Range

	Arr’Range



	Arr.all’Range (N)

	Arr’Range (N)



	Arr.all’Length

	Arr’Length



	Arr.all’Length (N)

	Arr’Length (N)



	Arr.all’Component_Size

	Arr’Component_Size



	Task attributes

	T.all'Identity

	T'Identity



	T.all'Storage_Size

	T'Storage_Size



	T.all'Terminated

	T'Terminated



	T.all'Callable

	T'Callable



	Tagged type attributes

	X.all’Tag

	X’Tag



	Other attributes

	X.all'Valid

	X'Valid



	X.all'Old

	X'Old



	A.all’Constrained

	A’Constrained
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Ragged arrays

Ragged arrays — also known as jagged arrays — are non-uniform,
multidimensional arrays. They can be useful to implement tables with varying
number of coefficients, as we discuss as an example in this section.


Uniform multidimensional arrays

Consider an algorithm that processes data based on coefficients that depends on
a selected quality level:



	Quality level

	Number of
coefficients

	#1

	#2

	#3

	#4

	#5





	Simplified

	1

	0.15

	
	
	
	


	Better

	3

	0.02

	0.16

	0.27

	
	


	Best

	5

	0.01

	0.08

	0.12

	0.20

	0.34






(Note that this is just a bogus table with no real purpose, as we're not
trying to implement any actual algorithm.)

We can implement this table as a two-dimensional array (Calc_Table),
where each quality level has an associated array:


data_processing.ads

 1package Data_Processing is
 2
 3   type Quality_Level is
 4     (Simplified, Better, Best);
 5
 6private
 7
 8   Calc_Table : constant array
 9     (Quality_Level, 1 .. 5) of Float :=
10       (Simplified =>
11            (0.15, 0.00, 0.00, 0.00, 0.00),
12        Better     =>
13            (0.02, 0.16, 0.27, 0.00, 0.00),
14        Best       =>
15            (0.01, 0.08, 0.12, 0.20, 0.34));
16
17   Last : constant array
18     (Quality_Level) of Positive :=
19       (Simplified => 1,
20        Better     => 3,
21        Best       => 5);
22
23end Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.Uniform_Table
MD5: befa8d2b684ee20495f2dd6907dc44d4







Note that, in this implementation, we have a separate table Last that
indicates the actual number of coefficients of each quality level.

Alternatively, we could use a record (Table_Coefficient) that stores the
number of coefficients and the actual coefficients:


data_processing.ads

 1package Data_Processing is
 2
 3   type Quality_Level is
 4     (Simplified, Better, Best);
 5
 6   type Data is
 7     array (Positive range <>) of Float;
 8
 9private
10
11   type Table_Coefficient is record
12      Last : Positive;
13      Coef : Data (1 .. 5);
14   end record;
15
16   Calc_Table : constant array
17     (Quality_Level) of Table_Coefficient :=
18       (Simplified =>
19            (1, (0.15, 0.00, 0.00, 0.00, 0.00)),
20        Better     =>
21            (3, (0.02, 0.16, 0.27, 0.00, 0.00)),
22        Best       =>
23            (5, (0.01, 0.08, 0.12, 0.20, 0.34)));
24
25end Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.Uniform_Table
MD5: 4c8602f6ecede0ac1231838c0a0a54b7







In this case, we have a unidimensional array where each component (of
Table_Coefficient type) contains an array (Coef) with the
coefficients.

This is an example of a Process procedure that references the
Calc_Table:


data_processing-operations.ads

1package Data_Processing.Operations is
2
3  procedure Process (D : in out Data;
4                     Q :        Quality_Level);
5
6end Data_Processing.Operations;








data_processing-operations.adb

 1package body Data_Processing.Operations is
 2
 3   procedure Process (D : in out Data;
 4                      Q :        Quality_Level) is
 5   begin
 6      for I in D'Range loop
 7         for J in 1 .. Calc_Table (Q).Last loop
 8           --  ... * Calc_Table (Q).Coef (J)
 9           null;
10         end loop;
11         --  D (I) := ...
12         null;
13      end loop;
14   end Process;
15
16end Data_Processing.Operations;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.Uniform_Table
MD5: 2b0d2cee265509e64e507cfa6289bdcc







Note that, to loop over the coefficients, we're using
for J in 1 .. Calc_Table (Q).Last loop instead of
for J in Calc_Table (Q)'Range loop. As we're trying to make a
non-uniform array fit in a uniform array, we cannot simply loop over all
elements using the Range attribute, but must be careful to use the
correct number of elements in the loop instead.

Also, note that Calc_Table has 15 coefficients in total. Out of those
coefficients, 6 coefficients (or 40 percent of the table) aren't being used.
Naturally, this is wasted memory space. We can improve this by using ragged
arrays.



Non-uniform multidimensional array

Ragged arrays are declared by using an access type to an array. By doing that,
each array can be declared with a different size, thereby creating a
non-uniform multidimensional array.

For example, we can declare a constant array Table as a ragged array:


data_processing.ads

 1package Data_Processing is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6private
 7
 8   type Integer_Array_Access is
 9     access constant Integer_Array;
10
11   Table : constant array (1 .. 3) of
12             Integer_Array_Access :=
13     (1 => new Integer_Array'(1 => 15),
14      2 => new Integer_Array'(1 => 12,
15                              2 => 15,
16                              3 => 20),
17      3 => new Integer_Array'(1 => 12,
18                              2 => 15,
19                              3 => 20,
20                              4 => 20,
21                              5 => 25,
22                              6 => 30));
23
24end Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.Simple_Ragged_Array
MD5: 28e044a43bf45585a0268c60d63c629e







Here, each component of Table is an access to another array. As each
array is allocated via new, those arrays may have different sizes.

We can rewrite the example from the previous subsection using a ragged array
for the Calc_Table:


data_processing.ads

 1package Data_Processing is
 2
 3   type Quality_Level is
 4     (Simplified, Better, Best);
 5
 6   type Data is
 7     array (Positive range <>) of Float;
 8
 9private
10
11   type Coefficients is access constant Data;
12
13   Calc_Table : constant array (Quality_Level) of
14                  Coefficients :=
15     (Simplified =>
16          new Data'(1 => 0.15),
17      Better     =>
18          new Data'(0.02, 0.16, 0.27),
19      Best       =>
20          new Data'(0.01, 0.08, 0.12,
21                    0.20, 0.34));
22
23end Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Ragged_Arrays.Ragged_Table
MD5: 0781b27cba27dbd1e74da54e425a1f4b







Now, we aren't wasting memory space because each data component has the right
size that is required for each quality level. Also, we don't need to store the
number of coefficients, as this information is automatically available from the
array initialization — via the allocation of the Data array for
the Coefficients type.

Note that the Coefficients type is defined as access constant.
We discuss access-to-constant types
in more details later on.

This is the adapted Process procedure:


data_processing-operations.ads

1package Data_Processing.Operations is
2
3  procedure Process (D : in out Data;
4                     Q :        Quality_Level);
5
6end Data_Processing.Operations;








data_processing-operations.adb

 1package body Data_Processing.Operations is
 2
 3   procedure Process (D : in out Data;
 4                      Q :        Quality_Level) is
 5   begin
 6      for I in D'Range loop
 7         for J in Calc_Table (Q)'Range loop
 8           --  ... * Calc_Table (Q).Coef (J)
 9           null;
10         end loop;
11         --  D (I) := ...
12         null;
13      end loop;
14   end Process;
15
16end Data_Processing.Operations;







Now, we can simply loop over the coefficients by writing
for J in Calc_Table (Q)'Range loop, as each element of Calc_Table
automatically has the correct range.




Aliasing

The term aliasing[#15]
refers to objects in memory that we can access using more than a single
reference. In Ada, if we allocate an object via new, we have a
potentially aliased object. We can then have multiple references to this
object:


show_aliasing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Aliasing is
 4   type Integer_Access is access Integer;
 5
 6   A1, A2 : Integer_Access;
 7begin
 8   A1 := new Integer;
 9   A2 := A1;
10
11   A1.all := 22;
12   Put_Line ("A1: " & Integer'Image (A1.all));
13   Put_Line ("A2: " & Integer'Image (A2.all));
14
15   A2.all := 24;
16   Put_Line ("A1: " & Integer'Image (A1.all));
17   Put_Line ("A2: " & Integer'Image (A2.all));
18end Show_Aliasing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliasing_Via_Access
MD5: 2fde6073cec9823a1a9d93aec82384e1








Runtime output



A1:  22
A2:  22
A1:  24
A2:  24







In this example, we access the object allocated via new by using either
A1 or A2, as both refer to the same aliased object. In other
words, A1 or A2 allow us to access the same object in memory.


Important

Note that aliasing is unrelated to renaming. For example, we could use
renaming to write a program that looks similar to the one above:


show_renaming.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Renaming is
 4   A1 : Integer;
 5   A2 : Integer renames A1;
 6begin
 7   A1 := 22;
 8   Put_Line ("A1: " & Integer'Image (A1));
 9   Put_Line ("A2: " & Integer'Image (A2));
10
11   A2 := 24;
12   Put_Line ("A1: " & Integer'Image (A1));
13   Put_Line ("A2: " & Integer'Image (A2));
14end Show_Renaming;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Renaming
MD5: 99a47d02000b91f7464dffe994fd8ee6








Runtime output



A1:  22
A2:  22
A1:  24
A2:  24







Here, A1 or A2 are two different names for the same object.
However, the object itself isn't aliased.
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Aliased objects

As we discussed previously, we use
new to create aliased objects on the heap. We can also use general
access types to access objects that were created on the stack.

By default, objects created on the stack aren't aliased. Therefore, we have to
indicate that an object is aliased by using the aliased keyword in the
object's declaration: Obj : aliased Integer;.

Let's see an example:


show_aliased_obj.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Aliased_Obj is
 4   type Integer_Access is access all Integer;
 5
 6   I_Var : aliased Integer;
 7   A1    : Integer_Access;
 8begin
 9   A1 := I_Var'Access;
10
11   A1.all := 22;
12   Put_Line ("A1: " & Integer'Image (A1.all));
13end Show_Aliased_Obj;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Access_Aliased_Obj
MD5: 98c8e47d7c2b5df8075918b239a8d476








Runtime output



A1:  22







Here, we declare I_Var as an aliased integer variable and get a
reference to it, which we assign to A1. Naturally, we could also have
two accesses A1 and A2:


show_aliased_obj.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Aliased_Obj is
 4   type Integer_Access is access all Integer;
 5
 6   I_Var  : aliased Integer;
 7   A1, A2 : Integer_Access;
 8begin
 9   A1 := I_Var'Access;
10   A2 := A1;
11
12   A1.all := 22;
13   Put_Line ("A1: " & Integer'Image (A1.all));
14   Put_Line ("A2: " & Integer'Image (A2.all));
15
16   A2.all := 24;
17   Put_Line ("A1: " & Integer'Image (A1.all));
18   Put_Line ("A2: " & Integer'Image (A2.all));
19
20end Show_Aliased_Obj;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Access_Aliased_Obj
MD5: ac331285456462f05abe7e1fd5e3ca2b








Runtime output



A1:  22
A2:  22
A1:  24
A2:  24







In this example, both A1 and A2 refer to the I_Var
variable.

Note that these examples make use of these two features:


	The declaration of a general access type (Integer_Access)
using access all.


	The retrieval of a reference to I_Var using the Access
attribute.




In the next sections, we discuss these features in more details.
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General access modifiers

Let's now discuss how to declare general access types. In addition to the
standard (pool-specific) access type declarations, Ada provides two access
modifiers:



	Type

	Declaration





	Access-to-variable

	type T_Acc is access all T



	Access-to-constant

	type T_Acc is access constant T






Let's look at an example:


integer_access_types.ads

 1package Integer_Access_Types is
 2
 3   type Integer_Access is
 4     access Integer;
 5
 6   type Integer_Access_All is
 7     access all Integer;
 8
 9   type Integer_Access_Const is
10     access constant Integer;
11
12end Integer_Access_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Show_Access_Modifiers
MD5: 98ccaa703194ae88222ccc5a4400e967







As we've seen previously, we can use a type such as Integer_Access to
allocate objects dynamically. However, we cannot use this type to refer to
declared objects, for example. In this case, we have to use an
access-to-variable type such as Integer_Access_All. Also, if we want to
access constants — or access objects that we want to treat as constants
—, we use a type such as Integer_Access_Const.



Access attribute

To get access to a variable or a constant, we make use of the Access
attribute. For example, I_Var'Access gives us access to the I_Var
object.

Let's look at an example of how to use the integer access types from the
previous code snippet:


integer_access_types.ads

 1package Integer_Access_Types is
 2
 3   type Integer_Access is
 4     access Integer;
 5
 6   type Integer_Access_All is
 7     access all Integer;
 8
 9   type Integer_Access_Const is
10     access constant Integer;
11
12   procedure Show;
13
14end Integer_Access_Types;








integer_access_types.adb

 1with Ada.Text_IO;          use Ada.Text_IO;
 2
 3package body Integer_Access_Types is
 4
 5   I_Var : aliased          Integer :=  0;
 6   Fact  : aliased constant Integer := 42;
 7
 8   Dyn_Ptr     : constant Integer_Access
 9                   := new Integer'(30);
10   I_Var_Ptr   : constant Integer_Access_All
11                   := I_Var'Access;
12   I_Var_C_Ptr : constant Integer_Access_Const
13                   := I_Var'Access;
14   Fact_Ptr    : constant Integer_Access_Const
15                   := Fact'Access;
16
17   procedure Show is
18   begin
19      Put_Line ("Dyn_Ptr:     "
20                & Integer'Image (Dyn_Ptr.all));
21      Put_Line ("I_Var_Ptr:   "
22                & Integer'Image (I_Var_Ptr.all));
23      Put_Line ("I_Var_C_Ptr: "
24                & Integer'Image
25                    (I_Var_C_Ptr.all));
26      Put_Line ("Fact_Ptr:    "
27                & Integer'Image (Fact_Ptr.all));
28   end Show;
29
30end Integer_Access_Types;








show_access_modifiers.adb

1with Integer_Access_Types;
2
3procedure Show_Access_Modifiers is
4begin
5   Integer_Access_Types.Show;
6end Show_Access_Modifiers;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Show_Access_Modifiers
MD5: c9036f060859207ea14354b26dc8b981








Runtime output



Dyn_Ptr:      30
I_Var_Ptr:    0
I_Var_C_Ptr:  0
Fact_Ptr:     42







In this example, Dyn_Ptr refers to a dynamically allocated object,
I_Var_Ptr refers to the I_Var variable, and Fact_Ptr
refers to the Fact constant. We get access to the variable and the
constant objects by using the Access attribute.

Also, we declare I_Var_C_Ptr as an access-to-constant, but we get
access to the I_Var variable. This simply means the object
I_Var_C_Ptr refers to is treated as a constant. Therefore, we can
write I_Var := 22;, but we cannot write I_Var_C_Ptr.all := 22;.


In the Ada Reference Manual
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Non-aliased objects

As mentioned earlier, by default, declared objects — which are allocated
on the stack — aren't aliased. Therefore, we cannot get a reference to
those objects. For example:


show_access_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Access_Error is
 4   type Integer_Access is access all Integer;
 5   I_Var : Integer;
 6   A1    : Integer_Access;
 7begin
 8   A1 := I_Var'Access;
 9
10   A1.all := 22;
11   Put_Line ("A1: " & Integer'Image (A1.all));
12end Show_Access_Error;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Access_Non_Aliased_Obj
MD5: 2a9904062eea96ae6dc209493d6f20d4








Build output



show_access_error.adb:8:10: error: prefix of "Access" attribute must be aliased
gprbuild: *** compilation phase failed







In this example, the compiler complains that we cannot get a reference to
I_Var because I_Var is not aliased.



Ragged arrays using aliased objects

We can use aliased objects to declare
ragged arrays. For example, we can rewrite a
previous program using aliased constant objects:


data_processing.ads

 1package Data_Processing is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6private
 7
 8   type Integer_Array_Access is
 9     access constant Integer_Array;
10
11   Tab_1 : aliased constant Integer_Array
12             := (1 => 15);
13   Tab_2 : aliased constant Integer_Array
14             := (12, 15, 20);
15   Tab_3 : aliased constant Integer_Array
16             := (12, 15, 20,
17                 20, 25, 30);
18
19   Table : constant array (1 .. 3) of
20             Integer_Array_Access :=
21     (1 => Tab_1'Access,
22      2 => Tab_2'Access,
23      3 => Tab_3'Access);
24
25end Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Ragged_Array_Aliased_Objs
MD5: 7e284560c447c02628e34bac982d4ad5







Here, instead of allocating the constant arrays dynamically via new, we
declare three aliased arrays (Tab_1, Tab_2 and Tab_3) and
get a reference to them in the declaration of Table.



Aliased access objects

It's interesting to mention that access objects can be aliased themselves.
Consider this example where we declare the Integer_Access_Access type
to refer to an access object:


show_aliased_access_obj.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Aliased_Access_Obj is
 4
 5   type Integer_Access        is
 6     access all Integer;
 7   type Integer_Access_Access is
 8     access all Integer_Access;
 9
10   I_Var : aliased Integer;
11   A     : aliased Integer_Access;
12   B     : Integer_Access_Access;
13begin
14   A := I_Var'Access;
15   B := A'Access;
16
17   B.all.all := 22;
18   Put_Line ("A: " & Integer'Image (A.all));
19   Put_Line ("B: " & Integer'Image (B.all.all));
20end Show_Aliased_Access_Obj;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliased_Access
MD5: 77e9be5e29cfb99aef9409728202ba9d








Runtime output



A:  22
B:  22







After the assignments in this example, B refers to A, which in
turn refers to I_Var. Note that this code only compiles because we
declare A as an aliased (access) object.




Aliased components

Components of an array or a record can be aliased. This allows us to get access
to those components:


show_aliased_components.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Aliased_Components is
 4
 5   type Integer_Access is access all Integer;
 6
 7   type Rec is record
 8      I_Var_1 :         Integer;
 9      I_Var_2 : aliased Integer;
10   end record;
11
12   type Integer_Array is
13     array (Positive range <>) of aliased Integer;
14
15   R   : Rec := (22, 24);
16   Arr : Integer_Array (1 .. 3) := (others => 42);
17   A   : Integer_Access;
18begin
19   --  A := R.I_Var_1'Access;
20   --                 ^ ERROR: cannot access
21   --                          non-aliased
22   --                          component
23
24   A := R.I_Var_2'Access;
25   Put_Line ("A: " & Integer'Image (A.all));
26
27   A := Arr (2)'Access;
28   Put_Line ("A: " & Integer'Image (A.all));
29end Show_Aliased_Components;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliased_Components
MD5: 5dfaa248caf8e37a4a3a1e1a24973777








Runtime output



A:  24
A:  42







In this example, we get access to the I_Var_2 component of record
R. (Note that trying to access the I_Var_1 component would gives us
a compilation error, as this component is not aliased.) Similarly, we get
access to the second component of array Arr.

Declaring components with the aliased keyword allows us to specify that
those are accessible via other paths besides the component name. Therefore, the
compiler won't store them in registers. This can be essential when doing
low-level programming — for example, when accessing memory-mapped
registers. In this case, we want to ensure that the compiler uses the memory
address we're specifying (instead of assigning registers for those components).
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Aliased parameters

In addition to aliased objects and components, we can declare
aliased parameters, as we already discussed
in an earlier chapter. As we mentioned there, aliased parameters are always
passed by reference, independently of the type we're using.

The parameter mode indicates which type we must use for the access type:



	Parameter mode

	Type





	aliased in

	Access-to-constant



	aliased out

	Access-to-variable



	aliased in out

	Access-to-variable






Using aliased parameters in a subprogram allows us to get access to those
parameters in the body of that subprogram. Let's see an example:


data_processing.ads

1package Data_Processing is
2
3   procedure Proc (I : aliased in out Integer);
4
5end Data_Processing;








data_processing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Data_Processing is
 4
 5   procedure Show (I : aliased Integer) is
 6      --               ^ equivalent to
 7      --                 "aliased in Integer"
 8
 9      type Integer_Constant_Access is
10        access constant Integer;
11
12      A : constant Integer_Constant_Access
13            := I'Access;
14   begin
15      Put_Line ("Value : I "
16                & Integer'Image (A.all));
17   end Show;
18
19   procedure Set_One (I : aliased out Integer) is
20
21      type Integer_Access is access all Integer;
22
23      procedure Local_Set_One (A : Integer_Access)
24      is
25      begin
26         A.all := 1;
27      end Local_Set_One;
28
29   begin
30      Local_Set_One (I'Access);
31   end Set_One;
32
33   procedure Proc (I : aliased in out Integer) is
34
35      type Integer_Access is access all Integer;
36
37      procedure Add_One (A : Integer_Access) is
38      begin
39         A.all := A.all + 1;
40      end Add_One;
41
42   begin
43      Show (I);
44      Add_One (I'Access);
45      Show (I);
46   end Proc;
47
48end Data_Processing;








show_aliased_param.adb

1with Data_Processing; use Data_Processing;
2
3procedure Show_Aliased_Param is
4   I : aliased Integer := 22;
5begin
6   Proc (I);
7end Show_Aliased_Param;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Aliasing.Aliased_Rec_Component
MD5: 076238603036aa51cafcc013f38bc8f3








Runtime output



Value : I  22
Value : I  23







Here, Proc has an aliased in out parameter. In Proc's
body, we declare the Integer_Access type as an access all type.
We use the same approach in body of the Set_One procedure, which has an
aliased out parameter. Finally, the Show procedure has
an aliased in parameter. Therefore, we declare the
Integer_Constant_Access as an access constant type.

Note that parameter aliasing has an influence on how arguments are passed to a
subprogram when the parameter is of scalar type. When a scalar parameter is
declared as aliased, the corresponding argument is passed by reference.
For example, if we had declared procedure Show (I : Integer), the
argument for I would be passed by value. However, since we're declaring
it as aliased Integer, it is passed by reference.
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Accessibility Levels and Rules: An Introduction

This section provides an introduction to accessibility levels and accessibility
rules. This topic can be very complicated, and by no means do we intend to
cover all the details here. (In fact, discussing all the details about
accessibility levels and rules could be a long chapter on its own. If you're
interested in them, please refer to the Ada Reference Manual.) In any case, the
goal of this section is to present the intention behind the accessibility rules
and build intuition on how to best use access types in your code.
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Lifetime of objects

First, let's talk a bit about
lifetime of objects[#25].
We assume you understand the concept, so this section is very short.

In very simple terms, the lifetime of an object indicates when an object still
has relevant information. For example, if a variable V gets out of
scope, we say that its lifetime has ended. From this moment on, V
no longer exists.

For example:


show_lifetime.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Lifetime is
 4   I_Var_1 : Integer := 22;
 5begin
 6
 7   Inner_Block : declare
 8      I_Var_2 : Integer := 42;
 9   begin
10      Put_Line ("I_Var_1: "
11                & Integer'Image (I_Var_1));
12      Put_Line ("I_Var_2: "
13                & Integer'Image (I_Var_2));
14
15      --  I_Var_2 will get out of scope
16      --  when the block finishes.
17   end Inner_Block;
18
19   --  I_Var_2 is now out of scope...
20
21   Put_Line ("I_Var_1: "
22             & Integer'Image (I_Var_1));
23   Put_Line ("I_Var_2: "
24             & Integer'Image (I_Var_2));
25   --                         ^^^^^^^
26   --  ERROR: lifetime of I_Var_2 has ended!
27end Show_Lifetime;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Lifetime
MD5: ebe36f12c832ecfe71399b89801808d4








Build output



show_lifetime.adb:24:31: error: "I_Var_2" is undefined
gprbuild: *** compilation phase failed







In this example, we declare I_Var_1 in the Show_Lifetime
procedure, and I_Var_2 in its Inner_Block.

This example doesn't compile because we're trying to use I_Var_2 after
its lifetime has ended. However, if such a code could compile and run, the last
call to Put_Line would potentially display garbage to the user.
(In fact, the actual behavior would be undefined.)



Accessibility Levels

In basic terms, accessibility levels are a mechanism to assess the lifetime
of objects (as we've just discussed). The starting point is the library level:
this is the base level, and no level can be deeper than that. We start "moving"
to deeper levels when we use a library in a subprogram or call other
subprograms for example.

Suppose we have a procedure Proc that makes use of a package Pkg,
and there's a block in the Proc procedure:

package Pkg is

   --  Library level

end Pkg;

with Pkg; use Pkg;

procedure Proc is

   --  One level deeper than
   --  library level

begin

   declare
      --  Two levels deeper than
      --  library level
  begin
      null;
   end;

end Proc;





For this code, we can say that:


	the specification of Pkg is at library level;


	the declarative part of Proc is one level deeper than the library
level; and


	the block is two levels deeper than the library level.




(Note that this is still a very simplified overview of accessibility levels.
Things start getting more complicated when we use information from Pkg
in Proc. Those details will become more clear in the next sections.)

The levels themselves are not visible to the programmer. For example, there's
no Access_Level attribute that returns an integer value indicating the
level. Also, you cannot write a user message that displays the level at a
certain point. In this sense, accessibility levels are assessed relatively to
each other: we can only say that a specific operation is at the same or at a
deeper level than another one.



Accessibility Rules

The accessibility rules determine whether a specific use of access types or
objects is legal (or not). Actually, accessibility rules exist to prevent
dangling references, which we discuss
later. Also, they are based on the
accessibility levels we discussed
earlier.


Code example

As mentioned earlier, the accessibility level at a specific point isn't visible
to the programmer. However, to illustrate which level we have at each point in
the following code example, we use a prefix (L0, L1, and
L2)  to indicate whether we're at the library level (L0) or at a
deeper level.

Let's now look at the complete code example:


library_level.ads

 1package Library_Level is
 2
 3   type L0_Integer_Access is
 4     access all Integer;
 5
 6   L0_IA  : L0_Integer_Access;
 7
 8   L0_Var : aliased Integer;
 9
10end Library_Level;








show_library_level.adb

 1with Library_Level; use Library_Level;
 2
 3procedure Show_Library_Level is
 4   type L1_Integer_Access is
 5     access all Integer;
 6
 7   L0_IA_2 : L0_Integer_Access;
 8   L1_IA   : L1_Integer_Access;
 9
10   L1_Var : aliased Integer;
11
12   procedure Test is
13      type L2_Integer_Access is
14        access all Integer;
15
16      L2_IA  : L2_Integer_Access;
17
18      L2_Var : aliased Integer;
19   begin
20      L1_IA := L2_Var'Access;
21      --       ^^^^^^
22      --       ILLEGAL: L2 object to
23      --                L1 access object
24
25      L2_IA := L2_Var'Access;
26      --       ^^^^^^
27      --       LEGAL: L2 object to
28      --              L2 access object
29   end Test;
30
31begin
32   L0_IA := new Integer'(22);
33   --       ^^^^^^^^^^^
34   --       LEGAL: L0 object to
35   --              L0 access object
36
37   L0_IA_2 := new Integer'(22);
38   --         ^^^^^^^^^^^
39   --         LEGAL: L0 object to
40   --                L0 access object
41
42   L0_IA := L1_Var'Access;
43   --       ^^^^^^
44   --       ILLEGAL: L1 object to
45   --                L0 access object
46
47   L0_IA_2 := L1_Var'Access;
48   --         ^^^^^^
49   --         ILLEGAL: L1 object to
50   --                  L0 access object
51
52   L1_IA := L0_Var'Access;
53   --       ^^^^^^
54   --       LEGAL: L0 object to
55   --              L1 access object
56
57   L1_IA := L1_Var'Access;
58   --       ^^^^^^
59   --       LEGAL: L1 object to
60   --              L1 access object
61
62   L0_IA := L1_IA;
63   --       ^^^^^
64   --       ILLEGAL: type mismatch
65
66   L0_IA := L0_Integer_Access (L1_IA);
67   --       ^^^^^^^^^^^^^^^^^
68   --       ILLEGAL: cannot convert
69   --                L1 access object to
70   --                L0 access object
71
72   Test;
73end Show_Library_Level;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Library_Level
MD5: b3bed7eb2a8dfc78a2e7a7d2ce99f736








Build output



show_library_level.adb:20:16: error: non-local pointer cannot point to local object
show_library_level.adb:42:13: error: non-local pointer cannot point to local object
show_library_level.adb:47:15: error: non-local pointer cannot point to local object
show_library_level.adb:62:13: error: expected type "L0_Integer_Access" defined at library_level.ads:3
show_library_level.adb:62:13: error: found type "L1_Integer_Access" defined at line 4
show_library_level.adb:66:32: error: cannot convert local pointer to non-local access type
gprbuild: *** compilation phase failed







In this example, we declare


	in the Library_Level package: the L0_Integer_Access type, the
L0_IA access object, and the L0_Var aliased variable;


	in the Show_Library_Level procedure: the L1_Integer_Access
type, the L0_IA_2 and L1_IA access objects, and the
L1_Var aliased variable;


	in the nested Test procedure: the L2_Integer_Access type, the
L2_IA, and the L2_Var aliased variable.




As mentioned earlier, the Ln prefix indicates the level of each type or
object. Here, the n value is zero at library level. We then increment
the n value each time we refer to a deeper level.

For instance:


	when we declare the L1_Integer_Access type in the
Show_Library_Level procedure, that declaration is one level deeper
than the level of the Library_Level package — so it has the
L1 prefix.


	when we declare the L2_Integer_Access type in the Test
procedure, that declaration is one level deeper than the level of the
Show_Library_Level procedure — so it has the L2 prefix.






Types and Accessibility Levels

It's very important to highlight the fact that:


	types themselves also have an associated level, and


	objects have the same accessibility level as their types.




When we declare the L0_IA_2 object in the code example, its
accessibility level is at library level because its type
(the L0_Integer_Access type) is at library level. Even though this
declaration is in the Show_Library_Level procedure — whose
declarative part is one level deeper than the library level —, the object
itself has the same accessibility level as its type.

Now that we've discussed the accessibility levels of this code example, let's
see how the accessibility rules use those levels.



Operations on Access Types

In very simple terms, the accessibility rules say that:


	operations on access types at the same accessibility level are legal;


	assigning or converting to a deeper level is legal;




Otherwise, operations targeting objects at a less-deep level are illegal.

For example, L0_IA := new Integer'(22) and L1_IA := L1_Var'Access
are legal because we're operating at the same accessibility level. Also,
L1_IA := L0_Var'Access is legal because L1_IA is at a deeper
level than L0_Var'Access.

However, many operations in the code example are illegal. For instance,
L0_IA := L1_Var'Access and L0_IA_2 := L1_Var'Access are illegal
because the target objects in the assignment are less deep.

Note that the L0_IA := L1_IA assignment is mainly illegal because the
access types don't match. (Of course, in addition to that, assigning
L1_Var'Access to L0_IA is also illegal in terms of accessibility
rules.)



Conversion between Access Types

The same rules apply to the conversion between access types. In the
code example, the L0_Integer_Access (L1_IA) conversion is illegal
because the resulting object is less deep. That being said, conversions on the
same level are fine:


show_same_level_conversion.adb

 1procedure Show_Same_Level_Conversion is
 2   type L1_Integer_Access is
 3     access all Integer;
 4
 5   type L1_B_Integer_Access is
 6     access all Integer;
 7
 8   L1_IA   : L1_Integer_Access;
 9   L1_B_IA : L1_B_Integer_Access;
10
11   L1_Var  : aliased Integer;
12begin
13   L1_IA := L1_Var'Access;
14
15   L1_B_IA := L1_B_Integer_Access (L1_IA);
16   --         ^^^^^^^^^^^^^^^^^^^
17   --         LEGAL: conversion from
18   --                L1 access object to
19   --                L1 access object
20end Show_Same_Level_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Same_Level_Conversion
MD5: 7276a06e9f5b634d4f5a10a892071d87







Here, we're converting from the L1_Integer_Access type to the
L1_B_Integer_Access, which are both at the same level.




Accessibility rules on parameters

Note that the accessibility rules also apply to access values as subprogram
parameters. For example, compilation fails for this example:


names.ads

 1package Names is
 2
 3   type Name is access all String;
 4
 5   type Constant_Name is
 6     access constant String;
 7
 8   procedure Show (N : Constant_Name);
 9
10end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3--  with Ada.Characters.Handling;
 4--  use  Ada.Characters.Handling;
 5
 6package body Names is
 7
 8   procedure Show (N : Constant_Name) is
 9   begin
10      --  for I in N'Range loop
11      --     N (I) := To_Lower (N (I));
12      --  end loop;
13      Put_Line ("Name: " & N.all);
14   end Show;
15
16end Names;








show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   S : aliased String := "John";
5begin
6   Show (S'Access);
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Checks_Parameters
MD5: 6b8bf2799caa32f55d216ac0b58fcd39








Build output



show_names.adb:6:10: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed







In this case, the S'Access cannot be used as the actual parameter for
the N parameter of the Show procedure because it's in a deeper
level. If we allocate the string via new, however, the code compiles
as expected:


show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   S : Name := new String'("John");
5begin
6   Show (Constant_Name (S));
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Checks_Parameters
MD5: 30237c83426db758804b802e1953d5d9








Runtime output



Name: John







This version of the code works because both object and access object have the same level.



Dangling References

An access value that points to a non-existent object is called a dangling
reference. Later on, we'll discuss how dangling references may occur using
unchecked deallocation.

Dangling references are created when we have an access value pointing to an
object whose lifetime has ended, so it becomes a  non-existent object. This
could occur, for example, when an access value still points to an object
X that has gone out of scope.

As mentioned in the previous section, the accessibility rules of the Ada
language ensure that such situations never happen! In fact, whenever possible,
the compiler applies those rules to detect potential dangling references at
compile time. When this detection isn't possible at compile time, the compiler
introduces an accessibility check. If this
check fails at runtime, it raises a Program_Error exception —
thereby preventing that a dangling reference gets used.

Let's see an example of how dangling references could occur:


show_dangling_reference.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Dangling_Reference is
 4
 5   type Integer_Access is
 6     access all Integer;
 7
 8   I_Var_1 : aliased Integer := 22;
 9
10   A1    : Integer_Access;
11begin
12   A1 := I_Var_1'Access;
13   Put_Line ("A1.all: "
14             & Integer'Image (A1.all));
15
16   Put_Line ("Inner_Block will start now!");
17
18   Inner_Block : declare
19      --
20      --  I_Var_2 only exists in Inner_Block
21      --
22      I_Var_2 : aliased Integer := 42;
23
24      --
25      --  A2 only exists in Inner_Block
26      --
27      A2      : Integer_Access;
28   begin
29      A2 := I_Var_1'Access;
30      Put_Line ("A2.all: "
31                & Integer'Image (A2.all));
32
33      A1 := I_Var_2'Access;
34      --   PROBLEM: A1 and Integer_Access type
35      --            have longer lifetime than
36      --            I_Var_2
37
38      Put_Line ("A1.all: "
39                & Integer'Image (A1.all));
40
41      A2 := I_Var_2'Access;
42      --   PROBLEM: A2 has the same lifetime as
43      --            I_Var_2, but Integer_Access
44      --            type has a longer lifetime.
45
46      Put_Line ("A2.all: "
47                & Integer'Image (A2.all));
48   end Inner_Block;
49
50   Put_Line ("Inner_Block has ended!");
51   Put_Line ("A1.all: "
52             & Integer'Image (A1.all));
53
54end Show_Dangling_Reference;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Dangling_Reference_Rules
MD5: 98e597f3f6a12075c474612bb42f4cb7








Build output



show_dangling_reference.adb:33:13: error: non-local pointer cannot point to local object
show_dangling_reference.adb:41:13: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed







Here, we declare the access objects A1 and A2 of
Integer_Access type, and the I_Var_1 and I_Var_2 objects.
Moreover, A1 and I_Var_1 are declared in the scope of the
Show_Dangling_Reference procedure, while A2 and I_Var_2
are declared in the Inner_Block.

When we try to compile this code, we get two compilation errors due to
violation of accessibility rules. Let's now discuss these accessibility rules
in terms of lifetime, and see which problems they are preventing in each case.


	In the A1 := I_Var_2'Access assignment, the main problem is that
A1 has a longer lifetime than I_Var_2. After the
Inner_Block finishes — when I_Var_2 gets out of scope
and its lifetime has ended —, A1 would still be pointing to an
object that does not longer exist.


	In the A2 := I_Var_2'Access assignment, however, both A2 and
I_Var_2 have the same lifetime. In that sense, the assignment may
actually look pretty much OK.


	However, as mentioned in the previous section, Ada also cares about the
lifetime of access types. In fact, since the Integer_Access type is
declared outside of the Inner_Block, it has a longer lifetime than
A2 and I_Var_2.


	To be more precise, the accessibility rules detect that A2 is an
access object of a type that has a longer lifetime than I_Var_2.








At first glance, this last accessibility rule may seem too strict, as both
A2 and I_Var_2 have the same lifetime — so nothing bad
could occur when dereferencing A2. However, consider the following
change to the code:

A2 := I_Var_2'Access;

A1 := A2;
--    PROBLEM: A1 will still be referring
--             to I_Var_2 after the
--             Inner_Block, i.e. when the
--             lifetime of I_Var_2 has
--             ended!





Here, we're introducing the A1 := A2 assignment. The problem with this
is that I_Var_2's lifetime ends when the Inner_Block finishes,
but A1 would continue to refer to an I_Var_2 object that doesn't
exist anymore — thereby creating a dangling reference.

Even though we're actually not assigning A2 to A1 in the original
code, we could have done it. The accessibility rules ensure that such an error
is never introduced into the program.


For further reading...

In the original code, we can consider the A2 := I_Var_2'Access
assignment to be safe, as we're not using the A1 := A2 assignment
there. Since we're confident that no error could ever occur in the
Inner_Block due to the assignment to A2, we could replace it
with A2 := I_Var_2'Unchecked_Access, so that the compiler accepts
it. We discuss more about the unchecked access attribute
later in this chapter.

Alternatively, we could have solved the compilation issue that we see in
the A2 := I_Var_2'Access assignment by declaring another access type
locally in the Inner_Block:

Inner_Block : declare
   type Integer_Local_Access is
     access all Integer;

   I_Var_2 : aliased Integer := 42;

   A2      : Integer_Local_Access;
begin
   A2 := I_Var_2'Access;
   --   This assignment is fine because
   --   the Integer_Local_Access type has
   --   the same lifetime as I_Var_2.
end Inner_Block;





With this change, A2 becomes an access object of a type that has the
same lifetime as I_Var_2, so that the assignment doesn't violate the
rules anymore.

(Note that in the Inner_Block, we could have simply named the local
access type Integer_Access instead of Integer_Local_Access,
thereby masking the Integer_Access type of the outer block.)



We discuss the effects of dereferencing dangling references
later in this chapter.




Unchecked Access

In this section, we discuss the Unchecked_Access attribute, which we
can use to circumvent accessibility issues for objects in specific cases. (Note
that this attribute only exists for objects, not for subprograms.)

We've seen previously that the
accessibility levels verify the lifetime of access types. Let's see a
simplified version of a code example from that section:


integers.ads

1package Integers is
2
3   type Integer_Access is access all Integer;
4
5end Integers;








show_access_issue.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Integers; use Integers;
 4
 5procedure Show_Access_Issue is
 6   I_Var : aliased Integer := 42;
 7
 8   A     : Integer_Access;
 9begin
10   A := I_Var'Access;
11   --   PROBLEM: A has the same lifetime as I_Var,
12   --            but Integer_Access type has a
13   --            longer lifetime.
14
15   Put_Line ("A.all: " & Integer'Image (A.all));
16end Show_Access_Issue;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Access.Dangling_Reference_Rules
MD5: 646acabf3f388b52809349463d20d314








Build output



show_access_issue.adb:10:09: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed







Here, the compiler complains about the A := I_Var'Access assignment
because the Integer_Access type has a longer lifetime than A.
However, we know that this assignment to A — and further uses of
A in the code — won't cause dangling references to be created.
Therefore, we can assume that assigning the access to I_Var to A
is safe.

When we're sure that an access assignment cannot possibly generate dangling
references, we can the use Unchecked_Access attribute. For instance, we
can use this attribute to circumvent the compilation error in the previous code
example, since we know that the assignment is actually safe:


integers.ads

1package Integers is
2
3   type Integer_Access is access all Integer;
4
5end Integers;








show_access_issue.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Integers; use Integers;
 4
 5procedure Show_Access_Issue is
 6   I_Var : aliased Integer := 42;
 7
 8   A     : Integer_Access;
 9begin
10   A := I_Var'Unchecked_Access;
11   --   OK: assignment is now accepted.
12
13   Put_Line ("A.all: " & Integer'Image (A.all));
14end Show_Access_Issue;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Access.Dangling_Reference_Rules
MD5: a71b9076d9e2983ffb9811183afdf6c1








Runtime output



A.all:  42







When we use the Unchecked_Access attribute, most rules still apply.
The only difference to the standard Access attribute is that unchecked
access applies the rules as if the object we're getting access to was being
declared at library level. (For the code example we've just seen, the check
would be performed as if I_Var was declared in the Integers
package instead of being declared in the procedure.)

It is strongly recommended to avoid unchecked access in general. You should
only use it when you can safely assume that the access object will be discarded
before the object we had access to gets out of scope. Therefore, if this
situation isn't clear enough, it's best to avoid unchecked access. (Later in
this chapter, we'll see some of the nasty issues that arrive from creating
dangling references.) Instead, you should work on improving the software design
of your application by considering alternatives such as using containers or
encapsulating access types in well-designed abstract data types.


In the Ada Reference Manual


	Unchecked Access Value Creation[#26]








Unchecked Deallocation

So far, we've seen multiple examples of using new to allocate objects.
In this section, we discuss how to manually deallocate objects.

Our starting point to manually deallocate an object is the generic
Ada.Unchecked_Deallocation procedure. We first instantiate this
procedure for an access type whose objects we want to be able to deallocate.
For example, let's instantiate it for the Integer_Access type:


integer_types.ads

 1with Ada.Unchecked_Deallocation;
 2
 3package Integer_Types is
 4
 5   type Integer_Access is access Integer;
 6
 7   --
 8   --  Instantiation of Ada.Unchecked_Deallocation
 9   --  for the Integer_Access type:
10   --
11   procedure Free is
12     new Ada.Unchecked_Deallocation
13       (Object => Integer,
14        Name   => Integer_Access);
15end Integer_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Simple_Unchecked_Deallocation
MD5: 328b244cf406853e87494c381c9c4c9e







Here, we declare the Free procedure, which we can then use to deallocate
objects that were allocated for the Integer_Access type.

Ada.Unchecked_Deallocation is a generic procedure that we can
instantiate for access types. When declaring an instance of
Ada.Unchecked_Deallocation, we have to specify arguments for:


	the formal Object parameter, which indicates the type of actual
objects that we want to deallocate; and


	the formal Name parameter, which indicates the access type.




In a type declaration such as type Integer_Access is access Integer,
Integer denotes the Object, while Integer_Access denotes
the Name.

Because each instance of Ada.Unchecked_Deallocation is bound to a
specific access type, we cannot use it for another access type, even if the
type we use for the Object parameter is the same:


integer_types.ads

 1with Ada.Unchecked_Deallocation;
 2
 3package Integer_Types is
 4
 5   type Integer_Access is access Integer;
 6
 7   procedure Free is
 8     new Ada.Unchecked_Deallocation
 9       (Object => Integer,
10        Name   => Integer_Access);
11
12   type Another_Integer_Access is access Integer;
13
14   procedure Free is
15     new Ada.Unchecked_Deallocation
16       (Object => Integer,
17        Name   => Another_Integer_Access);
18end Integer_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Simple_Unchecked_Deallocation
MD5: b9bc58ff60632287237e2e322fcbc63e







Here, we're declaring two Free procedures: one for the
Integer_Access type, another for the Another_Integer_Access. We
cannot use the Free procedure for the Integer_Access type when
deallocating objects associated with the Another_Integer_Access type,
even though both types are declared as access Integer.

Note that we can use any name when instantiating the
Ada.Unchecked_Deallocation procedure. However, naming it Free is
very common.

Now, let's see a complete example that includes object allocation and
deallocation:


integer_types.ads

 1with Ada.Unchecked_Deallocation;
 2
 3package Integer_Types is
 4
 5   type Integer_Access is access Integer;
 6
 7   procedure Free is
 8     new Ada.Unchecked_Deallocation
 9       (Object => Integer,
10        Name   => Integer_Access);
11
12   procedure Show_Is_Null (I : Integer_Access);
13
14end Integer_Types;








integer_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Integer_Types is
 4
 5   procedure Show_Is_Null (I : Integer_Access) is
 6   begin
 7      if I = null then
 8         Put_Line ("access value is null.");
 9      else
10         Put_Line ("access value is NOT null.");
11      end if;
12   end Show_Is_Null;
13
14end Integer_Types;








show_unchecked_deallocation.adb

 1with Ada.Text_IO;   use Ada.Text_IO;
 2with Integer_Types; use Integer_Types;
 3
 4procedure Show_Unchecked_Deallocation is
 5
 6   I : Integer_Access;
 7
 8begin
 9   Put ("We haven't called new yet... ");
10   Show_Is_Null (I);
11
12   Put ("Calling new... ");
13   I := new Integer;
14   Show_Is_Null (I);
15
16   Put ("Calling Free... ");
17   Free (I);
18   Show_Is_Null (I);
19end Show_Unchecked_Deallocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation
MD5: a9f2df04e2fe0d5ee8c17249b4ae315a








Runtime output



We haven't called new yet... access value is null.
Calling new... access value is NOT null.
Calling Free... access value is null.







In the Show_Unchecked_Deallocation procedure, we first allocate an
object for I and then call Free (I) to deallocate it. Also, we
call the Show_Is_Null procedure at three different points: before any
allocation takes place, after allocating an object for I, and after
deallocating that object.

When we deallocate an object via a call to Free, the corresponding
access value — which was previously pointing to an existing object
— is set to null. Therefore, I = null after the call to
Free, which is exactly what we see when running this example code.

Note that it is OK to call Free multiple times for the same access
object:


show_unchecked_deallocation.adb

 1with Integer_Types; use Integer_Types;
 2
 3procedure Show_Unchecked_Deallocation is
 4
 5   I : Integer_Access;
 6
 7begin
 8   I := new Integer;
 9
10   Free (I);
11   Free (I);
12   Free (I);
13end Show_Unchecked_Deallocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation
MD5: ce7f4f912f12d723ca673ca36a478765







The multiple calls to Free for the same access object don't cause any
issues. Because the access value is null after the first call to
Free (I), we're actually just passing null as an argument in the
second and third calls to Free. However, any attempt to deallocate an
access value of null is ignored in the Free procedure, so the second and
third calls to Free don't have any effect.


In the Ada Reference Manual


	4.8 Allocators[#27]


	13.11.2 Unchecked Storage Deallocation[#28]







Unchecked Deallocation and Dangling References

We've discussed dangling references
before. In this section, we discuss how unchecked deallocation can create
dangling references and the issues of having them in an application.

Let's reuse the last example and introduce I_2, which will point to the
same object as I:


show_unchecked_deallocation.adb

 1with Integer_Types; use Integer_Types;
 2
 3procedure Show_Unchecked_Deallocation is
 4
 5   I, I_2 : Integer_Access;
 6
 7begin
 8   I := new Integer;
 9
10   I_2 := I;
11
12   --  NOTE: I_2 points to the same
13   --        object as I.
14
15   --
16   --  Use I and I_2...
17   --
18   --  ... then deallocate memory...
19   --
20
21   Free (I);
22
23   --  NOTE: at this point, I_2 is a
24   --        dangling reference!
25
26   --  Further calls to Free (I)
27   --  are OK!
28
29   Free (I);
30   Free (I);
31
32   --  A call to Free (I_2) is
33   --  NOT OK:
34
35   Free (I_2);
36end Show_Unchecked_Deallocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation
MD5: ee5c20209a113a6c1bc7895b8ebdb174








Runtime output



free(): double free detected in tcache 2

raised PROGRAM_ERROR : unhandled signal







As we've seen before, we can have multiple calls to Free (I).
However, the call to Free (I_2) is bad because I_2 is not null.
In fact, it is a dangling reference — i.e. I_2 points to an object
that doesn't exist anymore. Also, the first call to Free (I) will
reclaim the storage that was allocated for the object that I
originally referred to. The call to Free (I_2) will then try to reclaim
the previously-reclaimed object, but it'll fail in an undefined manner.

Because of these potential errors, you should be very careful when using
unchecked deallocation: it is the programmer's responsibility to avoid creating
dangling references!

For the example we've just seen, we could avoid creating a dangling reference
by explicitly assigning null to I_2 to indicate that it doesn't
point to any specific object:


show_unchecked_deallocation.adb

 1with Integer_Types; use Integer_Types;
 2
 3procedure Show_Unchecked_Deallocation is
 4
 5   I, I_2 : Integer_Access;
 6
 7begin
 8   I := new Integer;
 9
10   I_2 := I;
11
12   --  NOTE: I_2 points to the same
13   --        object as I.
14
15   --
16   --  Use I and I_2...
17   --
18   --  ... then deallocate memory...
19   --
20
21   I_2 := null;
22
23   --  NOTE: now, I_2 doesn't point to
24   --        any object, so calling
25   --        Free (I_2) is OK.
26
27   Free (I);
28   Free (I_2);
29end Show_Unchecked_Deallocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation
MD5: 3381ba594cbbc0f1547e3f819bae0f97







Now, calling Free (I_2) doesn't cause any issues because it doesn't
point to any object.

Note, however, that this code example is just meant to illustrate the issues of
dangling pointers and how we could circumvent them. We're not suggesting to use
this approach when designing an implementation. In fact, it's not practical for
the programmer to make every possible dangling reference become null if the
calls to Free are strewn throughout the code.

The suggested design is to not use Free in the client code, but
instead hide its use within bigger abstractions. In that way, all the
occurrences of the calls to Free are in one package, and the programmer
of that package can then prevent dangling references. We'll discuss these
design strategies later on.



Dereferencing dangling references

Of course, you shouldn't try to dereference a dangling reference because your
program becomes erroneous, as we discuss in this section. Let's see an example:


show_unchecked_deallocation.adb

 1with Ada.Text_IO;   use Ada.Text_IO;
 2with Integer_Types; use Integer_Types;
 3
 4procedure Show_Unchecked_Deallocation is
 5
 6   I_1, I_2 : Integer_Access;
 7
 8begin
 9   I_1 := new Integer'(42);
10   I_2 := I_1;
11
12   Put_Line ("I_1.all = "
13             & Integer'Image (I_1.all));
14   Put_Line ("I_2.all = "
15             & Integer'Image (I_2.all));
16
17   Put_Line ("Freeing I_1");
18   Free (I_1);
19
20   if I_1 /= null then
21      Put_Line ("I_1.all = "
22                & Integer'Image (I_1.all));
23   end if;
24
25   if I_2 /= null then
26      Put_Line ("I_2.all = "
27                & Integer'Image (I_2.all));
28   end if;
29end Show_Unchecked_Deallocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation
MD5: 8536190aa5bbafa715ad8153aaeb4889








Runtime output



I_1.all =  42
I_2.all =  42
Freeing I_1
I_2.all =  6446







In this example, we allocate an object for I_1 and make I_2 point
to the same object. Then, we call Free (I), which has the following
consequences:


	The call to Free (I_1) will try to reclaim the storage for the
original object (I_1.all), so it may be reused for other allocations.


	I_1 = null after the call to Free (I_1).


	I_2 becomes a dangling reference by the call to Free (I_1).



	In other words, I_2 is still non-null, and what it points to is now
undefined.











In principle, we could check for null before trying to dereference the
access value. (Remember that when deallocating an object via a call to
Free, the corresponding access value is set to null.) In fact,
this strategy works fine for I_1, but it doesn't work for I_2
because the access value is not null. As a consequence, the application
tries to dereference I_2.

Dereferencing a dangling reference is erroneous: the behavior is undefined in
this case. For the example we've just seen,


	I_2.all might make the application crash;


	I_2.all might give us a different value than before;


	I_2.all might even give us the same value as before (42) if the
original object is still available.




Because the effect is unpredictable, it might be really difficult to debug the
application and identify the cause.

Having dangling pointers in an application should be avoided at all costs!
Again, it is the programmer's responsibility to be very careful when using
unchecked deallocation: avoid creating dangling references!


In the Ada Reference Manual


	13.9.1 Data Validity[#29]


	13.11.2 Unchecked Storage Deallocation[#30]








Restrictions for Ada.Unchecked_Deallocation

There are two unsurprising restrictions for Ada.Unchecked_Deallocation:


	It cannot be instantiated for access-to-constant types; and


	It cannot be used when the Storage_Size aspect of a type is zero
(i.e. when its storage pool is empty).




(Note that this last restriction also applies to the allocation via
new.)

Let's see an example of these restrictions:


show_unchecked_deallocation_errors.adb

 1with Ada.Unchecked_Deallocation;
 2
 3procedure Show_Unchecked_Deallocation_Errors is
 4
 5   type Integer_Access_Zero is access Integer
 6     with Storage_Size => 0;
 7
 8   procedure Free is
 9     new Ada.Unchecked_Deallocation
10       (Object => Integer,
11        Name   => Integer_Access_Zero);
12
13   type Constant_Integer_Access is
14     access constant Integer;
15
16   --  ERROR: Cannot use access-to-constant type
17   --         for Name
18   procedure Free is
19     new Ada.Unchecked_Deallocation
20       (Object => Integer,
21        Name   => Constant_Integer_Access);
22
23   I : Integer_Access_Zero;
24
25begin
26   --  ERROR: Cannot allocate objects from
27   --         empty storage pool
28   I := new Integer;
29
30   --  ERROR: Cannot deallocate objects from
31   --         empty storage pool
32   Free (I);
33end Show_Unchecked_Deallocation_Errors;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Unchecked_Deallocation.Unchecked_Deallocation_Error
MD5: 5032d13b2eb6b7ca1979282ddd6df98a








Build output



show_unchecked_deallocation_errors.adb:21:19: error: actual type must be access-to-variable type
show_unchecked_deallocation_errors.adb:21:19: error: instantiation abandoned
show_unchecked_deallocation_errors.adb:28:09: error: allocation from empty storage pool
show_unchecked_deallocation_errors.adb:32:04: error: deallocation from empty storage pool
gprbuild: *** compilation phase failed







Here, we see that trying to instantiate Ada.Unchecked_Deallocation for
the Constant_Integer_Access type is rejected by the compiler. Similarly,
we cannot allocate or deallocate an object for the Integer_Access_Zero
type because its storage pool is empty.




Null & Not Null Access


Note

This section was originally written by Robert A. Duff and published as
Gem #23: Null Considered Harmful[#31]
and Gem #24[#32].



Ada, like many languages, defines a special null value for access
types. All values of an access type designate some object of the
designated type, except for null, which does not designate any
object. The null value can be used as a special flag. For example, a
singly-linked list can be null-terminated. A Lookup function can
return null to mean "not found", presuming the result is of an
access type:


show_null_return.ads

1package Show_Null_Return is
2
3   type Ref_Element is access all Element;
4
5   Not_Found : constant Ref_Element := null;
6
7   function Lookup (T : Table) return Ref_Element;
8   --  Returns Not_Found if not found.
9end Show_Null_Return;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Null_Return
MD5: 6c4eed750d42685198ec9495805e3e23







An alternative design for Lookup would be to raise an exception:


show_not_found_exception.ads

1package Show_Not_Found_Exception is
2   Not_Found : exception;
3
4   function Lookup (T : Table) return Ref_Element;
5   --  Raises Not_Found if not found.
6   --  Never returns null.
7end Show_Not_Found_Exception;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Not_Found_Exception
MD5: 6ef47b32d4923838ffc28f43e5db323c







Neither design is better in all situations; it depends in part on whether
we consider the "not found" situation to be exceptional.

Clearly, the client calling Lookup needs to know whether it can
return null, and if so, what that means. In general, it's a good
idea to document whether things can be null or not, especially for formal
parameters and function results. Prior to Ada 2005, we would do that with
comments. Since Ada 2005, we can use the not null syntax:


show_not_null_return.ads

1package Show_Not_Null_Return is
2   type Ref_Element is access all Element;
3
4   Not_Found : constant Ref_Element := null;
5
6   function Lookup (T : Table)
7                    return not null Ref_Element;
8   --  Possible since Ada 2005.
9end Show_Not_Null_Return;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Not_Null_Return
MD5: 4c0bb95da3b5a7c555a763c4951f7e21







This is a complete package for the code snippets above:


example.ads

 1package Example is
 2
 3   type Element is limited private;
 4   type Ref_Element is access all Element;
 5
 6   type Table is limited private;
 7
 8   Not_Found : constant Ref_Element := null;
 9   function Lookup (T : Table)
10                    return Ref_Element;
11   --  Returns Not_Found if not found.
12
13   Not_Found_2 : exception;
14   function Lookup_2 (T : Table)
15                      return not null Ref_Element;
16   --  Raises Not_Found_2 if not found.
17
18   procedure P (X : not null Ref_Element);
19
20   procedure Q (X : not null Ref_Element);
21
22private
23   type Element is limited
24      record
25         Component : Integer;
26      end record;
27   type Table is limited null record;
28end Example;








example.adb

 1package body Example is
 2
 3   An_Element : aliased Element;
 4
 5   function Lookup (T : Table)
 6                    return Ref_Element is
 7      pragma Unreferenced (T);
 8   begin
 9      --  ...
10      return Not_Found;
11   end Lookup;
12
13   function Lookup_2 (T : Table)
14                      return not null Ref_Element
15   is
16   begin
17      --  ...
18      raise Not_Found_2;
19
20      return An_Element'Access;
21      --  suppress error: 'missing "return"
22      --  statement in function body'
23   end Lookup_2;
24
25   procedure P (X : not null Ref_Element) is
26   begin
27      X.all.Component := X.all.Component + 1;
28   end P;
29
30   procedure Q (X : not null Ref_Element) is
31   begin
32      for I in 1 .. 1000 loop
33         P (X);
34      end loop;
35   end Q;
36
37   procedure R is
38   begin
39      Q (An_Element'Access);
40   end R;
41
42  pragma Unreferenced (R);
43
44end Example;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Complete_Null_Return
MD5: 01895c7d5f843fd215dcc21d807d4187







In general, it's better to use the language proper for documentation, when
possible, rather than comments, because compile-time and/or run-time
checks can help ensure that the "documentation" is actually true. With
comments, there's a greater danger that the comment will become false
during maintenance, and false documentation is obviously a menace.

In many, perhaps most cases, null is just a tripping hazard. It's
a good idea to put in not null when possible. In fact, a good
argument can be made that not null should be the default, with
extra syntax required when null is wanted. This is the way
Standard ML[#33] works, for
example — you don't get any special null-like value unless you ask
for it. Of course, because Ada 2005 needs to be compatible with previous
versions of the language, not null cannot be the default for Ada.

One word of caution: access objects are default-initialized to
null, so if you have a not null object (or component) you
had better initialize it explicitly, or you will get
Constraint_Error. not null is more often useful on
parameters and function results, for this reason.

Another advantage of not null over comments is for efficiency.
Consider procedures P and Q in this example:


example-processing.ads

1package Example.Processing is
2
3   procedure P (X : not null Ref_Element);
4
5   procedure Q (X : not null Ref_Element);
6
7end Example.Processing;








example-processing.adb

 1package body Example.Processing is
 2
 3   procedure P (X : not null Ref_Element) is
 4   begin
 5      X.all.Component := X.all.Component + 1;
 6   end P;
 7
 8   procedure Q (X : not null Ref_Element) is
 9   begin
10      for I in 1 .. 1000 loop
11         P (X);
12      end loop;
13   end Q;
14
15end Example.Processing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Complete_Null_Return
MD5: dc34b1a27737d57c041be6260dd577fd







Without not null, the generated code for P will do a check
that X /= null, which may be costly on some systems. P is
called in a loop, so this check will likely occur many times. With
not null, the check is pushed to the call site. Pushing checks to
the call site is usually beneficial because



	the check might be hoisted out of a loop by the optimizer, or


	the check might be eliminated altogether, as in the example
above, where the compiler knows that An_Element'Access cannot
be null.







This is analogous to the situation with other run-time checks, such as
array bounds checks:


show_process_array.ads

 1package Show_Process_Array is
 2
 3   type My_Index is range 1 .. 10;
 4   type My_Array is array (My_Index) of Integer;
 5
 6   procedure Process_Array
 7     (X     : in out My_Array;
 8      Index :        My_Index);
 9
10end Show_Process_Array;








show_process_array.adb

 1package body Show_Process_Array is
 2
 3   procedure Process_Array
 4     (X     : in out My_Array;
 5      Index :        My_Index) is
 6   begin
 7      X (Index) := X (Index) + 1;
 8   end Process_Array;
 9
10end Show_Process_Array;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Null_And_Not_Null_Access.Process_Array
MD5: 32424432f5b2e3013292680f92a04320







If X (Index) occurs inside Process_Array, there is no need
to check that Index is in range, because the check is pushed to the
caller.



Design strategies for access types

Previously, we learned about
dangling references and discussed the
effects of
dereferencing them.
Also, we've seen the relationship between
unchecked deallocation and dangling references.
Ensuring that all calls to Free for a specific access type will never
cause dangling references can become an arduous task — if not impossible
— if those calls are located in different parts of the source code.

Although we used access types directly in the main application in many of the
previous code examples from this chapter, this approach was in fact selected
just for illustration purposes — i.e. to make the code look simpler. In
general, however, we should avoid this approach. Instead, our recommendation is
to encapsulate the access types in some form of abstraction. In this section,
we discuss design strategies for access types that take this recommendation
into account.


Abstract data type for access types

The simplest form of abstraction is of course an abstract data type. For
example, we could declare a limited private type, which allows us to hide
the access type and to avoid copies of references that could potentially
become dangling references. (We discuss limited private types later
in another chapter.)

Let's see an example:


access_type_abstraction.ads

 1package Access_Type_Abstraction is
 2
 3   type Info is limited private;
 4
 5   function To_Info (S : String) return Info;
 6
 7   function To_String (Obj : Info)
 8                       return String;
 9
10   function Copy (Obj : Info) return Info;
11
12   procedure Copy (To   : in out Info;
13                   From :        Info);
14
15   procedure Append (Obj : in out Info;
16                     S   : String);
17
18   procedure Reset (Obj : in out Info);
19
20   procedure Destroy (Obj : in out Info);
21
22private
23
24   type Info is access String;
25
26end Access_Type_Abstraction;








access_type_abstraction.adb

 1with Ada.Unchecked_Deallocation;
 2
 3package body Access_Type_Abstraction is
 4
 5   function To_Info (S : String) return Info is
 6     (new String'(S));
 7
 8   function To_String (Obj : Info)
 9                       return String is
10     (if Obj /= null then Obj.all else "");
11
12   function Copy (Obj : Info) return Info is
13     (To_Info (To_String (Obj)));
14
15   procedure Copy (To   : in out Info;
16                   From :        Info) is
17   begin
18      Destroy (To);
19      To := Copy (From);
20   end Copy;
21
22   procedure Append (Obj : in out Info;
23                     S   : String) is
24      New_Info : constant Info :=
25                   To_Info (To_String (Obj) & S);
26   begin
27      Destroy (Obj);
28      Obj := New_Info;
29   end Append;
30
31   procedure Reset (Obj : in out Info) is
32   begin
33      Destroy (Obj);
34   end Reset;
35
36   procedure Destroy (Obj : in out Info) is
37      procedure Free is
38        new Ada.Unchecked_Deallocation
39          (Object => String,
40           Name   => Info);
41   begin
42      Free (Obj);
43   end Destroy;
44
45end Access_Type_Abstraction;








main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_Type_Abstraction;
 4use  Access_Type_Abstraction;
 5
 6procedure Main is
 7   Obj_1 : Info := To_Info ("hello");
 8   Obj_2 : Info := Copy (Obj_1);
 9begin
10   Put_Line ("TO_INFO / COPY");
11   Put_Line ("Obj_1 : "
12             & To_String (Obj_1));
13   Put_Line ("Obj_2 : "
14             & To_String (Obj_2));
15   Put_Line ("----------");
16
17   Reset (Obj_1);
18   Append (Obj_2, " world");
19
20   Put_Line ("RESET / APPEND");
21   Put_Line ("Obj_1 : "
22             & To_String (Obj_1));
23   Put_Line ("Obj_2 : "
24             & To_String (Obj_2));
25   Put_Line ("----------");
26
27   Copy (From => Obj_2,
28         To   => Obj_1);
29
30   Put_Line ("COPY");
31   Put_Line ("Obj_1 : "
32             & To_String (Obj_1));
33   Put_Line ("Obj_2 : "
34             & To_String (Obj_2));
35   Put_Line ("----------");
36
37   Destroy (Obj_1);
38   Destroy (Obj_2);
39
40   Put_Line ("DESTROY");
41   Put_Line ("Obj_1 : "
42             & To_String (Obj_1));
43   Put_Line ("Obj_2 : "
44             & To_String (Obj_2));
45   Put_Line ("----------");
46
47   Append (Obj_1, "hey");
48
49   Put_Line ("APPEND");
50   Put_Line ("Obj_1 : "
51             & To_String (Obj_1));
52   Put_Line ("----------");
53
54   Put_Line ("APPEND");
55   Append (Obj_1, " there");
56   Put_Line ("Obj_1 : "
57             & To_String (Obj_1));
58
59   Destroy (Obj_1);
60   Destroy (Obj_2);
61end Main;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Design_Strategies.Access_Type_Abstraction
MD5: a335caeba4f1fb952a2e0d8d6bc52f75








Runtime output



TO_INFO / COPY
Obj_1 : hello
Obj_2 : hello
----------
RESET / APPEND
Obj_1 : 
Obj_2 : hello world
----------
COPY
Obj_1 : hello world
Obj_2 : hello world
----------
DESTROY
Obj_1 : 
Obj_2 : 
----------
APPEND
Obj_1 : hey
----------
APPEND
Obj_1 : hey there







In this example, we hide an access type in the Info type — a
limited private type. We allocate an object of this type in the To_Info
function and deallocate it in the Destroy procedure. Also, we make
sure that the reference isn't copied in the Copy function —
we only copy the designated value in this function. This strategy eliminates
the possibility of dangling references, as each reference is encapsulated in
an object of Info type.



Controlled type for access types

In the previous code example, the Destroy procedure had to be called
to deallocate the hidden access object. We could make sure that this
deallocation happens automatically by using a controlled (or limited
controlled) type. (We discuss
controlled types in another chapter.)

Let's adapt the previous example and declare Info as a limited
controlled type:


access_type_abstraction.ads

 1with Ada.Finalization;
 2
 3package Access_Type_Abstraction is
 4
 5   type Info is limited private;
 6
 7   function To_Info (S : String) return Info;
 8
 9   function To_String (Obj : Info)
10                       return String;
11
12   function Copy (Obj : Info) return Info;
13
14   procedure Copy (To   : in out Info;
15                   From :        Info);
16
17   procedure Append (Obj : in out Info;
18                     S   :        String);
19
20   procedure Reset (Obj : in out Info);
21
22private
23
24   type String_Access is access String;
25
26   type Info is new
27     Ada.Finalization.Limited_Controlled with
28      record
29         Str_A : String_Access;
30      end record;
31
32   procedure Initialize (Obj : in out Info);
33   procedure Finalize (Obj : in out Info);
34
35end Access_Type_Abstraction;








access_type_abstraction.adb

 1with Ada.Unchecked_Deallocation;
 2
 3package body Access_Type_Abstraction is
 4
 5   --
 6   --  STRING_ACCESS SUBPROGRAMS
 7   --
 8
 9   function To_String_Access (S : String)
10                              return String_Access
11   is
12     (new String'(S));
13
14   function To_String (S : String_Access)
15                       return String is
16     (if S /= null then S.all else "");
17
18   procedure Free is
19     new Ada.Unchecked_Deallocation
20       (Object => String,
21        Name   => String_Access);
22
23   --
24   --  PRIVATE SUBPROGRAMS
25   --
26
27   procedure Initialize (Obj : in out Info) is
28   begin
29      --  Put_Line ("Initializing Info");
30      Obj.Str_A := null;
31      --  ^^^^^^^^^^^^^
32      --  NOTE: This line has just been added to
33      --        illustrate the "automatic" call to
34      --        Initialize. Actually, this
35      --        assignment isn't needed, as
36      --        the Str_A component is
37      --        automatically initialized to null
38      --        upon object construction.
39   end Initialize;
40
41   procedure Finalize (Obj : in out Info) is
42   begin
43      --  Put_Line ("Finalizing Info");
44      Free (Obj.Str_A);
45   end Finalize;
46
47   --
48   --  PUBLIC SUBPROGRAMS
49   --
50
51   function To_Info (S : String) return Info is
52     (Ada.Finalization.Limited_Controlled
53      with Str_A => To_String_Access (S));
54
55   function To_String (Obj : Info)
56                       return String is
57     (To_String (Obj.Str_A));
58
59   function Copy (Obj : Info) return Info is
60     (To_Info (To_String (Obj.Str_A)));
61
62   procedure Copy (To   : in out Info;
63                   From :        Info) is
64   begin
65      Free (To.Str_A);
66      To.Str_A := To_String_Access
67                    (To_String (From.Str_A));
68   end Copy;
69
70   procedure Append (Obj : in out Info;
71                     S   :        String) is
72      New_Str_A : constant String_Access :=
73                    To_String_Access
74                      (To_String (Obj.Str_A) & S);
75   begin
76      Free (Obj.Str_A);
77      Obj.Str_A := New_Str_A;
78   end Append;
79
80   procedure Reset (Obj : in out Info) is
81   begin
82      Free (Obj.Str_A);
83   end Reset;
84
85end Access_Type_Abstraction;








main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_Type_Abstraction;
 4use  Access_Type_Abstraction;
 5
 6procedure Main is
 7   Obj_1 : Info := To_Info ("hello");
 8   Obj_2 : Info := Copy (Obj_1);
 9begin
10   --
11   --  TO_INFO / COPY
12   --
13   Put_Line ("TO_INFO / COPY");
14
15   Put_Line ("Obj_1 : "
16             & To_String (Obj_1));
17   Put_Line ("Obj_2 : "
18             & To_String (Obj_2));
19   Put_Line ("----------");
20
21   --
22   --  RESET:  Obj_1
23   --  APPEND: Obj_2
24   --
25   Put_Line ("RESET / APPEND");
26
27   Reset (Obj_1);
28   Append (Obj_2, " world");
29
30   Put_Line ("Obj_1 : "
31             & To_String (Obj_1));
32   Put_Line ("Obj_2 : "
33             & To_String (Obj_2));
34   Put_Line ("----------");
35
36   --
37   --  COPY: Obj_2 => Obj_1
38   --
39   Put_Line ("COPY");
40
41   Copy (From => Obj_2,
42         To   => Obj_1);
43
44   Put_Line ("Obj_1 : "
45             & To_String (Obj_1));
46   Put_Line ("Obj_2 : "
47             & To_String (Obj_2));
48   Put_Line ("----------");
49
50   --
51   --  RESET: Obj_1, Obj_2
52   --
53   Put_Line ("RESET");
54
55   Reset (Obj_1);
56   Reset (Obj_2);
57
58   Put_Line ("Obj_1 : "
59             & To_String (Obj_1));
60   Put_Line ("Obj_2 : "
61             & To_String (Obj_2));
62   Put_Line ("----------");
63
64   --
65   --  COPY: Obj_2 => Obj_1
66   --
67   Put_Line ("COPY");
68
69   Copy (From => Obj_2,
70         To   => Obj_1);
71
72   Put_Line ("Obj_1 : "
73             & To_String (Obj_1));
74   Put_Line ("Obj_2 : "
75             & To_String (Obj_2));
76   Put_Line ("----------");
77
78   --
79   --  APPEND: Obj_1 with "hey"
80   --
81   Put_Line ("APPEND");
82
83   Append (Obj_1, "hey");
84
85   Put_Line ("Obj_1 : "
86             & To_String (Obj_1));
87   Put_Line ("----------");
88
89   --
90   --  APPEND: Obj_1 with "there"
91   --
92   Put_Line ("APPEND");
93
94   Append (Obj_1, " there");
95
96   Put_Line ("Obj_1 : "
97             & To_String (Obj_1));
98end Main;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Design_Strategies.Access_Type_Limited_Controlled_Abstraction
MD5: e98659ad1b87be56fb173fa407ab7e82








Runtime output



TO_INFO / COPY
Obj_1 : hello
Obj_2 : hello
----------
RESET / APPEND
Obj_1 : 
Obj_2 : hello world
----------
COPY
Obj_1 : hello world
Obj_2 : hello world
----------
RESET
Obj_1 : 
Obj_2 : 
----------
COPY
Obj_1 : 
Obj_2 : 
----------
APPEND
Obj_1 : hey
----------
APPEND
Obj_1 : hey there







Of course, because we're using the
Limited_Controlled type from the Ada.Finalization package,
we had to adapt the prototype of the subprograms from the
Access_Type_Abstraction. In this version of the code, we only have
the allocation taking place in the To_Info procedure, but we don't have
a Destroy procedure for deallocation: this call was moved to the
Finalize procedure.

Since objects of the Info type — such as Obj_1 in the
Show_Access_Type_Abstraction procedure — are now controlled, the
Finalize procedure is automatically called when they go out of scope.
In this procedure, which we override for the Info type, we perform the
deallocation of the internal access object Str_A. (You may uncomment the
calls to Put_Line in the body of the Initialize and
Finalize subprograms to confirm that these subprograms are called in the
background.)




Access to subprograms

So far in this chapter, we focused mainly on access-to-objects. However, we can
use access types to subprograms. This is the topic of this section.


Static vs. dynamic calls

In a typical subprogram call, we indicate the subprogram we want to call
statically. For example, let's say we've implemented a procedure Proc
that calls a procedure P:


p.ads

1procedure P (I : in out Integer);








p.adb

1procedure P (I : in out Integer) is
2begin
3   null;
4end P;








proc.adb

1with P;
2
3procedure Proc is
4   I : Integer := 0;
5begin
6   P (I);
7end Proc;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Subprogram_Call
MD5: 0e9547e53d0d02d39920f4d1d6787af6







The call to P is statically dispatched: every time Proc runs and
calls P, that call is always to the same procedure. In other words, we
can determine at compilation time which procedure is called.

In contrast, an access to a subprogram allows us to dynamically indicate which
subprogram we want to call. For example, if we change Proc in the code
above to receive the access to a subprogram P as a parameter, the actual
procedure that would be called when running Proc would be determined at
run time, and it might be different for every call to Proc. In this
case, we wouldn't be able to determine at compilation time which
procedure would be called in every case. (In some cases, however, it could
still be possible to determine which procedure is called by analyzing the
argument that is passed to Proc.)



Access to subprogram declaration

We declare an access to a subprogram as a type by writing
access procedure or access function and the corresponding
prototype:


access_to_subprogram_types.ads

1package Access_To_Subprogram_Types is
2
3   type Access_To_Procedure is
4     access procedure (I : in out Integer);
5
6   type Access_To_Function is
7     access function (I : Integer) return Integer;
8
9end Access_To_Subprogram_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 5f834c1b2044ba5ea7d4835c3ebdedb1







In the designated profile of the access type declarations, we list all the
parameters that we expect in the subprogram.

We can use those types to declare access to subprograms — as subprogram
parameters, for example:


access_to_subprogram_params.ads

1with Access_To_Subprogram_Types;
2use  Access_To_Subprogram_Types;
3
4package Access_To_Subprogram_Params is
5
6   procedure Proc (P : Access_To_Procedure);
7
8end Access_To_Subprogram_Params;








access_to_subprogram_params.adb

 1package body Access_To_Subprogram_Params is
 2
 3   procedure Proc (P : Access_To_Procedure) is
 4      I : Integer := 0;
 5   begin
 6      P (I);
 7      --  P.all (I);
 8   end Proc;
 9
10end Access_To_Subprogram_Params;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 17c1a07f48d9fb0efef37aa4c5ec8a51







In the implementation of the Proc procedure of the code example, we call
the P procedure by simply passing I as a parameter. In this case,
P is automatically dereferenced. We may, however, explicitly dereference
P by writing P.all (I).

Before we use this package, let's implement a simple procedure that we'll use
later on:


add_ten.ads

1procedure Add_Ten (I : in out Integer);








add_ten.adb

1procedure Add_Ten (I : in out Integer) is
2begin
3   I := I + 10;
4end Add_Ten;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 8553ad7329bf1ed727147b47b7355a70







Now, we can get access to a subprogram by using the Access attribute and
pass it as an actual parameter:


show_access_to_subprograms.adb

 1with Access_To_Subprogram_Params;
 2use  Access_To_Subprogram_Params;
 3
 4with Add_Ten;
 5
 6procedure Show_Access_To_Subprograms is
 7begin
 8   Proc (Add_Ten'Access);
 9   --            ^ Getting access to Add_Ten
10   --              procedure and passing it
11   --              to Proc
12end Show_Access_To_Subprograms;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 599e9d1306da48e3c532692b34c02a1d







Here, we get access to the Add_Ten procedure and pass it to the
Proc procedure.


In the Ada Reference Manual


	3.10 Access Types[#34]








Objects of access-to-subprogram type

In the previous example, the Proc procedure had a parameter of
access-to-subprogram type. In addition to parameters, we can of course declare
objects of access-to-subprogram types as well. For example, we can extend
our previous test application and declare an object P of
access-to-subprogram type. Before we do so, however, let's implement another
small procedure that we'll use later on:


add_twenty.ads

1procedure Add_Twenty (I : in out Integer);








add_twenty.adb

1procedure Add_Twenty (I : in out Integer) is
2begin
3   I := I + 20;
4end Add_Twenty;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 697959b806f6f2bfba248ec15c47883b







In addition to Add_Ten, we've implemented the Add_Twenty
procedure, which we use in our extended test application:


show_access_to_subprograms.adb

 1with Access_To_Subprogram_Types;
 2use  Access_To_Subprogram_Types;
 3
 4with Access_To_Subprogram_Params;
 5use  Access_To_Subprogram_Params;
 6
 7with Add_Ten;
 8with Add_Twenty;
 9
10procedure Show_Access_To_Subprograms is
11   P        : Access_To_Procedure;
12   Some_Int : Integer := 0;
13begin
14   P := Add_Ten'Access;
15   --           ^ Getting access to Add_Ten
16   --             procedure and assigning it
17   --             to P
18
19   Proc (P);
20   --    ^ Passing access-to-subprogram as an
21   --      actual parameter
22
23   P (Some_Int);
24   --  ^ Using access-to-subprogram object in a
25   --    subprogram call
26
27   P := Add_Twenty'Access;
28   --              ^ Getting access to Add_Twenty
29   --                procedure and assigning it
30   --                to P
31
32   Proc (P);
33   P (Some_Int);
34end Show_Access_To_Subprograms;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 7b4ea19187806e88ba65847876cafb4f







In the Show_Access_To_Subprograms procedure,
we see the declaration of our access-to-subprogram object P (of
Access_To_Procedure type). We get access to the Add_Ten procedure
and assign it to P, and we then do the same for the Add_Twenty
procedure.

We can use an access-to-subprogram object either as the actual parameter of a
subprogram call, or in a subprogram call. In the code example, we're passing
P as the actual parameter of the Proc procedure in the
Proc (P) calls. Also, we're calling the subprogram assigned to
(designated by the current value of) P in the P (Some_Int) calls.



Components of access-to-subprogram type

In addition to declaring subprogram parameters and objects of
access-to-subprogram types, we can declare components of these types. For
example:


access_to_subprogram_types.ads

 1package Access_To_Subprogram_Types is
 2
 3   type Access_To_Procedure is
 4     access procedure (I : in out Integer);
 5
 6   type Access_To_Function is
 7     access function (I : Integer) return Integer;
 8
 9   type Access_To_Procedure_Array is
10     array (Positive range <>) of
11       Access_To_Procedure;
12
13   type Access_To_Function_Array is
14     array (Positive range <>) of
15       Access_To_Function;
16
17   type Rec_Access_To_Procedure is record
18      AP : Access_To_Procedure;
19   end record;
20
21   type Rec_Access_To_Function is record
22      AF : Access_To_Function;
23   end record;
24
25end Access_To_Subprogram_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 32203838b97af66ef6ca3f6b1ce646a5







Here, the access-to-procedure type Access_To_Procedure is used as a
component of the array type Access_To_Procedure_Array  and the record
type Rec_Access_To_Procedure. Similarly, the access-to-function type
Access_To_Function type is used as a component of the array type
Access_To_Function_Array and the record type
Rec_Access_To_Function.

Let's see two test applications using these types. First, let's use the
Access_To_Procedure_Array array type in a test application:


show_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use  Access_To_Subprogram_Types;
 5
 6with Add_Ten;
 7with Add_Twenty;
 8
 9procedure Show_Access_To_Subprograms is
10   PA : constant
11          Access_To_Procedure_Array (1 .. 2) :=
12            (Add_Ten'Access,
13             Add_Twenty'Access);
14
15   Some_Int : Integer := 0;
16begin
17   Put_Line ("Some_Int: " & Some_Int'Image);
18
19   for I in PA'Range loop
20      PA (I) (Some_Int);
21      Put_Line ("Some_Int: " & Some_Int'Image);
22   end loop;
23end Show_Access_To_Subprograms;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: f1d10056b4b3424bd30d954f34caa255








Runtime output



Some_Int:  0
Some_Int:  10
Some_Int:  30







Here, we declare the PA array and use the access to the Add_Ten
and Add_Twenty procedures as its components. We can call any of these
procedures by simply specifying the index of the component, e.g.
PA (2). Once we specify the procedure we want to use, we simply pass
the parameters, e.g.: PA (2) (Some_Int).

Now, let's use the Rec_Access_To_Procedure record type in a test
application:


show_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use  Access_To_Subprogram_Types;
 5
 6with Add_Ten;
 7with Add_Twenty;
 8
 9procedure Show_Access_To_Subprograms is
10   RA       : Rec_Access_To_Procedure;
11   Some_Int : Integer := 0;
12begin
13   Put_Line ("Some_Int: " & Some_Int'Image);
14
15   RA := (AP => Add_Ten'Access);
16   RA.AP (Some_Int);
17   Put_Line ("Some_Int: " & Some_Int'Image);
18
19   RA := (AP => Add_Twenty'Access);
20   RA.AP (Some_Int);
21   Put_Line ("Some_Int: " & Some_Int'Image);
22end Show_Access_To_Subprograms;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 4b23b5f6a8c252a1a014a2b54fa32c1a








Runtime output



Some_Int:  0
Some_Int:  10
Some_Int:  30







Here, we declare two record aggregates where we specify the AP
component, e.g.: (AP => Add_Ten'Access), which indicates the
access-to-subprogram we want to use. We can call the subprogram by simply
accessing the AP component, i.e.: RA.AP.



Access-to-subprogram as discriminant types

As you might expect, we can use access-to-subprogram types when declaring
discriminants. In fact, when we were talking about
discriminants as access values
earlier on, we used access-to-object types in our code examples, but we could
have used access-to-subprogram types as well. For example:


custom_processing.ads

 1package Custom_Processing is
 2
 3   --  Declaring an access type:
 4   type Integer_Processing is
 5     access procedure (I : in out Integer);
 6
 7   --  Declaring a discriminant with this
 8   --  access type:
 9   type Rec (IP : Integer_Processing) is
10     private;
11
12   procedure Init (R     : in out Rec;
13                   Value :        Integer);
14
15   procedure Process (R : in out Rec);
16
17   procedure Show (R : Rec);
18
19private
20
21   type Rec (IP : Integer_Processing) is
22   record
23      I : Integer := 0;
24   end record;
25
26end Custom_Processing;








custom_processing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Processing is
 4
 5   procedure Init (R     : in out Rec;
 6                   Value :        Integer) is
 7   begin
 8      R.I := Value;
 9   end Init;
10
11   procedure Process (R : in out Rec) is
12   begin
13      R.IP (R.I);
14      --  ^^^^^^
15      --  Calling procedure that we specified as
16      --  the record's discriminant
17   end Process;
18
19   procedure Show (R : Rec) is
20   begin
21      Put_Line ("R.I = "
22                & Integer'Image (R.I));
23   end Show;
24
25end Custom_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 02fc0c51722c321c4ec6115de68d1c06







In this example, we declare the access-to-subprogram type
Integer_Processing, which we use as the IP discriminant of the
Rec type. In the Process procedure, we call the IP
procedure that we specified as the record's discriminant (R.IP (R.I)).

Before we look at a test application for this package, let's implement
another small procedure:


mult_two.ads

1procedure Mult_Two (I : in out Integer);








mult_two.adb

1procedure Mult_Two (I : in out Integer) is
2begin
3   I := I * 2;
4end Mult_Two;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: cd43fa39dac9a1c9182f69d32eab1d26







Now, let's look at the test application:


show_access_to_subprogram_discriminants.adb

 1with Ada.Text_IO;       use Ada.Text_IO;
 2
 3with Custom_Processing; use Custom_Processing;
 4
 5with Add_Ten;
 6with Mult_Two;
 7
 8procedure Show_Access_To_Subprogram_Discriminants
 9is
10
11   R_Add_Ten  : Rec (IP => Add_Ten'Access);
12   --                ^^^^^^^^^^^^^^^^^^^^
13   --       Using access-to-subprogram as a
14   --       discriminant
15
16   R_Mult_Two : Rec (IP => Mult_Two'Access);
17   --                ^^^^^^^^^^^^^^^^^^^^^
18   --       Using access-to-subprogram as a
19   --       discriminant
20
21begin
22   Init (R_Add_Ten,  1);
23   Init (R_Mult_Two, 2);
24
25   Put_Line ("---- R_Add_Ten ----");
26   Show (R_Add_Ten);
27
28   Put_Line ("Calling Process procedure...");
29   Process (R_Add_Ten);
30   Show (R_Add_Ten);
31
32   Put_Line ("---- R_Mult_Two ----");
33   Show (R_Mult_Two);
34
35   Put_Line ("Calling Process procedure...");
36   Process (R_Mult_Two);
37   Show (R_Mult_Two);
38end Show_Access_To_Subprogram_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 544c224f8bc8e6ba2db4914c2a3dcff4








Runtime output



---- R_Add_Ten ----
R.I =  1
Calling Process procedure...
R.I =  11
---- R_Mult_Two ----
R.I =  2
Calling Process procedure...
R.I =  4







In this procedure, we declare the R_Add_Ten and R_Mult_Two of
Rec type and specify the access to Add_Ten and Mult_Two,
respectively, as the IP discriminant. The procedure we specified here
is then called inside a call to the Process procedure.



Access-to-subprograms as formal parameters

We can use access-to-subprograms types when declaring formal parameters. For
example, let's revisit the Custom_Processing package from the previous
section and convert it into a generic package.


gen_custom_processing.ads

 1generic
 2   type T is private;
 3
 4   --
 5   --  Declaring formal access-to-subprogram
 6   --  type:
 7   --
 8   type T_Processing is
 9     access procedure (Element : in out T);
10
11   --
12   --  Declaring formal access-to-subprogram
13   --  parameter:
14   --
15   Proc : T_Processing;
16
17   with function Image_T (Element : T)
18                          return String;
19package Gen_Custom_Processing is
20
21   type Rec is private;
22
23   procedure Init (R     : in out Rec;
24                   Value :        T);
25
26   procedure Process (R : in out Rec);
27
28   procedure Show (R : Rec);
29
30private
31
32   type Rec is record
33      Comp : T;
34   end record;
35
36end Gen_Custom_Processing;








gen_custom_processing.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Gen_Custom_Processing is
 4
 5   procedure Init (R     : in out Rec;
 6                   Value :        T) is
 7   begin
 8      R.Comp := Value;
 9   end Init;
10
11   procedure Process (R : in out Rec) is
12   begin
13      Proc (R.Comp);
14   end Process;
15
16   procedure Show (R : Rec) is
17   begin
18      Put_Line ("R.Comp = "
19                & Image_T (R.Comp));
20   end Show;
21
22end Gen_Custom_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 6f06e066bafa5f02abb3ee1b33ea0831







In this version of the procedure, instead of declaring Proc as a
discriminant of the Rec record, we're declaring it as a formal parameter
of the Gen_Custom_Processing package. Also, we're declaring an
access-to-subprogram type (T_Processing) as a formal parameter. (Note
that, in contrast to these two parameters that we've just mentioned,
Image_T is not a formal access-to-subprogram parameter: it's actually
just a formal subprogram.)

We then instantiate the Gen_Custom_Processing package in our test
application:


show_access_to_subprogram_as_formal_parameter.adb

 1with Gen_Custom_Processing;
 2
 3with Add_Ten;
 4
 5with Ada.Text_IO; use Ada.Text_IO;
 6
 7procedure
 8  Show_Access_To_Subprogram_As_Formal_Parameter
 9is
10   type Integer_Processing is
11     access procedure (I : in out Integer);
12
13   package Custom_Processing is new
14     Gen_Custom_Processing
15       (T            => Integer,
16        T_Processing => Integer_Processing,
17        --              ^^^^^^^^^^^^^^^^^^
18        --              access-to-subprogram type
19        Proc         => Add_Ten'Access,
20        --              ^^^^^^^^^^^^^^^^^^
21        --              access-to-subprogram
22        Image_T      => Integer'Image);
23   use Custom_Processing;
24
25   R_Add_Ten  : Rec;
26
27begin
28   Init (R_Add_Ten,  1);
29
30   Put_Line ("---- R_Add_Ten ----");
31   Show (R_Add_Ten);
32
33   Put_Line ("Calling Process procedure...");
34   Process (R_Add_Ten);
35   Show (R_Add_Ten);
36end Show_Access_To_Subprogram_As_Formal_Parameter;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_To_Subprogram_Types
MD5: 6ae27ebd59e5307551e9a38f3b94c70c








Runtime output



---- R_Add_Ten ----
R.Comp =  1
Calling Process procedure...
R.Comp =  11







Here, we instantiate the Gen_Custom_Processing package as
Custom_Processing and specify the access-to-subprogram type and the
access-to-subprogram.



Selecting subprograms

A practical application of access to subprograms is that it enables us to
dynamically select a subprogram and pass it to another subprogram, where it can
then be called.

For example, we may have a Process procedure that receives a logging
procedure as a parameter (Log_Proc). Also, this parameter may be
null by default — so that no procedure is called if the parameter
isn't specified:


data_processing.ads

 1package Data_Processing is
 2
 3   type Data_Container is
 4     array (Positive range <>) of Float;
 5
 6   type Log_Procedure is
 7     access procedure (D : Data_Container);
 8
 9   procedure Process
10     (D        : in out Data_Container;
11      Log_Proc :        Log_Procedure := null);
12
13end Data_Processing;








data_processing.adb

 1package body Data_Processing is
 2
 3   procedure Process
 4     (D        : in out Data_Container;
 5      Log_Proc :        Log_Procedure := null) is
 6   begin
 7      --  missing processing part...
 8
 9      if Log_Proc /= null then
10         Log_Proc (D);
11      end if;
12   end Process;
13
14end Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Log_Procedure
MD5: 59399e0809deb476f608faab7e4398bd







In the implementation of Process, we check whether Log_Proc is
null or not. (If it's not null, we call the procedure. Otherwise, we just skip
the call.)

Now, let's implement two logging procedures that match the expected form of
the Log_Procedure type:


log_element_per_line.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2with Data_Processing; use Data_Processing;
 3
 4procedure Log_Element_Per_Line
 5  (D : Data_Container) is
 6begin
 7   Put_Line ("Elements: ");
 8   for V of D loop
 9      Put_Line (V'Image);
10   end loop;
11   Put_Line ("------");
12end Log_Element_Per_Line;








log_csv.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2with Data_Processing; use Data_Processing;
 3
 4procedure Log_Csv (D : Data_Container) is
 5begin
 6   for I in D'First .. D'Last - 1 loop
 7      Put (D (I)'Image & ", ");
 8   end loop;
 9   Put (D (D'Last)'Image);
10   New_Line;
11end Log_Csv;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Log_Procedure
MD5: 468789f7331ffcd16f754f7116b076d7







Finally, we implement a test application that selects each of the logging
procedures that we've just implemented:


show_access_to_subprograms.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2with Data_Processing; use Data_Processing;
 3
 4with Log_Element_Per_Line;
 5with Log_Csv;
 6
 7procedure Show_Access_To_Subprograms is
 8   D : Data_Container (1 .. 5) := (others => 1.0);
 9begin
10   Put_Line ("==== Log_Element_Per_Line ====");
11   Process (D, Log_Element_Per_Line'Access);
12
13   Put_Line ("==== Log_Csv ====");
14   Process (D, Log_Csv'Access);
15
16   Put_Line ("==== None ====");
17   Process (D);
18end Show_Access_To_Subprograms;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Log_Procedure
MD5: 134aa682cea1999efa0ea97052f315c8








Runtime output



==== Log_Element_Per_Line ====
Elements: 
 1.00000E+00
 1.00000E+00
 1.00000E+00
 1.00000E+00
 1.00000E+00
------
==== Log_Csv ====
 1.00000E+00,  1.00000E+00,  1.00000E+00,  1.00000E+00,  1.00000E+00
==== None ====







Here, we use the Access attribute to get access to the
Log_Element_Per_Line and Log_Csv procedures. Also, in the third
call, we don't pass any access as an argument, which is then null by
default.



Null exclusion

We can use null exclusion when declaring an access to subprograms. By doing so,
we ensure that a subprogram must be specified — either as a parameter or
when initializing an access object. Otherwise, an exception is raised. Let's
adapt the previous example and introduce the Init_Function type:


data_processing.ads

 1package Data_Processing is
 2
 3   type Data_Container is
 4     array (Positive range <>) of Float;
 5
 6   type Init_Function is
 7     not null access function return Float;
 8
 9   procedure Process
10     (D         : in out Data_Container;
11      Init_Func :        Init_Function);
12
13end Data_Processing;








data_processing.adb

 1package body Data_Processing is
 2
 3   procedure Process
 4     (D         : in out Data_Container;
 5      Init_Func :        Init_Function) is
 6   begin
 7      for I in D'Range loop
 8         D (I) := Init_Func.all;
 9      end loop;
10   end Process;
11
12end Data_Processing;







In this case, we specify that Init_Function is not null access
because we want to always be able to call this function in the Process
procedure (i.e. without raising an exception).

When an access to a subprogram doesn't have parameters — which is the
case for the subprograms of Init_Function type — we need to
explicitly dereference it by writing .all. (In this case, .all
isn't optional.) Therefore, we have to write Init_Func.all in the
implementation of the Process procedure of the code example.

Now, let's declare two simple functions — Init_Zero and
Init_One — that return 0.0 and 1.0, respectively:


init_zero.ads

1function Init_Zero return Float;








init_one.ads

1function Init_One return Float;








init_zero.adb

1function Init_Zero return Float is
2begin
3   return 0.0;
4end Init_Zero;








init_one.adb

1function Init_One return Float is
2begin
3   return 1.0;
4end Init_One;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_Init_Function
MD5: 444110d50ddb430fd5be31cf1b417fc8







Finally, let's see a test application where we select each of the init
functions we've just implemented:


log_element_per_line.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2with Data_Processing; use Data_Processing;
 3
 4procedure Log_Element_Per_Line
 5  (D : Data_Container) is
 6begin
 7   Put_Line ("Elements: ");
 8   for V of D loop
 9      Put_Line (V'Image);
10   end loop;
11   Put_Line ("------");
12end Log_Element_Per_Line;








show_access_to_subprograms.adb

 1with Ada.Text_IO;     use Ada.Text_IO;
 2with Data_Processing; use Data_Processing;
 3
 4with Init_Zero;
 5with Init_One;
 6
 7with Log_Element_Per_Line;
 8
 9procedure Show_Access_To_Subprograms is
10   D : Data_Container (1 .. 5) := (others => 1.0);
11begin
12   Put_Line ("==== Init_Zero ====");
13   Process (D, Init_Zero'Access);
14   Log_Element_Per_Line (D);
15
16   Put_Line ("==== Init_One ====");
17   Process (D, Init_One'Access);
18   Log_Element_Per_Line (D);
19
20   --  Put_Line ("==== None ====");
21   --  Process (D, null);
22   --  Log_Element_Per_Line (D);
23end Show_Access_To_Subprograms;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Access_Init_Function
MD5: ae0e3fd58e9bb83061248967c709190a








Runtime output



==== Init_Zero ====
Elements: 
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00
------
==== Init_One ====
Elements: 
 1.00000E+00
 1.00000E+00
 1.00000E+00
 1.00000E+00
 1.00000E+00
------







Here, we use the Access attribute to get access to the
Init_Zero and Init_One functions. Also, if we uncomment the call
to Process with null as an argument for the init function, we see
that the Constraint_Error exception is raised at run time — as the
argument cannot be null due to the null exclusion.


For further reading...


Note

This example was originally written by Robert A. Duff and was part of
the Gem #24[#35].



Here's another example, first with null:


show_null_procedure.ads

 1package Show_Null_Procedure is
 2   type Element is limited null record;
 3   --  Not implemented yet
 4
 5   type Ref_Element is access all Element;
 6
 7   type Table is limited null record;
 8   --  Not implemented yet
 9
10   type Iterate_Action is
11     access procedure
12       (X : not null Ref_Element);
13
14   procedure Iterate
15     (T      : Table;
16      Action : Iterate_Action := null);
17   --  If Action is null, do nothing.
18
19end Show_Null_Procedure;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Null_Procedure
MD5: ac21dd76ed9fb7f26839c24210cf4425







and without null:


show_null_procedure.ads

 1package Show_Null_Procedure is
 2   type Element is limited null record;
 3   --  Not implemented yet
 4
 5   type Ref_Element is access all Element;
 6
 7   type Table is limited null record;
 8   --  Not implemented yet
 9
10   procedure Do_Nothing
11     (X : not null Ref_Element) is null;
12
13   type Iterate_Action is
14     access procedure
15       (X : not null Ref_Element);
16
17   procedure Iterate
18     (T      : Table;
19      Action : not null Iterate_Action
20                 := Do_Nothing'Access);
21
22end Show_Null_Procedure;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Null_Procedure
MD5: 7341d8f23cd4efe45698481be452a9e8







The style of the second Iterate is clearly better because it makes
use of the syntax to indicate that a procedure is expected. This is a
complete package that includes both versions of the Iterate
procedure:


example.ads

 1package Example is
 2
 3   type Element is limited private;
 4   type Ref_Element is access all Element;
 5
 6   type Table is limited private;
 7
 8   type Iterate_Action is
 9     access procedure
10       (X : not null Ref_Element);
11
12   procedure Iterate
13     (T : Table;
14      Action : Iterate_Action := null);
15   --  If Action is null, do nothing.
16
17   procedure Do_Nothing
18     (X : not null Ref_Element) is null;
19   procedure Iterate_2
20     (T : Table;
21      Action : not null Iterate_Action
22                 := Do_Nothing'Access);
23
24private
25   type Element is limited
26      record
27         Component : Integer;
28      end record;
29   type Table is limited null record;
30end Example;








example.adb

 1package body Example is
 2
 3   An_Element : aliased Element;
 4
 5   procedure Iterate
 6     (T : Table;
 7      Action : Iterate_Action := null)
 8   is
 9   begin
10      if Action /= null then
11         Action (An_Element'Access);
12         --  In a real program, this would do
13         --  something more sensible.
14      end if;
15   end Iterate;
16
17   procedure Iterate_2
18     (T : Table;
19      Action : not null Iterate_Action
20                 := Do_Nothing'Access)
21   is
22   begin
23      Action (An_Element'Access);
24      --  In a real program, this would do
25      --  something more sensible.
26   end Iterate_2;
27
28end Example;








show_example.adb

1with Example; use Example;
2
3procedure Show_Example is
4   T : Table;
5begin
6   Iterate_2 (T);
7end Show_Example;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Complete_Not_Null_Procedure
MD5: ab0a41e0d39a8a16b0b69f8c6b2a43fd







Writing not null Iterate_Action might look a bit more
complicated, but it's worthwhile, and anyway, as mentioned earlier, the
compatibility requirement requires that the not null be explicit,
rather than the other way around.





Access to protected subprograms

Up to this point, we've discussed access to normal Ada subprograms. In some
situations, however, we might want to have access to protected subprograms.
To do this, we can simply declare a type using access protected:


simple_protected_access.ads

 1package Simple_Protected_Access is
 2
 3   type Access_Proc is
 4     access protected procedure;
 5
 6   protected Obj is
 7
 8      procedure Do_Something;
 9
10   end Obj;
11
12   Acc : Access_Proc := Obj.Do_Something'Access;
13
14end Simple_Protected_Access;








simple_protected_access.adb

 1package body Simple_Protected_Access is
 2
 3   protected body Obj is
 4
 5      procedure Do_Something is
 6      begin
 7         --  Not doing anything
 8         --  for the moment...
 9         null;
10      end Do_Something;
11
12   end Obj;
13
14end Simple_Protected_Access;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Simple_Protected_Access
MD5: d82f7c90355e9810bd1e35f65e278626







Here, we declare the Access_Proc type as an access type to protected
procedures. Then, we declare the variable Acc and assign to it the
access to the Do_Something procedure (of the protected object
Obj).

Now, let's discuss a more useful example: a simple system that allows us to
register protected procedures and execute them. This is implemented in
Work_Registry package:


work_registry.ads

 1package Work_Registry is
 2
 3   type Work_Id is tagged limited private;
 4
 5   type Work_Handler is
 6     access protected procedure (T : Work_Id);
 7
 8   subtype Valid_Work_Handler is
 9     not null Work_Handler;
10
11   type Work_Handlers is
12     array (Positive range <>) of Work_Handler;
13
14   protected type Work_Handler_Registry
15     (Last : Positive)
16   is
17
18      procedure Register (T : Valid_Work_Handler);
19
20      procedure Reset;
21
22      procedure Process_All;
23
24   private
25
26      D    : Work_Handlers (1 .. Last);
27      Curr : Natural := 0;
28
29   end Work_Handler_Registry;
30
31private
32
33   type Work_Id is tagged limited null record;
34
35end Work_Registry;








work_registry.adb

 1package body Work_Registry is
 2
 3   protected body Work_Handler_Registry is
 4
 5      procedure Register (T : Valid_Work_Handler)
 6      is
 7      begin
 8         if Curr < Last then
 9            Curr := Curr + 1;
10            D (Curr) := T;
11         end if;
12      end Register;
13
14      procedure Reset is
15      begin
16         Curr := 0;
17      end Reset;
18
19      procedure Process_All is
20         Dummy_ID : Work_Id;
21      begin
22         for I in D'First .. Curr loop
23            D (I).all (Dummy_ID);
24         end loop;
25      end Process_All;
26
27   end Work_Handler_Registry;
28
29end Work_Registry;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Protected_Access_Init_Function
MD5: 5dfa8ab098900ab4f6b7575e1cde5e53







Here, we declare the protected Work_Handler_Registry type with the
following subprograms:


	Register, which we can use to register a protected procedure;


	Reset, which we can use to reset the system; and


	Process_All, which we can use to call all procedures that were
registered in the system.




Work_Handler is our access to protected subprogram type. Also, we
declare the Valid_Work_Handler subtype, which excludes null. By
doing so, we can ensure that only valid procedures are passed to the
Register procedure. In the protected Work_Handler_Registry type,
we store the procedures in an array (of Work_Handlers type).


Important

Note that, in the type declaration Work_Handler, we say that the
protected procedure must have a parameter of Work_Id type. In this
example, this parameter is just used to bind the procedure to the
Work_Handler_Registry type. The Work_Id type itself is
actually declared as a null record (in the private part of the package),
and it isn't really useful on its own.

If we had declared type Work_Handler is access protected procedure;
instead, we would be able to register any protected procedure into the
system, even the ones that might not be suitable for the system. By using
a parameter of Work_Id type, however, we make use of strong
typing to ensure that only procedures that were designed for the system
can be registered.



In the next part of the code, we declare the Integer_Storage type,
which is a simple protected type that we use to store an integer value:


integer_storage_system.ads

 1with Work_Registry;
 2
 3package Integer_Storage_System is
 4
 5   protected type Integer_Storage is
 6
 7      procedure Set (V : Integer);
 8
 9      procedure Show (T : Work_Registry.Work_Id);
10
11   private
12
13      I : Integer := 0;
14
15   end Integer_Storage;
16
17   type Integer_Storage_Access is
18     access Integer_Storage;
19
20   type Integer_Storage_Array is
21     array (Positive range <>) of
22       Integer_Storage_Access;
23
24end Integer_Storage_System;








integer_storage_system.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Integer_Storage_System is
 4
 5   protected body Integer_Storage is
 6
 7      procedure Set (V : Integer) is
 8      begin
 9         I := V;
10      end Set;
11
12      procedure Show (T : Work_Registry.Work_Id)
13      is
14         pragma Unreferenced (T);
15      begin
16         Put_Line ("Value: " & Integer'Image (I));
17      end Show;
18
19   end Integer_Storage;
20
21end Integer_Storage_System;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Protected_Access_Init_Function
MD5: a388d792bc85709785d324c914d9d236







For the Integer_Storage type, we declare two procedures:


	Set, which we use to assign a value to the (protected) integer value;
and


	Show, which we use to show the integer value that is stored in the
protected object.




The Show procedure has a parameter of Work_Id type, which
indicates that this procedure was designed to be registered in the system of
Work_Handler_Registry type.

Finally, we have a test application in which we declare a registry (WHR)
and an array of "protected integer objects" (Int_Stor):


show_access_to_protected_subprograms.adb

 1with Work_Registry;
 2use  Work_Registry;
 3
 4with Integer_Storage_System;
 5use  Integer_Storage_System;
 6
 7procedure Show_Access_To_Protected_Subprograms is
 8
 9   WHR      : Work_Handler_Registry (5);
10   Int_Stor : Integer_Storage_Array (1 .. 3);
11
12begin
13   --  Allocate and initialize integer storage
14   --
15   --  (For the initialization, we're just
16   --  assigning the index here, but we could
17   --  really have used any integer value.)
18
19   for I in Int_Stor'Range loop
20      Int_Stor (I) := new Integer_Storage;
21      Int_Stor (I).Set (I);
22   end loop;
23
24   --  Register handlers
25
26   for I in Int_Stor'Range loop
27      WHR.Register (Int_Stor (I).all.Show'Access);
28   end loop;
29
30   --  Now, use Process_All to call the handlers
31   --  (in this case, the Show procedure for
32   --  each protected object from Int_Stor).
33
34   WHR.Process_All;
35
36end Show_Access_To_Protected_Subprograms;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Protected_Access_Init_Function
MD5: 44c24ef07333e1d31844cc2ea6d91ab6








Runtime output



Value:  1
Value:  2
Value:  3







The work handler registry (WHR) has a maximum capacity of five
procedures, whereas the Int_Stor array has a capacity of three elements.
By calling WHR.Register and passing Int_Stor (I).all.Show'Access,
we register the Show procedure of each protected object from
Int_Stor.


Important

Note that the components of the Int_Stor array are of
Integer_Storage_Access type, which is declared as an access to
Integer_Storage objects. Therefore, we have to dereference the
object (by writing Int_Stor (I).all) before getting access to the
Show procedure (by writing .Show'Access).

We have to use an access type here because we cannot pass the access (to
the Show procedure) of a local object in the call to the
Register procedure. Therefore, the protected objects (of
Integer_Storage type) cannot be local.

This issue becomes evident if we replace the declaration of
Int_Stor with a local array (and then adapt the remaining code). If
we do this, we get a compilation error in the call to Register:


show_access_to_protected_subprograms.adb

 1with Work_Registry;
 2use  Work_Registry;
 3
 4with Integer_Storage_System;
 5use  Integer_Storage_System;
 6
 7procedure Show_Access_To_Protected_Subprograms
 8is
 9   WHR      : Work_Handler_Registry (5);
10
11   Int_Stor : array (1 .. 3) of Integer_Storage;
12
13begin
14   --  Allocate and initialize integer storage
15   --
16   --  (For the initialization, we're just
17   --  assigning the index here, but we could
18   --  really have used any integer value.)
19
20   for I in Int_Stor'Range loop
21      --  Int_Stor (I) := new Integer_Storage;
22      Int_Stor (I).Set (I);
23   end loop;
24
25   --  Register handlers
26
27   for I in Int_Stor'Range loop
28      WHR.Register (Int_Stor (I).Show'Access);
29      --            ^ ERROR!
30   end loop;
31
32   --  Now, call the handlers
33   --  (i.e. the Show procedure of each
34   --   protected object).
35
36   WHR.Process_All;
37
38end Show_Access_To_Protected_Subprograms;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_To_Subprograms.Protected_Access_Init_Function
MD5: 359241c84cd30313fe2d7701b55f303e








Build output



show_access_to_protected_subprograms.adb:28:21: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed







As we've just discussed, this error is due to the fact that
Int_Stor is now a "local" protected object, and the accessibility
rules don't allow mixing it with non-local accesses in order to prevent the
possibility of dangling references.



When we call WHR.Process_All, the registry system calls each procedure
that has been registered with the system. When looking at the values displayed
by the test application, we may notice that each call to Show is
referring to a different protected object. In fact, even though we're passing
just the access to a protected procedure in the call to Register, that
access is also associated to a specific protected object. (This is different
from access to non-protected subprograms we've discussed previously: in that
case, there's no object associated.) If we replace the argument to
Register by Int_Stor (2).all.Show'Access, for example, the three
Show procedures registered in the system will now refer to the same
protected object (stored at Int_Stor (2)).

Also, even though we have registered the same procedure (Show) of the
same type (Integer_Storage) in all calls to Register, we could
have used a different protected procedure — and of a different protected
type. As an exercise, we could, for example, create a new type called
Float_Storage (based on the code that we used for the
Integer_Storage type) and register some objects of Float_Storage
type into the system (with a couple of additional calls to Register). If
we then call WHR.Process_All, we'd see that the system is able to cope
with objects of both Integer_Storage and Float_Storage types. In
fact, the system implemented with the Work_Handler_Registry can be seen
as "type agnostic," as it doesn't care about which type the protected objects
have — as long as the subprograms we want to register are conformant to
the Valid_Work_Handler type.




Accessibility Rules and Access-To-Subprograms

In general, the accessibility rules that we discussed
previously for access-to-objects
also apply to access-to-subprograms. In this section, we discuss minor
differences when applying those rules to access-to-subprograms.

In our discussion about accessibility rules, we've looked into
accessibility levels and
the accessibility rules that are based on
those levels. The same accessibility rules apply to access-to-subprograms.
As we said previously,
operations targeting objects at a less-deep level are illegal, as it's the
case for subprograms as well:


access_to_subprogram_types.ads

1package Access_To_Subprogram_Types is
2
3   type Access_To_Procedure is
4     access procedure (I : in out Integer);
5
6   type Access_To_Function is
7     access function (I : Integer) return Integer;
8
9end Access_To_Subprogram_Types;








show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use  Access_To_Subprogram_Types;
 5
 6procedure Show_Access_To_Subprogram_Error is
 7   Func : Access_To_Function;
 8
 9   Value : Integer := 0;
10begin
11   declare
12      function Add_One (I : Integer)
13                        return Integer is
14        (I + 1);
15   begin
16      Func := Add_One'Access;
17      --  This assignment is illegal because the
18      --  Access_To_Function type is less deep
19      --  than Add_One.
20   end;
21
22   Put_Line ("Value: " & Value'Image);
23   Value := Func (Value);
24   Put_Line ("Value: " & Value'Image);
25end Show_Access_To_Subprogram_Error;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_Access_To_Subprograms.Access_To_Subprogram_Accessibility_Error_Less_Deep
MD5: 2a068732606a1fee156e82515febe9c4








Build output



show_access_to_subprogram_error.adb:16:15: error: subprogram must not be deeper than access type
gprbuild: *** compilation phase failed







Obviously, we can correct this error by putting the Add_One function
at the same level as the Access_To_Function type, i.e. at library
level:


access_to_subprogram_types.ads

1package Access_To_Subprogram_Types is
2
3   type Access_To_Procedure is
4     access procedure (I : in out Integer);
5
6   type Access_To_Function is
7     access function (I : Integer) return Integer;
8
9end Access_To_Subprogram_Types;








add_one.ads

1function Add_One (I : Integer) return Integer;








add_one.adb

1function Add_One (I : Integer) return Integer is
2begin
3   return I + 1;
4end Add_One;








show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use  Access_To_Subprogram_Types;
 5
 6with Add_One;
 7
 8procedure Show_Access_To_Subprogram_Error is
 9   Func : Access_To_Function;
10
11   Value : Integer := 0;
12begin
13   Func := Add_One'Access;
14
15   Put_Line ("Value: " & Value'Image);
16   Value := Func (Value);
17   Put_Line ("Value: " & Value'Image);
18end Show_Access_To_Subprogram_Error;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_Access_To_Subprograms.Access_To_Subprogram_Accessibility_Error_Less_Deep_Fix
MD5: 7f7488c541fb457ced653a2e6cc2fad1








Runtime output



Value:  0
Value:  1







As a recommendation, resolving accessibility issues in the case of
access-to-subprograms is best done by refactoring the subprograms of your
source code — for example, moving subprograms to a different level.


Unchecked Access

Previously, we discussed about the
Unchecked_Access attribute, which we can use
to circumvent accessibility issues in specific cases for access-to-objects. We
also said in that section that this attribute only exists for objects, not for
subprograms. We can use the previous example to illustrate this limitation:


access_to_subprogram_types.ads

1package Access_To_Subprogram_Types is
2
3   type Access_To_Procedure is
4     access procedure (I : in out Integer);
5
6   type Access_To_Function is
7     access function (I : Integer) return Integer;
8
9end Access_To_Subprogram_Types;








show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use  Access_To_Subprogram_Types;
 5
 6procedure Show_Access_To_Subprogram_Error is
 7   Func : Access_To_Function;
 8
 9   function Add_One (I : Integer)
10            return Integer is
11     (I + 1);
12
13   Value : Integer := 0;
14begin
15   Func := Add_One'Access;
16
17   Put_Line ("Value: " & Value'Image);
18   Value := Func (Value);
19   Put_Line ("Value: " & Value'Image);
20end Show_Access_To_Subprogram_Error;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_Access_To_Subprograms.Access_To_Subprogram_Accessibility_Error_Same_Lifetime
MD5: c1ee1946f0c979eb30fbf2c72c426f50








Build output



show_access_to_subprogram_error.adb:15:12: error: subprogram must not be deeper than access type
gprbuild: *** compilation phase failed







When we analyze the Show_Access_To_Subprogram_Error procedure, we see
that the Func object and the Add_One function have the same
lifetime. Therefore, in this very specific case, we could safely assign
Add_One'Access to Func and call Func for Value.
Due to the accessibility rules, however, this assignment is illegal.
(Obviously, the accessibility issue here is that the
Access_To_Function type has a potentially longer lifetime.)

In the case of access-to-objects, we could use Unchecked_Access to
enforce assignments that we consider safe after careful analysis. However,
because this attribute isn't available for access-to-subprograms, the best
solution is to move the subprogram to a level that allows the assignment to
be legal, as we said before.


In the GNAT toolchain

GNAT offers an equivalent for Unchecked_Access that can be used for
subprograms: the Unrestricted_Access attribute. Note, however, that
this attribute is not portable.


access_to_subprogram_types.ads

1package Access_To_Subprogram_Types is
2
3   type Access_To_Procedure is
4     access procedure (I : in out Integer);
5
6   type Access_To_Function is
7     access function (I : Integer) return Integer;
8
9end Access_To_Subprogram_Types;








show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use  Access_To_Subprogram_Types;
 5
 6procedure Show_Access_To_Subprogram_Error is
 7   Func : Access_To_Function;
 8
 9   function Add_One (I : Integer)
10            return Integer is
11     (I + 1);
12
13   Value : Integer := 0;
14begin
15   Func := Add_One'Unrestricted_Access;
16   --              ^^^^^^^^^^^^^^^^^^^
17   --       Allowing access to local function
18
19   Put_Line ("Value: " & Value'Image);
20   Value := Func (Value);
21   Put_Line ("Value: " & Value'Image);
22end Show_Access_To_Subprogram_Error;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Rules_Access_To_Subprograms.Unrestricted_Access
MD5: 90e2c57c01463cbe6efee6e093d01e5b








Runtime output



Value:  0
Value:  1







As we can see, the Unrestricted_Access attribute can be safely used
in this specific case to circumvent the accessibility rule limitation.






Access and Address

As we know, an access type is not a pointer, and it doesn't just indicate an
address in memory. In fact, to represent an address in Ada, we use
the Address type. Also, as we discussed earlier,
we can use operators such as <, >, + and - for
addresses. In contrast to that, those operators aren't available for access
types — except, of course, for = and /=.

In certain situations, however, we might need to convert between access types
and addresses. In this section, we discuss how to do so.


In the Ada Reference Manual


	13.3 Operational and Representation Attributes[#36]


	13.7 The Package System[#37]







Address and access conversion

The generic System.Address_To_Access_Conversions package allows us to
convert between access types and addresses. This might be useful for specific
low-level operations. Let's see an example:


show_address_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with System.Address_To_Access_Conversions;
 4with System.Address_Image;
 5
 6procedure Show_Address_Conversion is
 7
 8   package Integer_AAC is
 9     new System.Address_To_Access_Conversions
10       (Object => Integer);
11   use Integer_AAC;
12
13   subtype Integer_Access is
14     Integer_AAC.Object_Pointer;
15   --  This is similar to:
16   --
17   --  type Integer_Access is access all Integer;
18
19   I  : aliased Integer := 5;
20   AI : Integer_Access  := I'Access;
21begin
22   Put_Line ("I'Address : "
23             & System.Address_Image (I'Address));
24
25   Put_Line ("AI.all'Address : "
26             & System.Address_Image
27                 (AI.all'Address));
28
29   Put_Line ("To_Address (AI) : "
30             & System.Address_Image
31                 (To_Address (AI)));
32end Show_Address_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Address.Address_Conversion
MD5: 717532026247044a667b60f6c1e1c7da








Runtime output



I'Address : 00007FFD4132F434
AI.all'Address : 00007FFD4132F434
To_Address (AI) : 00007FFD4132F434







In this example, we instantiate the generic
System.Address_To_Access_Conversions package using Integer
as our target object type. This new package (Integer_AAC) has an
Object_Pointer type, which is equivalent to a declaration such as
type Integer_Access is access all Integer. (In this example, we
declare Integer_Access as a subtype of
Integer_AAC.Object_Pointer to illustrate that.)

The Integer_AAC package also includes the To_Address function,
which converts an access object to an address. If the actual parameter is
not null, To_Address returns the same information as if we were using
the Address attribute for the designated object. In other words,
To_Address (AI) = AI.all'Address when AI /= null.

If the access value is null, To_Address returns Null_Address,
while .all'Address makes the access check
fail because we have to dereference the access object (via .all) before
retrieving its address (via the Address attribute).

In addition to the To_Address function, the To_Pointer function
is available to convert from an address to an object of access type. For
example:


show_address_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System;      use System;
 3
 4with System.Address_To_Access_Conversions;
 5with System.Address_Image;
 6
 7procedure Show_Address_Conversion is
 8
 9   package Integer_AAC is
10     new System.Address_To_Access_Conversions
11       (Object => Integer);
12   use Integer_AAC;
13
14   subtype Integer_Access is
15     Integer_AAC.Object_Pointer;
16
17   I          : aliased Integer := 5;
18   AI_1, AI_2 : Integer_Access;
19   A          : Address;
20begin
21   AI_1 := I'Access;
22   A    := To_Address (AI_1);
23   AI_2 := To_Pointer (A);
24
25   Put_Line ("AI_1.all'Address : "
26             & System.Address_Image
27                 (AI_1.all'Address));
28   Put_Line ("AI_2.all'Address : "
29             & System.Address_Image
30                 (AI_2.all'Address));
31
32   if AI_1 = AI_2 then
33      Put_Line ("AI_1 = AI_2");
34   else
35      Put_Line ("AI_1 /= AI_2");
36   end if;
37end Show_Address_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Address.Address_Conversion
MD5: 5c6fc19ca1aa227feba97ea610dd9218








Runtime output



AI_1.all'Address : 00007FFEECEED46C
AI_2.all'Address : 00007FFEECEED46C
AI_1 = AI_2







Here, we convert the A address back to an access value by calling
To_Pointer (A). (When running this object, we see that AI_1
and AI_2 have the same access value.)


Conversion of unbounded designated types

Note that the conversions might not work in all cases. For instance,
when the designated type — indicated by the formal Object
parameter of the generic Address_To_Access_Conversions package
— is unbounded, the result of a call to To_Pointer may not
have bounds.

Let's adapt the previous code example and replace the Integer
type by the (unbounded) String type:


show_address_conversion.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2with System;      use System;
 3
 4with System.Address_To_Access_Conversions;
 5with System.Address_Image;
 6
 7procedure Show_Address_Conversion is
 8
 9   package String_AAC is
10     new System.Address_To_Access_Conversions
11       (Object => String);
12   use String_AAC;
13
14   subtype Integer_Access is
15     String_AAC.Object_Pointer;
16
17   S          : aliased String := "Hello";
18   AI_1, AI_2 : Integer_Access;
19   A          : Address;
20begin
21   AI_1 := S'Access;
22   A    := To_Address (AI_1);
23
24   AI_2 := To_Pointer (A);
25   --      ^^^^^^^^^^^^^^
26   --   WARNING: Result might not have bounds
27
28   Put_Line ("AI_1.all'Address : "
29             & System.Address_Image
30                 (AI_1.all'Address));
31   Put_Line ("AI_2.all'Address : "
32             & System.Address_Image
33                 (AI_2.all'Address));
34
35   if AI_1 = AI_2 then
36      Put_Line ("AI_1 = AI_2");
37   else
38      Put_Line ("AI_1 /= AI_2");
39   end if;
40
41   Put_Line ("AI_1: " & AI_1.all);
42   Put_Line ("AI_2: " & AI_2.all);
43   --                 ^^^^^^^^^^
44   --   WARNING: As AI_2 might not have bounds
45   --            due to the call to To_Pointer
46   --            the behavior of this call to
47   --            the "&" operator is
48   --            unpredictable.
49end Show_Address_Conversion;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Access_Address.Address_Conversion
MD5: b1adcaa1f2cb4dfbd157aebf7893bd72








Build output



show_address_conversion.adb:9:04: warning: in instantiation at s-atacco.ads:43 [enabled by default]
show_address_conversion.adb:9:04: warning: Object is unconstrained array type [enabled by default]
show_address_conversion.adb:9:04: warning: To_Pointer results may not have bounds [enabled by default]








Runtime output



AI_1.all'Address : 00007FFE11929348
AI_2.all'Address : 00007FFE11929348
AI_1 = AI_2
AI_1: Hello
AI_2: Hello







In this case, the call to To_Pointer (A) might not have bounds, so
any operation on AI_2 might lead to unpredictable results.


In the Ada Reference Manual


	13.7.2 The Package System.Address_To_Access_Conversions[#38]
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Anonymous Access Types


Named and Anonymous Access Types

The previous chapter dealt with access type declarations such as this one:

type Integer_Access is access all Integer;

procedure Add_One (A : Integer_Access);





In addition to named access type declarations such as the one in this example,
Ada also supports anonymous access types, which, as the name implies, don't
have an actual type declaration.

To declare an access object of anonymous type, we just specify the subtype of
the object or subprogram we want to have access to. For example:

procedure Add_One (A : access Integer);





When we compare this example with the previous one, we see that the declaration
A : Integer_Access becomes A : access Integer. Here,
access Integer is the anonymous access type declaration, and A is
an access object of this anonymous type.

To be more precise, A : access Integer is an
access parameter and it's
specifying an
anonymous access-to-object type.
Another flavor of anonymous access types are
anonymous access-to-subprograms.
We discuss all these topics in more details later.

Let's see a complete example:


show_anonymous_access_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Anonymous_Access_Types is
 4   I_Var : aliased Integer;
 5
 6   A     : access Integer;
 7   --      ^ Anonymous access type
 8begin
 9   A := I_Var'Access;
10   --   ^ Assignment to object of
11   --     anonymous access type.
12
13   A.all := 22;
14
15   Put_Line ("A.all: " & Integer'Image (A.all));
16end Show_Anonymous_Access_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Types.Simple_Anonymous_Access_Types
MD5: f0c92c76d970089c1d503c599d6869dd








Runtime output



A.all:  22







Here, A is an access object whose value is initialized with the access
to I_Var. Because the declaration of A includes the declaration
of an anonymous access type, we don't declare an extra Integer_Access
type, as we did in previous code examples.


In the Ada Reference Manual


	3.10 Access Types[#1]







Relation to named types

Anonymous access types were not part of the first version of the Ada standard,
which only had support for named access types. They were introduced later to
cover some use-cases that were difficult — or even impossible —
with access types.

In this sense, anonymous access types aren't just access types without names.
Certain accessibility rules for anonymous access types are a bit less strict.
In those cases, it might be interesting to consider using them instead of named
access types.

In general, however, we should only use anonymous access types in those
specific cases where using named access types becomes too cumbersome. As a
general recommendation, we should give preference to named access types
whenever possible. (Anonymous access-to-object types have
drawbacks that we discuss later.)



Benefits of anonymous access types

One of the main benefits of anonymous access types is their flexibility:
since there isn't an explicit access type declaration associated with them,
we only have to worry about the subtype S we intend to access.

Also, as long as the subtype S in a declaration access S is
always the same, no conversion is needed between two access objects of that
anonymous type, and the S'Access attribute always works.

Let's see an example:


show.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3procedure Show (Name : String;
4                V    : access Integer) is
5begin
6   Put_Line (Name & ".all: "
7             & Integer'Image (V.all));
8end Show;








show_anonymous_access_types.adb

 1with Show;
 2
 3procedure Show_Anonymous_Access_Types is
 4   I_Var : aliased Integer;
 5   A     : access Integer;
 6   B     : access Integer;
 7begin
 8   A := I_Var'Access;
 9   B := A;
10
11   A.all := 22;
12
13   Show ("A", A);
14   Show ("B", B);
15end Show_Anonymous_Access_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Types.Anonymous_Access_Object_Assignment
MD5: 2822ca0bd6ac251dccc1ced60747fbe1








Runtime output



A.all:  22
B.all:  22







In this example, we have two access objects A and B. Since
they're objects of anonymous access types that refer to the same subtype
Integer, we can assign A to B without a type conversion,
and pass those access objects as an argument to the Show procedure.

(Note that the use of an access parameter in the Show procedure is for
demonstration purpose only: a simply Integer as the type of this input
parameter would have been more than sufficient to implement the procedure.
Actually, in this case, avoiding the access parameter would be the recommended
approach in terms of clean Ada software design.)

In contrast, if we had used named type declarations, the code would be more
complicated and more limited:


aux.ads

1package Aux is
2
3   type Integer_Access is access all Integer;
4
5   procedure Show (Name : String;
6                   V    : Integer_Access);
7
8end Aux;








aux.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Aux is
 4
 5   procedure Show (Name : String;
 6                   V    : Integer_Access) is
 7   begin
 8      Put_Line (Name & ".all: "
 9                & Integer'Image (V.all));
10   end Show;
11
12end Aux;








show_anonymous_access_types.adb

 1with Aux; use Aux;
 2
 3procedure Show_Anonymous_Access_Types is
 4   --  I_Var : aliased Integer;
 5
 6   A : Integer_Access;
 7   B : Integer_Access;
 8begin
 9   --  A := I_Var'Access;
10   --       ^ ERROR: non-local pointer cannot
11   --                point to local object.
12
13   A := new Integer;
14   B := A;
15
16   A.all := 22;
17
18   Show ("A", A);
19   Show ("B", B);
20end Show_Anonymous_Access_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Types.Anonymous_Access_Object_Assignment
MD5: 681c2cf7f5e8d520490cc5594484ce69








Runtime output



A.all:  22
B.all:  22







Here, apart from the access type declaration (Integer_Access), we had to
make two adaptations to convert the previous code example:


	We had to move the Show procedure to a package (which we simply
called Aux) because of the access type declaration.


	Also, we had to allocate an object for A instead of retrieving the
access attribute of I_Var because we cannot use a pointer to a local
object in the assignment to a non-local pointer, as indicate in the
comments.




This restriction regarding non-local pointer assignments is an example of the
stricter accessibility rules that apply to named access types. As
mentioned earlier, the S'Access attribute always works when we use
anonymous access types — this is not always the case for named access
types.


Important


As mentioned earlier, if we want to use two access objects in an operation,
the rule says that the subtype S of the anonymous type used in their
corresponding declaration must match. In the following example, we can see
how this rule works:


show_anonymous_access_subtype_error.adb

 1procedure Show_Anonymous_Access_Subtype_Error is
 2   subtype Integer_1_10 is Integer range 1 .. 10;
 3
 4   I_Var : aliased Integer;
 5   A     : access Integer := I_Var'Access;
 6   B     : access Integer_1_10;
 7begin
 8   A := I_Var'Access;
 9
10   B := A;
11   --  ^ ERROR: subtype doesn't match!
12
13   B := I_Var'Access;
14   --  ^ ERROR: subtype doesn't match!
15end Show_Anonymous_Access_Subtype_Error;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Types.Anonymous_Access_Subtype_Error
MD5: cecfe703ea8b42bad61c45f33cbcb67b








Build output



show_anonymous_access_subtype_error.adb:10:09: error: target designated subtype not compatible with type "Standard.Integer"
show_anonymous_access_subtype_error.adb:13:09: error: object subtype must statically match designated subtype
gprbuild: *** compilation phase failed










Even though Integer_1_10 is a subtype of Integer, we cannot
assign A to B because the subtype that their access type
declarations refer to — Integer and Integer_1_10,
respectively — doesn't match. The same issue occurs when
retrieving the access attribute of I_Var in the assignment to
B.



The later sections on
anonymous access-to-object type
and
anonymous access-to-subprograms
cover more specific details on anonymous access types.




Anonymous Access-To-Object Types

In the
previous chapter, we introduced
named access-to-object types and used those types throughout the chapter. Also,
in the previous section, we've seen
some simple examples of anonymous access-to-object types:

procedure Add_One (A : access Integer);
--                     ^ Anonymous access type

A : access Integer;
--  ^ Anonymous access type





In addition to parameters and objects, we can use anonymous access types in
discriminants, components of array and record types, renamings and function
return types. (We discuss
anonymous access discriminants
and anonymous access parameters
later on.) Let's see a code example that includes all these cases:


all_anonymous_access_to_object_types.ads

 1package All_Anonymous_Access_To_Object_Types is
 2
 3   procedure Add_One (A : access Integer) is null;
 4   --                     ^ Anonymous access type
 5
 6   AI : access Integer;
 7   --  ^ Anonymous access type
 8
 9   type Rec (AI : access Integer) is private;
10   --             ^ Anonymous access type
11
12   type Access_Array is
13      array (Positive range <>) of
14        access Integer;
15   --   ^ Anonymous access type
16
17   Arr : array (1 .. 5) of access Integer;
18   --                      ^ Anonymous access type
19
20   AI_Renaming : access Integer renames AI;
21   --            ^ Anonymous access type
22
23   function Init_Access_Integer
24     return access Integer is (null);
25   --       ^ Anonymous access type
26
27private
28
29   type Rec (AI : access Integer) is record
30   --             ^ Anonymous access type
31      Internal_AI : access Integer;
32   --               ^ Anonymous access type
33
34   end record;
35
36end All_Anonymous_Access_To_Object_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.All_Anonymous_Access_To_Object_Types
MD5: 6533b22a4e4526702320cb327bf6f69a







In this example, we see multiple examples of anonymous access-to-object types:


	as the A parameter of the Add_One procedure;


	in the declaration of the AI access object;


	as the AI discriminant of the Rec type;


	as the component type of the Access_Array type;


	as the component type of the Arr array;


	in the AI_Renaming renaming;


	as the return type of the Init_Access_Integer;


	as the Internal_AI of component of the Rec type.
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Not Null Anonymous Access-To-Object Types

As expected, null is a valid value for an anonymous access type.
However, we can forbid null as a valid value by using
not null in the anonymous access type declaration. For example:


all_anonymous_access_to_object_types.ads

 1package All_Anonymous_Access_To_Object_Types is
 2
 3   procedure Add_One (A : not null access Integer)
 4     is null;
 5   --                     ^ Anonymous access type
 6
 7   I : aliased Integer;
 8
 9   AI : not null access Integer := I'Access;
10   --   ^ Anonymous access type
11   --                              ^^^^^^^^
12   --              Initialization required!
13
14   type Rec (AI : not null access Integer) is
15      private;
16   --             ^ Anonymous access type
17
18   type Access_Array is
19      array (Positive range <>) of
20        not null access Integer;
21   --   ^ Anonymous access type
22
23   Arr : array (1 .. 5) of
24     not null access Integer :=
25   --  ^ Anonymous access type
26       (others => I'Access);
27   --   ^^^^^^^^^^^^^^^^^^
28   --         Initialization required!
29
30   AI_Renaming : not null access Integer
31     renames AI;
32   --            ^ Anonymous access type
33
34   function Init_Access_Integer
35     return not null access Integer is (I'Access);
36   --       ^ Anonymous access type
37   --                                   ^^^^^^^^
38   --                   Initialization required!
39
40private
41
42   type Rec (AI : not null access Integer) is
43   record
44   --             ^ Anonymous access type
45      Internal_AI : not null access Integer;
46   --               ^ Anonymous access type
47
48   end record;
49
50end All_Anonymous_Access_To_Object_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.All_Not_Null_Anonymous_Access_To_Object_Types
MD5: 027430aa9d5e19979206110f5e260d13







As you might have noticed, we took the previous code example and used
not null for each usage instance of the anonymous access type.
In this sense, this version of the code example is very similar to the previous
one. Note, however, that we now have to explicitly initialize some elements
to avoid the Constraint_Error exception being raised at runtime. This
is the case for example for the AI access object:

AI : not null access Integer := I'Access;





If we hadn't initialized AI explicitly with I'Access, it would
have been set to null, which would fail the not null constraint
of the anonymous access type. Similarly, we also have to initialize the
Arr array and return a valid access object for the
Init_Access_Integer function.



Drawbacks of Anonymous Access-To-Object Types

Anonymous access-to-object types have important drawbacks. For example, some
features that are available for named access types aren't available for the
anonymous access types. Also, most of the drawbacks are related to how
anonymous access-to-object types can potentially make the allocation and
deallocation quite complicated or even error-prone.

For starters, some pool-related features aren't available for anonymous
access-to-object types. For example, we cannot specify which pool is going to
be used in the allocation of an anonymous access-to-object. In fact, the memory
pool selection is compiler-dependent, so we cannot rely on an object being
allocated from a specific pool when using new with an anonymous
access-to-object type. (In contrast, as we know, each named access type has an
associated pool, so objects allocated via new will be allocated from
that pool.) Also, we cannot identify which pool was selected for the allocation
of a specific object, so we don't have any information to use for the
deallocation of that object.

Because the pool selection is hidden from us, this makes the memory
deallocation more complicated. For example, we cannot instantiate the
Ada.Unchecked_Deallocation procedure for anonymous access types. Also,
some of the methods we could use to circumvent this limitation are error-prone,
as we discuss in this section.

Also, storage-related features aren't available: specifying the storage size
— especially, specifying that the access type has a storage size of zero
— isn't possible.


Missing features

Let's see a code example that shows some of the features that aren't available
for anonymous access-to-object types:


missing_features.ads

 1with Ada.Unchecked_Deallocation;
 2
 3package Missing_Features is
 4
 5   --  We cannot specify which pool will be used
 6   --  in the anonymous access-to-object
 7   --  allocation; the pool is selected by the
 8   --  compiler:
 9   IA : access Integer := new Integer;
10
11   --
12   --  All the features below aren't available
13   --  for an anonymous access-to-object:
14   --
15
16   --  Having a specific storage pool associated
17   --  with the access type:
18   type String_Access is
19     access String;
20   --  Automatically creates
21   --  String_Access'Storage_Pool
22
23   type Integer_Access is
24     access Integer
25       with Storage_Pool =>
26              String_Access'Storage_Pool;
27   --       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
28   --         Using the pool from another
29   --         access type.
30
31   --  Specifying a deallocation function for the
32   --  access type:
33   procedure Free is
34     new Ada.Unchecked_Deallocation
35       (Object => Integer,
36        Name   => Integer_Access);
37
38   --  Specifying a limited storage size for
39   --  the access type:
40   type Integer_Access_Store_128 is
41      access Integer
42        with Storage_Size => 128;
43
44   --  Limiting the storage size for the
45   --  access type to zero:
46   type Integer_Access_Store_0 is
47      access Integer
48        with Storage_Size => 0;
49
50end Missing_Features;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Missing_Anonymous_Access_To_Object_Features
MD5: 87a5c1413a720da84fab414cf63236ec







In the Missing_Features package, we see some of the features that we
cannot use for the anonymous access Integer type, but that are available
for equivalent named access types:


	There's no specific memory pool associated with the access object IA.
In contrast, named types — such as String_Access and
Integer_Access — have an associated pool, and we can use the
Storage_Pool aspect and the Storage_Pool attribute to
customize them.


	We cannot instantiate the Ada.Unchecked_Deallocation procedure for
the access Integer type. However, we can instantiate it for named
access types such as the Integer_Access type.


	We cannot use the Storage_Size attribute for the access Integer
type, but we're allowed to use it with named access types, which we do in the
declaration of the Integer_Access_Store_128 and
Integer_Access_Store_0 types.






Dangerous memory deallocation

We might think that we could make up for the absence of the
Ada.Unchecked_Deallocation procedure for anonymous access-to-object
types by converting those access objects (of anonymous access types) to a named
type that has the same designated subtype. For example, if we have an access
object IA of an anonymous access Integer type, we can convert it
to the named Integer_Access type, provided this named access type is
compatible with the anonymous access type, e.g.:

type Integer_Access is access all Integer





Let's see a complete code example:


show_dangerous_deallocation.adb

 1with Ada.Unchecked_Deallocation;
 2
 3procedure Show_Dangerous_Deallocation is
 4   type Integer_Access is
 5      access all Integer;
 6
 7   procedure Free is
 8     new Ada.Unchecked_Deallocation
 9       (Object => Integer,
10        Name   => Integer_Access);
11
12   IA : access Integer;
13begin
14   IA := new Integer;
15   IA.all := 30;
16
17   --  Potentially erroneous deallocation via type
18   --  conversion:
19   Free (Integer_Access (IA));
20
21end Show_Dangerous_Deallocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Deallocation_Anonymous_Access_To_Object_Erronoeus
MD5: 91e024a4338e2e4f8d5b308d95499c1c







This example declares the IA access object of the anonymous
access Integer type. After allocating an object for IA via
new, we try to deallocate it by first converting it to the
Integer_Access type, so that we can call the Free procedure to
actually deallocate the object. Although this code compiles, it'll only work
if both access Integer and Integer_Access types are using the
same memory pool. Since we cannot really determine this, the result is
potentially erroneous: it'll work if the compiler selected the same pool, but
it'll fail otherwise.


Important

Because allocating memory for anonymous access types is potentially
dangerous, we can use the No_Anonymous_Allocators restriction
— which is available since Ada 2012 — to prevent this kind
of memory allocation being used in the code. For example:


show_dangerous_allocation.adb

1pragma Restrictions (No_Anonymous_Allocators);
2
3procedure Show_Dangerous_Allocation is
4   IA : access Integer;
5begin
6   IA := new Integer;
7   IA.all := 30;
8end Show_Dangerous_Allocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.No_Anonymous_Allocators
MD5: 0976821ce632f9635e33fd4f79c81ecd








Build output



show_dangerous_allocation.adb:6:10: error: violation of restriction "No_Anonymous_Allocators" at line 1
gprbuild: *** compilation phase failed











Possible solution using named access types

A better solution to avoid issues when allocating and deallocating memory
for anonymous access-to-object types is to allocate the object using a known
pool. As mentioned before, the memory pool associated with a named access
type is well-defined, so we can use this kind of types for memory allocation.
In fact, we can use a named memory type to allocate an object via new,
and then associate this allocated object with the access object of anonymous
access type.

Let's see a code example:


show_successful_deallocation.adb

 1with Ada.Unchecked_Deallocation;
 2
 3procedure Show_Successful_Deallocation is
 4
 5   type Integer_Access is
 6      access Integer;
 7
 8   procedure Free is
 9     new Ada.Unchecked_Deallocation
10       (Object => Integer,
11        Name   => Integer_Access);
12
13   IA       : access Integer;
14   Typed_IA : Integer_Access;
15
16begin
17   Typed_IA := new Integer;
18   IA := Typed_IA;
19   IA.all := 30;
20
21   --  Deallocation of the access object that has
22   --  an associated type:
23   Free (Typed_IA);
24
25end Show_Successful_Deallocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Deallocation_Anonymous_Access_To_Object_1
MD5: eff8b54adfcc8cce10920dc3620ff1b9







In this example, all operations related to memory allocation are exclusively
making use of the Integer_Access type, which is a named access type.
In fact, new Integer allocates the object from the pool associated with
the Integer_Access type, and the call to Free deallocates this
object back into that pool. Therefore, associating this object with the
IA access object — in the IA := Typed_IA assignment —
doesn't creates problems afterwards in the object's deallocation. (When calling
Free, we only refer to the object of named access type, so the object
is deallocated from a known pool.)

Of course, a potential issue here is that IA becomes a
dangling reference after the call to
Free. Therefore, we can improve this solution by completely hiding
the memory allocation and deallocation for the anonymous access types in
subprograms — e.g. as part of a package. By doing so, we don't expose
the named access type, thereby reducing the possibility of dangling references.

In fact, we can generalize this approach with the following (generic) package:


hidden_anonymous_allocation.ads

 1generic
 2   type T is private;
 3package Hidden_Anonymous_Allocation is
 4
 5   function New_T
 6     return not null access T;
 7
 8   procedure Free (Obj : access T);
 9
10end Hidden_Anonymous_Allocation;








hidden_anonymous_allocation.adb

 1with Ada.Unchecked_Deallocation;
 2
 3package body Hidden_Anonymous_Allocation is
 4
 5   type T_Access is access all T;
 6
 7   procedure T_Access_Free is
 8     new Ada.Unchecked_Deallocation
 9       (Object => T,
10        Name   => T_Access);
11
12   function New_T
13     return not null access T is
14   begin
15      return T_Access'(new T);
16      --  Using allocation of the T_Access type:
17      --  object is allocated from T_Access's pool
18   end New_T;
19
20   procedure Free (Obj : access T) is
21      Tmp : T_Access := T_Access (Obj);
22   begin
23      T_Access_Free (Tmp);
24      --  Using deallocation procedure of the
25      --  T_Access type
26   end Free;
27
28end Hidden_Anonymous_Allocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Hidden_Alloc_Dealloc_Anonymous_Access_To_Object
MD5: bd3831829f34f06a1d3c25a975c850a3







In the generic Hidden_Anonymous_Allocation package, New_T
allocates a new object internally and returns an anonymous access to this
object. The Free procedure deallocates this object.

In the body of the Hidden_Anonymous_Allocation package, we use the named
access type T_Access to handle the actual memory allocation and
deallocation. As expected, because those operations happen on the pool
associated with the T_Access type, we don't have to worry about
potential deallocation issues.

Finally, we can instantiate this package for the type we want to have
anonymous access types for, say a type named Rec. Then, when using
the Rec type in the main subprogram, we can simply call the
corresponding subprograms for memory allocation and deallocation. For
example:


info.ads

 1with Hidden_Anonymous_Allocation;
 2
 3package Info is
 4
 5   type Rec is private;
 6
 7   function New_Rec return not null access Rec;
 8
 9   procedure Free (Obj : access Rec);
10
11private
12
13   type Rec is record
14      I : Integer;
15   end record;
16
17   package Rec_Allocation is new
18     Hidden_Anonymous_Allocation (T => Rec);
19
20   function New_Rec return not null access Rec
21     renames Rec_Allocation.New_T;
22
23   procedure Free (Obj : access Rec)
24     renames Rec_Allocation.Free;
25
26end Info;








show_info_allocation_deallocation.adb

1with Info; use Info;
2
3procedure Show_Info_Allocation_Deallocation is
4   RA : constant not null access Rec := New_Rec;
5begin
6   Free (RA);
7end Show_Info_Allocation_Deallocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Hidden_Alloc_Dealloc_Anonymous_Access_To_Object
MD5: d71e8ed70e280c6d5d9fc2d49c1eb6c3







In this example, we instantiate the Hidden_Anonymous_Allocation package
in the Info package, which also defines the Rec type. We
associate the  New_T and Free subprograms with the Rec
type by using subprogram renaming. Finally, in the
Show_Info_Allocation_Deallocation procedure, we use these subprograms
to allocate and deallocate the type.



Possible solution using the stack

Another approach that we could consider to avoid memory deallocation issues
for anonymous access-to-object types is by simply using the stack for the
object creation. For example:


show_automatic_deallocation.adb

 1procedure Show_Automatic_Deallocation is
 2   I  : aliased Integer;
 3   --   ^ Allocating object on the stack
 4
 5   IA : access Integer;
 6begin
 7   IA := I'Access;
 8   --  Indirect allocation:
 9   --  object creation on the stack.
10
11   IA.all := 30;
12
13   --  Automatic deallocation at the end of the
14   --  procedure because the integer variable is
15   --  on the stack.
16end Show_Automatic_Deallocation;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Object_Types.Deallocation_Anonymous_Access_To_Object_2
MD5: 4381db8ba87717978a9629b1e6a5f1fc







In this case, we create the I object on the stack by simply declaring
it. Then, we get access to it and assign it to the IA access object.

With this approach, we're indirectly allocating an object for an anonymous
access type by creating it on the stack. Also, because we know that the
I is automatically deallocated when it gets out of scope, we don't
have to worry about explicitly deallocating the object referred by
IA.



When to use anonymous access-to-objects types

In summary, anonymous access-to-object types have many drawbacks that often
outweigh their benefits. In fact,
allocation for those types can quickly become very complicated. Therefore, in
general, they're not a good alternative to named access types. Indeed, the
difficulties that we've just seen might make them a much worse option than
just using named access types instead.

We might consider using anonymous access-to-objects types only in cases when we
reach a point in our implementation work where using named access types becomes
impossible — or when using them becomes even more complicated than
equivalent solutions using anonymous access types. This scenario, however, is
usually the exception rather than the rule. Thus, as a general guideline, we
should always aim to use named access types.

That being said, an important exception to this advice is when we're
interfacing to other languages.
In this case, as we'll discuss later, using anonymous access-to-objects types
can be significantly simpler (compared to named access types) without the
drawbacks that we've just discussed.





Access discriminants

Previously, we've discussed
discriminants as access values.
In that section, we only used named access types. Now, in this section, we see
how to use anonymous access types as discriminants. This feature is also known
as access discriminants and it provides some flexibility that can be
interesting in terms of software design, as we'll discuss later.

Let's start with an example:


custom_recs.ads

 1package Custom_Recs is
 2
 3   --  Declaring a discriminant with an anonymous
 4   --  access type:
 5   type Rec (IA : access Integer) is record
 6      I : Integer := IA.all;
 7   end record;
 8
 9   procedure Show (R : Rec);
10
11end Custom_Recs;








custom_recs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Recs is
 4
 5   procedure Show (R : Rec) is
 6   begin
 7      Put_Line ("R.IA = "
 8                & Integer'Image (R.IA.all));
 9      Put_Line ("R.I  = "
10                & Integer'Image (R.I));
11   end Show;
12
13end Custom_Recs;








show_access_discriminants.adb

 1with Custom_Recs; use Custom_Recs;
 2
 3procedure Show_Access_Discriminants is
 4   I  : aliased Integer := 10;
 5   R  : Rec (I'Access);
 6begin
 7   Show (R);
 8
 9   I   := 20;
10   R.I := 30;
11   Show (R);
12end Show_Access_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Simple_Example
MD5: f8e127fda4f7ea0f1593165d6a966df6








Runtime output



R.IA =  10
R.I  =  10
R.IA =  20
R.I  =  30







In this example, we use an anonymous access type for the discriminant in the
declaration of the Rec type of the Custom_Recs package. In the
Show_Access_Discriminants procedure, we declare R and provide
access to the local I integer.

Similarly, we can use unconstrained designated subtypes:


persons.ads

 1package Persons is
 2
 3   --  Declaring a discriminant with an anonymous
 4   --  access type whose designated subtype is
 5   --  unconstrained:
 6   type Person (Name : access String) is record
 7      Age : Integer;
 8   end record;
 9
10   procedure Show (P : Person);
11
12end Persons;








persons.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Persons is
 4
 5   procedure Show (P : Person) is
 6   begin
 7      Put_Line ("Name = "
 8                & P.Name.all);
 9      Put_Line ("Age  = "
10                & Integer'Image (P.Age));
11   end Show;
12
13end Persons;








show_person.adb

1with Persons; use Persons;
2
3procedure Show_Person is
4   S : aliased String := "John";
5   P : Person (S'Access);
6begin
7   P.Age := 30;
8   Show (P);
9end Show_Person;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Persons
MD5: f0149d572e0ec192476836bfdf00dd9e








Runtime output



Name = John
Age  =  30







In this example, for the discriminant of the Person type, we use an
anonymous access type whose designated subtype is unconstrained. In the
Show_Person procedure, we declare the P object and provide
access to the S string.
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Default Value of Access Discriminants

In contrast to named access types, we cannot use a default value for the
access discriminant of a non-limited type:


custom_recs.ads

 1package Custom_Recs is
 2
 3   --  Declaring a discriminant with an anonymous
 4   --  access type and a default value:
 5   type Rec (IA : access Integer :=
 6                    new Integer'(0)) is
 7   record
 8      I : Integer := IA.all;
 9   end record;
10
11end Custom_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Default_Expression_Non_Limited_Type
MD5: c3ddf1cdfdaefa873ad66b9e47e03058








Build output



custom_recs.ads:6:21: warning: coextension will not be deallocated when its associated owner is deallocated [enabled by default]
custom_recs.ads:6:21: error: (Ada 2005) access discriminants of nonlimited types cannot have defaults
gprbuild: *** compilation phase failed







However, if we change the type declaration to be a limited type, having a
default value for the access discriminant is OK:


custom_recs.ads

 1package Custom_Recs is
 2
 3   --  Declaring a discriminant with an anonymous
 4   --  access type and a default value:
 5   type Rec (IA : access Integer :=
 6                    new Integer'(0)) is limited
 7   record
 8      I : Integer := IA.all;
 9   end record;
10
11   procedure Show (R : Rec);
12
13end Custom_Recs;








custom_recs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Recs is
 4
 5   procedure Show (R : Rec) is
 6   begin
 7      Put_Line ("R.IA = "
 8                & Integer'Image (R.IA.all));
 9      Put_Line ("R.I  = "
10                & Integer'Image (R.I));
11   end Show;
12
13end Custom_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Default_Expression_Limited_Type
MD5: ae872f1dec64b8e955f04789ca4db218








Build output



custom_recs.ads:6:21: warning: coextension will not be deallocated when its associated owner is deallocated [enabled by default]







Note that, if we don't provide a value for the access discriminant when
declaring an object R, the default value is allocated (via new)
during R's creation.


show_access_discriminants.adb

 1with Custom_Recs; use Custom_Recs;
 2
 3procedure Show_Access_Discriminants is
 4   R : Rec;
 5   --  ^^^
 6   --  This triggers "new Integer'(0)", so an
 7   --  integer object is allocated and stored in
 8   --  the R.IA discriminant.
 9begin
10   Show (R);
11
12   --  R gets out of scope here, and the object
13   --  allocated via new hasn't been deallocated.
14end Show_Access_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Default_Expression_Limited_Type
MD5: f5d9dee26044ccab2193ab419638de79








Build output



custom_recs.ads:6:21: warning: coextension will not be deallocated when its associated owner is deallocated [enabled by default]








Runtime output



R.IA =  0
R.I  =  0







In this case, the allocated object won't be deallocated when R gets out
of scope!



Benefits of Access Discriminants

Access discriminants have the same benefits that we've already seen
earlier while discussing
discriminants as access values.
An additional benefit is its extended flexibility: access discriminants are
compatible with any access T'Access, as long as T is of the
designated subtype.

Consider the following example using the named access type
Access_String:


persons.ads

 1package Persons is
 2
 3   type Access_String is access all String;
 4
 5   --  Declaring a discriminant with a named
 6   --  access type:
 7   type Person (Name : Access_String) is record
 8      Age : Integer;
 9   end record;
10
11   procedure Show (P : Person);
12
13end Persons;








persons.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Persons is
 4
 5   procedure Show (P : Person) is
 6   begin
 7      Put_Line ("Name = "
 8                & P.Name.all);
 9      Put_Line ("Age  = "
10                & Integer'Image (P.Age));
11   end Show;
12
13end Persons;








show_person.adb

 1with Persons; use Persons;
 2
 3procedure Show_Person is
 4   S : aliased String := "John";
 5   P : Person (S'Access);
 6   --          ^^^^^^^^ ERROR: cannot use local
 7   --                          object
 8   --
 9   --  We can, however, allocate the string via
10   --  new:
11   --
12   --  S : Access_String := new String'("John");
13   --  P : Person (S);
14begin
15   P.Age := 30;
16   Show (P);
17end Show_Person;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Persons
MD5: e918db3790c7ffeeb7c0f54ced9f48b9








Build output



show_person.adb:5:16: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed







This code doesn't compile because we cannot have a non-local pointer
(Access_String) pointing to the local object S. The only way
to make this work is by allocating the string via new
(i.e.: S : Access_String := new String).

However, if we use an access discriminant in the declaration of Person,
the code compiles fine:


persons.ads

 1package Persons is
 2
 3   --  Declaring a discriminant with an anonymous
 4   --  access type:
 5   type Person (Name : access String) is record
 6      Age : Integer;
 7   end record;
 8
 9   procedure Show (P : Person);
10
11end Persons;








show_person.adb

 1with Persons; use Persons;
 2
 3procedure Show_Person is
 4   S : aliased String := "John";
 5   P : Person (S'Access);
 6   --          ^^^^^^^^ OK
 7
 8   --  Allocating the string via new and using it
 9   --  in P's declaration is OK as well, but we
10   --  should manually deallocate it before S
11   --  gets out of scope:
12   --
13   --  S : access String := new String'("John");
14   --  P : Person (S);
15begin
16   P.Age := 30;
17   Show (P);
18end Show_Person;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Persons
MD5: 6516fb4e0cbbac9cfe07a56e48ea9ff3








Runtime output



Name = John
Age  =  30







In this case, getting access to the local object S and using it for
P's discriminant is perfectly fine.



Preventing dangling pointers

Note that the usual rules that prevent dangling pointers still apply here.
This ensures that we can safely use access discriminants. For example:


show_person.adb

 1with Persons; use Persons;
 2
 3procedure Show_Person is
 4
 5   function Local_Init return Person is
 6      S : aliased String := "John";
 7   begin
 8      return (Name => S'Access, Age => 30);
 9      --      ^^^^^^^^^^^^^^^^
10      --      ERROR: dangling reference!
11   end Local_Init;
12
13   P : Person := Local_Init;
14begin
15   Show (P);
16end Show_Person;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Access_Discriminants.Persons
MD5: 9c8d2aebf60b8bb19e455cb6bc5730eb








Build output



show_person.adb:8:07: error: access discriminant in return object would be a dangling reference
gprbuild: *** compilation phase failed







In this example, compilation fails in the Local_Init function when
trying to return an object of Person type because S'Access
would be a dangling reference.




Self-reference

Previously, we've seen that we can declare
self-references using named access
types. We can do the same with anonymous access types. Let's revisit the code
example that implements linked lists:


linked_lists.ads

 1generic
 2   type T is private;
 3package Linked_Lists is
 4
 5   type List is limited private;
 6
 7   procedure Append_Front
 8      (L : in out List;
 9       E :        T);
10
11   procedure Append_Rear
12      (L : in out List;
13       E :        T);
14
15   procedure Show (L : List);
16
17private
18
19   type Component is record
20      Next  : access Component;
21      --      ^^^^^^^^^^^^^^^^
22      --       Self-reference
23      --
24      --       (Note that we haven't finished the
25      --       declaration of the "Component" type
26      --       yet, but we're already referring to
27      --       it.)
28
29      Value : T;
30   end record;
31
32   type List is access all Component;
33
34end Linked_Lists;








linked_lists.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Linked_Lists is
 4
 5   procedure Append_Front
 6      (L : in out List;
 7       E :        T)
 8   is
 9      New_First : constant List := new
10        Component'(Value => E,
11                   Next  => L);
12   begin
13      L := New_First;
14   end Append_Front;
15
16   procedure Append_Rear
17      (L : in out List;
18       E :        T)
19   is
20      New_Last : constant List := new
21        Component'(Value => E,
22                   Next  => null);
23   begin
24      if L = null then
25         L := New_Last;
26      else
27         declare
28            Last : List := L;
29         begin
30            while Last.Next /= null loop
31               Last := List (Last.Next);
32               --      ^^^^
33               --   type conversion:
34               --      "access Component" to
35               --      "List"
36            end loop;
37            Last.Next := New_Last;
38         end;
39      end if;
40   end Append_Rear;
41
42   procedure Show (L : List) is
43      Curr : List := L;
44   begin
45      if L = null then
46         Put_Line ("[ ]");
47      else
48         Put ("[");
49         loop
50            Put (Curr.Value'Image);
51            Put (" ");
52            exit when Curr.Next = null;
53            Curr := Curr.Next;
54         end loop;
55         Put_Line ("]");
56      end if;
57   end Show;
58
59end Linked_Lists;








test_linked_list.adb

 1with Linked_Lists;
 2
 3procedure Test_Linked_List is
 4    package Integer_Lists is new
 5      Linked_Lists (T => Integer);
 6    use Integer_Lists;
 7
 8    L : List;
 9begin
10    Append_Front (L, 3);
11    Append_Rear (L, 4);
12    Append_Rear (L, 5);
13    Append_Front (L, 2);
14    Append_Front (L, 1);
15    Append_Rear (L, 6);
16    Append_Rear (L, 7);
17
18    Show (L);
19end Test_Linked_List;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Self_Reference.Linked_List_Example
MD5: 98b9b2ce6fac3064326e6345520dc650








Runtime output



[ 1  2  3  4  5  6  7 ]







Here, in the declaration of the Component type (in the private part of
the generic Linked_Lists package), we declare Next as an
anonymous access type that refers to the Component type. (Note that
at this point, we haven't finished the declaration of the Component
type yet, but we're already using it as the designated subtype of an anonymous
access type.) Then, we declare List as a general access type (with
Component as the designated subtype).

It's worth mentioning that the List type and the anonymous
access Component type aren't the same type, although they share the same
designated subtype. Therefore, in the implementation of the Append_Rear
procedure, we have to use type conversion to convert from the anonymous
access Component type to the (named) List type.



Mutually dependent types using anonymous access types

In the section on
mutually dependent types using access types,
we've seen a code example that was using named access types. We could now
rewrite it using anonymous access types:


mutually_dependent.ads

 1package Mutually_Dependent is
 2
 3   type T2;
 4
 5   type T1 is record
 6      B : access T2;
 7   end record;
 8
 9   type T2 is record
10      A : access T1;
11   end record;
12
13end Mutually_Dependent;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Mutually_Dependent_Anonymous_Access_Types.Example
MD5: 09f869d99b9c16882554588bb806a113







In this example, T1 and T2 are mutually dependent types. We're
using anonymous access types in the declaration of the B and A
components.



Access parameters

In the previous chapter, we talked about
parameters as access values. As
you might have expected, we can also use anonymous access types as parameters
of a subprogram. However, they're limited to be in parameters of a
subprogram or return type of a function (also called the access result type):


names.ads

 1package Names is
 2
 3   function Init (S1, S2 : String)
 4                  return access String;
 5   --             ^^^^^^^^^^^^^^^^^^^^
 6   --  Anonymous access type as the access
 7   --  result type.
 8
 9   procedure Show (N : access constant String);
10   --                  ^^^^^^^^^^^^^^^^^^^^^^
11   --  Anonymous access type as a parameter type.
12
13end Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.Names
MD5: 622a76c4b133ed2715f18c175694cbe2







In this example, we have a string as the access result type of the
Init function, and another string as the access parameter of the
Show procedure.

This is the complete code example:


names.ads

 1package Names is
 2
 3   function Init (S1, S2 : String)
 4                  return access String;
 5
 6   procedure Show (N : access constant String);
 7
 8private
 9
10   function Init (S1, S2 : String)
11                  return access String is
12     (new String'(S1 & "-" & S2));
13
14end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Names is
 4
 5   procedure Show (N : access constant String) is
 6   begin
 7      Put_Line ("Name: " & N.all);
 8   end Show;
 9
10end Names;








show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   N : access String := Init ("Lily", "Ann");
5begin
6   Show (N);
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.Names
MD5: 9fe629f29de2898f2b82d9146b22fd1a








Runtime output



Name: Lily-Ann







Note that we're not using the in parameter mode in the
Show procedure above. Usually, this parameter mode can be omitted,
as it is the default parameter mode — procedure P (I : Integer)
is the same as procedure P (I : in Integer). However, in the case of
the Show procedure, the in parameter mode isn't just optionally
absent. In fact, for access parameters, the parameter mode is always implied
as in, so writing it explicitly is actually forbidden. In other words,
we can only write N : access String or
N : access constant String, but we cannot write
N : in access String or N : in access constant String.


For further reading...

When we discussed
parameters as access values
in the previous chapter, we saw how we can simply use different
parameter modes to write a program instead of using access types.
Basically, to implement the same functionality, we just replaced the access
types by selecting the correct parameter modes instead and used simpler
data types.

Let's do the same exercise again, this time by adapting the previous code
example with anonymous access types:


names.ads

 1package Names is
 2
 3   function Init (S1, S2 : String)
 4                  return String;
 5
 6   procedure Show (N : String);
 7
 8private
 9
10   function Init (S1, S2 : String)
11                  return String is
12     (S1 & "-" & S2);
13
14end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Names is
 4
 5   procedure Show (N : String) is
 6   begin
 7      Put_Line ("Name: " & N);
 8   end Show;
 9
10end Names;








show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   N : String := Init ("Lily", "Ann");
5begin
6   Show (N);
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.Names_String
MD5: 643f193999ef8de9bcefb11d9bdd21d7








Runtime output



Name: Lily-Ann







Although we're using simple strings instead of access types in this version
of the code example, we're still getting a similar behavior. However, there
is a small, yet important difference in the way the string returned by
Init is being allocated: while the previous implementation (which
was using an access result type) was allocating the string on the heap,
we're now allocating the string on the stack.



Later on, we talk about the
accessibility rules in the case of access parameters.

In general, we should avoid access parameters whenever possible and simply use
objects and parameter modes directly, as it makes the design simpler and less
error-prone. One exception is when we're interfacing to other languages,
especially C: this is our
next topic.
Another time when access parameters are vital is for inherited primitive
operations for tagged types. We discuss this
later on.
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Interfacing To Other Languages

We can use access parameters to interface to other languages. This can be
particularly useful when interfacing to C code that makes use of pointers.
For example, let's assume we want to call the add_one function below in
our Ada implementation:


operations_c.h

1void add_one(int *p_i);








operations_c.c

1void add_one(int *p_i)
2{
3    *p_i = *p_i + 1;
4}








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: 3270f3b2415266a203a6f4c605c3831b







We could map the int * parameter of add_one to
access Integer in the Ada specification:

procedure Add_One (IA : access Integer)
  with Import, Convention => C;





This is a complete code example:


operations.ads

1package Operations is
2
3   procedure Add_One (IA : access Integer)
4     with Import, Convention => C;
5
6end Operations;








show_operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Operations;  use Operations;
 4
 5procedure Show_Operations is
 6   I : aliased Integer := 42;
 7begin
 8   Put_Line (I'Image);
 9   Add_One (I'Access);
10   Put_Line (I'Image);
11end Show_Operations;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: 0219acdbd2dad69962875199ffdd930e







Once again, we can replace access parameters with simpler types by using the
appropriate parameter mode. In this case, we could replace
access Integer by aliased in out Integer. This is the modified
version of the code:


operations.ads

1package Operations is
2
3   procedure Add_One
4    (IA : aliased in out Integer)
5       with Import, Convention => C;
6
7end Operations;








show_operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Operations;  use Operations;
 4
 5procedure Show_Operations is
 6   I : aliased Integer := 42;
 7begin
 8   Put_Line (I'Image);
 9   Add_One (I);
10   Put_Line (I'Image);
11end Show_Operations;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: 2c5a81b8d77f0fff8a73f7912be6b6fe







However, there are situations where aliased objects cannot be used. For
example, suppose we want to allocate memory inside a C function. In this case,
the pointer to that memory block must be mapped to an access type in Ada.

Let's extend the previous C code example and introduce the alloc_integer
and dealloc_integer functions, which allocate and deallocate an integer
value:


operations_c.h

1int * alloc_integer();
2
3void dealloc_integer(int *p_i);
4
5void add_one(int *p_i);








operations_c.c

 1#include <stdlib.h>
 2
 3int * alloc_integer()
 4{
 5    return malloc(sizeof(int));
 6}
 7
 8void dealloc_integer(int *p_i)
 9{
10    free (p_i);
11}
12
13void add_one(int *p_i)
14{
15    *p_i = *p_i + 1;
16}








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: ec6dea12d0a948489cce21b0cc0a1ad2







In this case, we really have to use access types to interface to these C
functions. In fact, we need an access result type to interface to the
alloc_integer() function, and an access parameter in the case of the
dealloc_integer() function. This is the corresponding specification in
Ada:


operations.ads

 1package Operations is
 2
 3   function Alloc_Integer return access Integer
 4     with Import, Convention => C;
 5
 6   procedure Dealloc_Integer (IA : access Integer)
 7     with Import, Convention => C;
 8
 9   procedure Add_One
10    (IA : aliased in out Integer)
11       with Import, Convention => C;
12
13end Operations;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: bcbc8a87037b64fc6469e67b928e6172







Note that we're still using an aliased integer type for the Add_One
procedure, while we're using access types for the other two subprograms.

Finally, as expected, we can use this specification in a test application:


show_operations.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Operations;  use Operations;
 4
 5procedure Show_Operations is
 6   I : access Integer := Alloc_Integer;
 7begin
 8   I.all := 42;
 9   Put_Line (I.all'Image);
10
11   Add_One (I.all);
12   Put_Line (I.all'Image);
13
14   Dealloc_Integer (I);
15end Show_Operations;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.C_Interfacing
MD5: b2b96a166926528bc44059b56e31fb55







In this application, we get a C pointer from the alloc_integer function
and encapsulate it in an Ada access type, which we then assign to I. In
the last line of the procedure, we call Dealloc_Integer and pass
I to it, which deallocates the memory block indicated by the C pointer.
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Inherited Primitive Operations For Tagged Types

In order to declare inherited primitive operations for tagged types that use
access types, we need to use access parameters. The reason is that, to be a
primitive operation for some tagged type — and hence inheritable —
the subprogram must reference the tagged type name directly in the parameter
profile. This means that a named access type won't suffice, because only the
access type name would appear in the profile. For example:


inherited_primitives.ads

 1package Inherited_Primitives is
 2
 3   type T is tagged private;
 4
 5   type T_Access is access all T;
 6
 7   procedure Proc (N : T_Access);
 8   --  Proc is not a primitive of type T.
 9
10   type T_Child is new T with private;
11
12   type T_Child_Access is access all T_Child;
13
14private
15
16   type T is tagged null record;
17
18   type T_Child is new T with null record;
19
20end Inherited_Primitives;








inherited_primitives.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3package body Inherited_Primitives is
4
5   procedure Proc (N : T_Access) is null;
6
7end Inherited_Primitives;








show_inherited_primitives.adb

 1with Inherited_Primitives;
 2use  Inherited_Primitives;
 3
 4procedure Show_Inherited_Primitives is
 5   Obj       : T_Access       := new T;
 6   Obj_Child : T_Child_Access := new T_Child;
 7begin
 8   Proc (Obj);
 9   Proc (Obj_Child);
10   --    ^^^^^^^^^
11   --    ERROR: Proc is not inherited!
12end Show_Inherited_Primitives;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.Inherited_Primitives
MD5: 8235b21caa9f1f105f533d74d891adfe








Build output



show_inherited_primitives.adb:9:10: error: expected type "T_Access" defined at inherited_primitives.ads:5
show_inherited_primitives.adb:9:10: error: found type "T_Child_Access" defined at inherited_primitives.ads:12
gprbuild: *** compilation phase failed







In this example, Proc is not a primitive of type T because it's
referring to type T_Access, not type T. This means that
Proc isn't inherited when we derive the T_Child type. Therefore,
when we call Proc (Obj_Child), a compilation error occurs because the
compiler expects type T_Access — there's no
Proc (N : T_Child_Access) that could be used here.

If we replace T_Access in the Proc procedure with an an access
parameter (access T), the subprogram becomes a primitive of T:


inherited_primitives.ads

 1package Inherited_Primitives is
 2
 3   type T is tagged private;
 4
 5   procedure Proc (N : access T);
 6   --  Proc is a primitive of type T.
 7
 8   type T_Child is new T with private;
 9
10private
11
12   type T is tagged null record;
13
14   type T_Child is new T with null record;
15
16end Inherited_Primitives;








inherited_primitives.adb

1package body Inherited_Primitives is
2
3   procedure Proc (N : access T) is null;
4
5end Inherited_Primitives;








show_inherited_primitives.adb

 1with Inherited_Primitives;
 2use  Inherited_Primitives;
 3
 4procedure Show_Inherited_Primitives is
 5   Obj       : access T       := new T;
 6   Obj_Child : access T_Child := new T_Child;
 7begin
 8   Proc (Obj);
 9   Proc (Obj_Child);
10   --    ^^^^^^^^^
11   --    OK: Proc is inherited!
12end Show_Inherited_Primitives;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_Parameters.Inherited_Primitives
MD5: a7e9b8bc92e346758cc4ade43bb4b02d







Now, the child type T_Child (derived from the T) inherits the
primitive operation Proc. This inherited operation has an access
parameter designating the child type:

type T_Child is new T with private;

procedure Proc (N : access T_Child);
--  Implicitly inherited primitive operation
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User-Defined References

Implicit dereferencing
isn't limited to the contexts that Ada supports by
default: we can also add implicit dereferencing to our own types by using the
Implicit_Dereference aspect.

To do this, we have to declare:


	a reference type, where we use the Implicit_Dereference aspect to
specify the reference discriminant, which is the record discriminant that
will be dereferenced; and


	a reference object, which contains an access value that will be dereferenced.




Also, for the reference type, we have to:


	specify the reference discriminant as an
access discriminant; and


	indicate the name of the reference discriminant when specifying the
Implicit_Dereference aspect.




Let's see a simple example:


show_user_defined_reference.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_User_Defined_Reference is
 4
 5   type Id_Number is record
 6      Id : Positive;
 7   end record;
 8
 9   --
10   --  Reference type:
11   --
12   type Id_Ref (Ref : access Id_Number) is
13   --           ^ reference discriminant
14     null record
15       with Implicit_Dereference => Ref;
16     --                             ^^^
17     --               name of the reference
18     --               discriminant
19
20   --
21   --  Access value:
22   --
23   I : constant access Id_Number :=
24         new Id_Number'(Id => 42);
25
26   --
27   --  Reference object:
28   --
29   R : Id_Ref (I);
30begin
31   Put_Line ("ID: "
32             & Positive'Image (R.Id));
33   --                          ^ Equivalent to:
34   --                              R.Ref.Id
35   --                            or:
36   --                             R.Ref.all.Id
37end Show_User_Defined_Reference;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.Simple_User_Defined_References
MD5: 33eaa7e8e75b4eb56d64dcc17e2932aa








Runtime output



ID:  42







Here, we declare a simple record type (Id_Number) and a corresponding
reference type (Id_Ref). Note that:


	the reference discriminant Ref has an access to the Id_Number
type; and


	we indicate this reference discriminant in the Implicit_Dereference
aspect.




Then, we declare an access value (the I constant) and use it for the
Ref discriminant in the declaration of the reference object R.

Finally, we implicitly dereference R and access the Id component
by simply writing R.Id — instead of the extended forms
R.Ref.Id or R.Ref.all.Id.


Important

The extended form mentioned in the example that we just saw
(R.Ref.all.Id) makes it clear that two steps happen when evaluating
R.Id:


	First, R.Ref is implied from R because of the
Implicit_Dereference aspect.


	Then, R.Ref is implicitly dereferenced to R.Ref.all.




After these two steps, we can access the actual object. (In our case, we
can access the Id component.)



Note that we cannot use access types directly for the reference discriminant.
For example, if we made the following change in the previous code example, it
wouldn't compile:

type Id_Number_Access is access Id_Number;

--  Reference type:
type Id_Ref (Ref : Id_Number_Access) is
--                 ^ ERROR: it must be
--                          an access
--                          discriminant!
  null record
    with Implicit_Dereference => Ref;





However, we could use other forms — such as not null access
— in the reference discriminant:

--  Reference type:
type Id_Ref (Ref : not null access Id_Number) is
  null record
    with Implicit_Dereference => Ref;
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Dereferencing of tagged types

Naturally, implicit dereferencing is also possible when calling primitives of a
tagged type. For example, let's change the declaration of the
Id_Number type from the previous code example and add a Show
primitive.


info.ads

1package Info is
2   type Id_Number (Id : Positive) is
3     tagged private;
4
5   procedure Show (R : Id_Number);
6private
7   type Id_Number (Id : Positive) is
8     tagged null record;
9end Info;








info.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Info is
 4
 5   procedure Show (R : Id_Number) is
 6   begin
 7      Put_Line ("ID: " & Positive'Image (R.Id));
 8   end Show;
 9
10end Info;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.Dereferencing_Tagged_Types
MD5: 4de65094963450dc3a7505dbf93c2551







Then, let's declare a reference type and a reference object in the test
application:


show_user_defined_reference.adb

 1with Info; use Info;
 2
 3procedure Show_User_Defined_Reference is
 4
 5   --  Reference type:
 6   type Id_Ref (Ref : access Id_Number) is
 7     null record
 8       with Implicit_Dereference => Ref;
 9
10   --  Access value:
11   I : constant access Id_Number :=
12         new Id_Number (42);
13
14   --  Reference object:
15   R : Id_Ref (I);
16begin
17
18   R.Show;
19   --  Equivalent to:
20   --  R.Ref.all.Show;
21
22end Show_User_Defined_Reference;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.Dereferencing_Tagged_Types
MD5: 9c5dfc4f2b8e085efde9e61689243f70








Runtime output



ID:  42







Here, we can call the Show procedure by simply writing R.Show
instead of R.Ref.all.Show.



Simple container

A typical application of user-defined references is to create cursors when
iterating over a container. As an example, let's implement the
National_Date_Info package to store the national day of a country:


national_date_info.ads

 1package National_Date_Info is
 2
 3   subtype Country_Code is String (1 .. 3);
 4
 5   type Time is record
 6      Year  : Integer;
 7      Month : Positive range 1 .. 12;
 8      Day   : Positive range 1 .. 31;
 9   end record;
10
11   type National_Date is tagged record
12      Country : Country_Code;
13      Date    : Time;
14   end record;
15
16   type National_Date_Access is
17     access National_Date;
18
19   procedure Show (Nat_Date : National_Date);
20
21end National_Date_Info;








national_date_info.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body National_Date_Info is
 4
 5   procedure Show (Nat_Date : National_Date) is
 6   begin
 7      Put_Line ("Country: "
 8                & Nat_Date.Country);
 9      Put_Line ("Year:    "
10                & Integer'Image
11                    (Nat_Date.Date.Year));
12   end Show;
13
14end National_Date_Info;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.National_Dates
MD5: 90fd6740d701025e1d5f30c9751a528d







Here, National_Date is a record type that we use to store the national
day information. We can call the Show procedure to display this
information.

Now, let's implement the National_Date_Containers with a container for
national days:


national_date_containers.ads

 1with National_Date_Info; use National_Date_Info;
 2
 3package National_Date_Containers is
 4
 5   --  Reference type:
 6   type National_Date_Reference
 7     (Ref : access National_Date) is
 8       tagged limited null record
 9         with Implicit_Dereference => Ref;
10
11   --  Container (as an array):
12   type National_Dates is
13     array (Positive range <>) of
14       National_Date_Access;
15
16   --  The Find function scans the container to
17   --  find a specific country, which is returned
18   --  as a reference object.
19   function Find (Nat_Dates : National_Dates;
20                  Country   : Country_Code)
21                  return National_Date_Reference;
22
23end National_Date_Containers;








national_date_containers.adb

 1package body National_Date_Containers is
 2
 3   function Find (Nat_Dates : National_Dates;
 4                  Country   : Country_Code)
 5                  return National_Date_Reference
 6   is
 7   begin
 8      for I in Nat_Dates'Range loop
 9         if Nat_Dates (I).Country = Country then
10            return National_Date_Reference'(
11                     Ref => Nat_Dates (I));
12            --     ^^^^^^^^^^^^^^^^^^^^^^^^^
13            --   Returning reference object with a
14            --   reference to the national day we
15            --   found.
16         end if;
17      end loop;
18
19      return
20        National_Date_Reference'(Ref => null);
21      --  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
22      --   Returning reference object with a null
23      --   reference in case the country wasn't
24      --   found. This will trigger an exception
25      --   if we try to dereference it.
26   end Find;
27
28end National_Date_Containers;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.National_Dates
MD5: ec37ae93a7052c4bc731b2a7be0763ab







Package National_Date_Containers contains the National_Dates
type, which is an array type for declaring containers that we use to store
the national day information. We can also see the declaration of the
National_Date_Reference type, which is the reference type returned by
the Find function when looking for a specific country in the container.


Important

We're declaring the container type (National_Dates) as an array type
just to simplify the code. In many cases, however, this approach isn't
recommended! Instead, we should use a private type in order to encapsulate
— and better protect — the information stored in the actual
container.



Finally, let's see a test application that stores information for some
countries into the Nat_Dates container and displays the information for
a specific country:


show_national_dates.adb

 1with National_Date_Info;
 2use  National_Date_Info;
 3
 4with National_Date_Containers;
 5use  National_Date_Containers;
 6
 7procedure Show_National_Dates is
 8
 9   Nat_Dates : constant National_Dates (1 .. 5) :=
10     (new National_Date'("USA",
11                         Time'(1776,  7,  4)),
12      new National_Date'("FRA",
13                         Time'(1789,  7, 14)),
14      new National_Date'("DEU",
15                         Time'(1990, 10,  3)),
16      new National_Date'("SPA",
17                         Time'(1492, 10, 12)),
18      new National_Date'("BRA",
19                         Time'(1822,  9,  7)));
20
21begin
22   Find (Nat_Dates, "FRA").Show;
23   --                     ^ implicit dereference
24end Show_National_Dates;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.National_Dates
MD5: 771ecb91e8f890d4bb9b08115ae833f4








Runtime output



Country: FRA
Year:     1789







Here, we call the Find function to retrieve a reference object, whose
reference (access value) has the national day information of France. We then
implicitly dereference it to get the tagged object (of National_Date
type) and display its information by calling the Show procedure.


Relevant topics

The National_Date_Containers package was implemented specifically
as an accompanying package for the National_Date_Info package.
It is possible, however, to generalize it, so that we can reuse the
container for other record types. In fact, this is actually very
straightforward:


generic_containers.ads

 1generic
 2   type T is private;
 3   type T_Access is access T;
 4   type T_Cmp is private;
 5   with function Matches (E    : T_Access;
 6                          Elem : T_Cmp)
 7                          return Boolean;
 8package Generic_Containers is
 9
10   type Ref_Type (Ref : access T) is
11     tagged limited null record
12       with Implicit_Dereference => Ref;
13
14   type Container is
15     array (Positive range <>) of
16       T_Access;
17
18   function Find (Cont : Container;
19                  Elem : T_Cmp)
20                  return Ref_Type;
21
22end Generic_Containers;








generic_containers.adb

 1package body Generic_Containers is
 2
 3   function Find (Cont : Container;
 4                  Elem : T_Cmp)
 5                  return Ref_Type is
 6   begin
 7      for I in Cont'Range loop
 8         if Matches (Cont (I), Elem) then
 9            return Ref_Type'(Ref => Cont (I));
10         end if;
11      end loop;
12
13      return Ref_Type'(Ref => null);
14   end Find;
15
16end Generic_Containers;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.National_Dates
MD5: 94c23a48131a47439b5b41e985c3d6c1







When comparing the Generic_Containers package to the
National_Date_Containers package, we see that the main difference is
the addition of the Matches function, which indicates whether the
current element we're evaluating in the for-loop of the Find
function is the one we're looking for.

In the main application, we can implement the Matches function and
declare the National_Date_Containers package as an instance of the
Generic_Containers package:


show_national_dates.adb

 1with Generic_Containers;
 2with National_Date_Info; use National_Date_Info;
 3
 4procedure Show_National_Dates is
 5
 6   function Matches_Country
 7     (E    : National_Date_Access;
 8      Elem : Country_Code)
 9      return Boolean is
10        (E.Country = Elem);
11
12   package National_Date_Containers is new
13     Generic_Containers
14       (T        => National_Date,
15        T_Access => National_Date_Access,
16        T_Cmp    => Country_Code,
17        Matches  => Matches_Country);
18
19   use National_Date_Containers;
20
21   subtype National_Dates is Container;
22
23   Nat_Dates : constant
24                 National_Dates (1 .. 5) :=
25     (new National_Date'("USA",
26                         Time'(1776,  7,  4)),
27      new National_Date'("FRA",
28                         Time'(1789,  7, 14)),
29      new National_Date'("DEU",
30                         Time'(1990, 10,  3)),
31      new National_Date'("SPA",
32                         Time'(1492, 10, 12)),
33      new National_Date'("BRA",
34                         Time'(1822,  9,  7)));
35
36begin
37   Find (Nat_Dates, "FRA").Show;
38end Show_National_Dates;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.User_Defined_References.National_Dates
MD5: f4dac1fed69b9bccce5dccbf17844adc








Runtime output



Country: FRA
Year:     1789







Here, we instantiate the Generic_Containers package with the
Matches_Country function, which is an expression function that
compares the country component of the current National_Date
reference with the name of the country we desire to learn about.

This generalized approach is actually used for the standard containers
from the Ada.Containers packages. For example,
the Ada.Containers.Vectors is specified as follows:

with Ada.Iterator_Interfaces;

generic
   type Index_Type is range <>;
   type Element_Type is private;
   with function "=" (Left, Right : Element_Type)
                      return Boolean is <>;
package Ada.Containers.Vectors
  with Preelaborate, Remote_Types,
       Nonblocking,
       Global => in out synchronized is

   -- OMITTED

   type Reference_Type
     (Element : not null access Element_Type) is
       private
         with Implicit_Dereference => Element,
              Nonblocking,
              Global => in out synchronized,
              Default_Initial_Condition =>
                (raise Program_Error);

   -- OMITTED

   function Reference
     (Container : aliased in out Vector;
      Index     : in Index_Type)
      return Reference_Type
        with Pre  => Index in
                       First_Index (Container) ..
                       Last_Index (Container)
                     or else raise
                             Constraint_Error,
           Post =>
             Tampering_With_Cursors_Prohibited
               (Container),
           Nonblocking,
           Global => null,
           Use_Formal => null;

   -- OMITTED

   function Reference
     (Container : aliased in out Vector;
      Position  : in Cursor)
      return Reference_Type
        with Pre  => (Position /= No_Element
                      or else raise
                              Constraint_Error)
                      and then
                        (Has_Element
                          (Container, Position)
                         or else raise
                                 Program_Error),
           Post   =>
             Tampering_With_Cursors_Prohibited
               (Container),
           Nonblocking,
           Global => null,
           Use_Formal => null;

   -- OMITTED

end Ada.Containers.Vectors;





(Note that most parts of the Vectors package were omitted for
clarity. Please refer to the Ada Reference Manual for the complete package
specification.)

Here, we see that the Implicit_Dereference aspect is used in the
declaration of Reference_Type, which is the reference type returned
by the Reference functions for an index or a cursor.

Also, note that the Vectors package has a formal equality function
(=) instead of the Matches function we were using in our
Generic_Containers package. The purpose of the formal function,
however, is basically the same.
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Anonymous Access Types and Accessibility Rules

In general, the accessibility rules we've
seen earlier also apply to anonymous access types. However, there are some
subtle differences, which we discuss in this section.

Let's adapt the
code example from that section
to make use of anonymous access types:


library_level.ads

1package Library_Level is
2
3   L0_AO  : access Integer;
4
5   L0_Var : aliased Integer;
6
7end Library_Level;








show_library_level.adb

 1with Library_Level; use Library_Level;
 2
 3procedure Show_Library_Level is
 4   L1_Var : aliased Integer;
 5
 6   L1_AO  : access Integer;
 7
 8   procedure Test is
 9      L2_AO  : access Integer;
10
11      L2_Var : aliased Integer;
12   begin
13      L1_AO := L2_Var'Access;
14      --       ^^^^^^
15      --       ILLEGAL: L2 object to
16      --                L1 access object
17
18      L2_AO := L2_Var'Access;
19      --       ^^^^^^
20      --       LEGAL: L2 object to
21      --              L2 access object
22   end Test;
23
24begin
25   L0_AO := new Integer'(22);
26   --       ^^^^^^^^^^^
27   --       LEGAL: L0 object to
28   --              L0 access object
29
30   L0_AO := L1_Var'Access;
31   --       ^^^^^^
32   --       ILLEGAL: L1 object to
33   --                L0 access object
34
35   L1_AO := L0_Var'Access;
36   --       ^^^^^^
37   --       LEGAL: L0 object to
38   --              L1 access object
39
40   L1_AO := L1_Var'Access;
41   --       ^^^^^^
42   --       LEGAL: L1 object to
43   --              L1 access object
44
45   L0_AO := L1_AO;  -- legal!!
46   --       ^^^^^
47   --       LEGAL:   L1 access object to
48   --                L0 access object
49   --
50   --       ILLEGAL: L1 object
51   --                (L1_AO = L1_Var'Access)
52   --                to
53   --                L0 access object
54   --
55   --       This is actually OK at compile time,
56   --       but the accessibility check fails at
57   --       runtime.
58
59   Test;
60end Show_Library_Level;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Library_Level
MD5: 255bdecebdaa735408db082edd583a0c








Build output



show_library_level.adb:13:16: error: non-local pointer cannot point to local object
show_library_level.adb:30:13: error: non-local pointer cannot point to local object
gprbuild: *** compilation phase failed







As we see in the code, in general, most accessibility rules are the same as the
ones we've discussed when using named access types. For example, an assignment
such as L0_AO := L1_Var'Access is illegal because we're trying to assign
to an access object of less deep level.

However, assignment such as L0_AO := L1_AO are possible now: we don't
get a type mismatch — as we did with named access types — because
both objects are of anonymous access types. Note that the accessibility level
cannot be determined at compile time: L1_AO can hold an access value at
library level (which would make the assignment legal) or at a deeper level.
Therefore, the compiler introduces an accessibility check here.

However, the accessibility check used in L0_AO := L1_AO fails at runtime
because the corresponding access value (L1_Var'Access) is of a deeper
level than L0_AO, which is illegal. (If you comment out the
L1_AO := L1_Var'Access assignment prior to the L0_AO := L1_AO
assignment, this accessibility check doesn't fail anymore.)


Conversions between Anonymous and Named Access Types

In the previous sections, we've discussed accessibility rules for named and
anonymous access types separately. In this section, we see that the same
accessibility rules apply when mixing both flavors together and converting
objects of anonymous to named access types.

Let's adapt parts of the previous
code example and add
anonymous access types to it:


library_level.ads

 1package Library_Level is
 2
 3   type L0_Integer_Access is
 4     access all Integer;
 5
 6   L0_Var : aliased Integer;
 7
 8   L0_IA  : L0_Integer_Access;
 9   L0_AO  : access Integer;
10
11end Library_Level;








show_library_level.adb

 1with Library_Level; use Library_Level;
 2
 3procedure Show_Library_Level is
 4   type L1_Integer_Access is
 5     access all Integer;
 6
 7   L1_IA  : L1_Integer_Access;
 8   L1_AO  : access Integer;
 9
10   L1_Var : aliased Integer;
11
12begin
13   ---------------------------------------
14   --  From named type to anonymous type
15   ---------------------------------------
16
17   L0_IA := new Integer'(22);
18   L1_IA := new Integer'(42);
19
20   L0_AO := L0_IA;
21   --       ^^^^^
22   --       LEGAL: assignment from
23   --              L0 access object (named type)
24   --              to
25   --              L0 access object
26   --                (anonymous type)
27
28   L0_AO := L1_IA;
29   --       ^^^^^
30   --       ILLEGAL: assignment from
31   --                L1 access object (named type)
32   --                to
33   --                L0 access object
34   --                  (anonymous type)
35
36   L1_AO := L0_IA;
37   --       ^^^^^
38   --       LEGAL: assignment from
39   --              L0 access object (named type)
40   --              to
41   --              L1 access object
42   --                (anonymous type)
43
44   L1_AO := L1_IA;
45   --       ^^^^^
46   --       LEGAL: assignment from
47   --              L1 access object (named type)
48   --              to
49   --              L1 access object
50   --                (anonymous type)
51
52   ---------------------------------------
53   --  From anonymous type to named type
54   ---------------------------------------
55
56   L0_AO := L0_Var'Access;
57   L1_AO := L1_Var'Access;
58
59   L0_IA := L0_Integer_Access (L0_AO);
60   --       ^^^^^^^^^^^^^^^^^
61   --       LEGAL: conversion / assignment from
62   --              L0 access object
63   --                (anonymous type)
64   --              to
65   --              L0 access object (named type)
66
67   L0_IA := L0_Integer_Access (L1_AO);
68   --       ^^^^^^^^^^^^^^^^^
69   --       ILLEGAL: conversion / assignment from
70   --                L1 access object
71   --                  (anonymous type)
72   --                to
73   --                L0 access object (named type)
74   --                (accessibility check fails)
75
76   L1_IA := L1_Integer_Access (L0_AO);
77   --       ^^^^^^^^^^^^^^^^^
78   --       LEGAL: conversion / assignment from
79   --              L0 access object
80   --                (anonymous type)
81   --              to
82   --              L1 access object (named type)
83
84   L1_IA := L1_Integer_Access (L1_AO);
85   --       ^^^^^^^^^^^^^^^^^
86   --       LEGAL: conversion / assignment from
87   --              L1 access object
88   --                (anonymous type)
89   --              to
90   --              L1 access object (named type)
91end Show_Library_Level;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Named_Anonymous_Access_Type_Conversions
MD5: a2e73bb0ed543bc4973850c80f951039








Build output



show_library_level.adb:28:13: error: cannot convert local pointer to non-local access type
gprbuild: *** compilation phase failed







As we can see in this code example, mixing access objects of named and
anonymous access types doesn't change the accessibility rules. Again, the rules
are only violated when the target object in the assignment is less deep. This
is the case in the L0_AO := L1_IA and the
L0_IA := L0_Integer_Access (L1_AO) assignments. Otherwise, mixing those
access objects doesn't impose additional hurdles.



Accessibility rules on access parameters

In the previous chapter, we saw that the accessibility rules also apply to
access values as subprogram parameters.
In the case of access parameters, the rules are a bit less strict (as you may
generally expect for anonymous access types), and the accessibility rules are
checked at runtime. This allows use to use access values that would be illegal
in the case of named access types because of their accessibility levels.

Let's adapt a previous code example to make use of access parameters:


names.ads

1package Names is
2
3   procedure Show (N : access constant String);
4
5end Names;








names.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3--  with Ada.Characters.Handling;
 4--  use  Ada.Characters.Handling;
 5
 6package body Names is
 7
 8   procedure Show (N : access constant String) is
 9   begin
10      --  for I in N'Range loop
11      --     N (I) := To_Lower (N (I));
12      --  end loop;
13      Put_Line ("Name: " & N.all);
14   end Show;
15
16end Names;








show_names.adb

1with Names; use Names;
2
3procedure Show_Names is
4   S : aliased String := "John";
5begin
6   Show (S'Access);
7end Show_Names;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Access_Types.Accessibility_Levels_Rules_Introduction.Accessibility_Checks_Parameters
MD5: aa930ba9be3264d01eb9115d27b884eb








Runtime output



Name: John







As we've seen in the previous chapter, compilation fails when we use named
access types in this code example. In the case of access parameters, using
S'Access doesn't make the compilation fail, nor does the accessibility
check fail at runtime because S is still in scope when we call the
Show procedure.




Anonymous Access-To-Subprograms

In the previous chapter, we talked about
named access-to-subprogram types. Now,
we'll see that the anonymous version of those types isn't much different from
the named version.

Let's start our discussion by declaring a subprogram parameter using an
anonymous access-to-procedure type:


anonymous_access_to_subprogram.ads

1package Anonymous_Access_To_Subprogram is
2
3   procedure Proc
4     (P : access procedure (I : in out Integer));
5
6end Anonymous_Access_To_Subprogram;








anonymous_access_to_subprogram.adb

 1package body Anonymous_Access_To_Subprogram is
 2
 3   procedure Proc
 4     (P : access procedure (I : in out Integer))
 5   is
 6      I : Integer := 0;
 7   begin
 8      P (I);
 9   end Proc;
10
11end Anonymous_Access_To_Subprogram;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example
MD5: 2cbe76d7e23905d575bd27e29d5e3175







In this example, we use the anonymous
access procedure (I : in out Integer) type as a parameter of the
Proc procedure. Note that we need an identifier in the declaration:
we cannot leave I out and write
access procedure (in out Integer).

Before we look at a test application that makes use of the
Anonymous_Access_To_Subprogram package, let's implement two simple
procedures that we'll use later on:


add_ten.ads

1procedure Add_Ten (I : in out Integer);








add_ten.adb

1procedure Add_Ten (I : in out Integer) is
2begin
3   I := I + 10;
4end Add_Ten;








add_twenty.ads

1procedure Add_Twenty (I : in out Integer);








add_twenty.adb

1procedure Add_Twenty (I : in out Integer) is
2begin
3   I := I + 20;
4end Add_Twenty;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Anonymous_Access_To_Subprograms.Anonymous_Access_To_Subprogram_Example
MD5: 50eaeaf27caaa9618b35ecdf8acc11fe







Finally, this is our test application:


show_anonymous_access_to_subprograms.adb

 1with Anonymous_Access_To_Subprogram;
 2use  Anonymous_Access_To_Subprogram;
 3
 4with Add_Ten;
 5
 6procedure Show_Anonymous_Access_To_Subprograms is
 7begin
 8   Proc (Add_Ten'Access);
 9   --            ^ Getting access to Add_Ten
10   --              procedure and passing it
11   --              to Proc
12end Show_Anonymous_Access_To_Subprograms;
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Here, we get access to the Add_Ten procedure and pass it to the
Proc procedure. Note that this implementation is not different from the
example for named access-to-subprogram types.
In fact, in terms of usage, anonymous access-to-subprogram types are very
similar to named access-to-subprogram types. The major differences can be found
in the corresponding
accessibility rules.
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Examples of anonymous access-to-subprogram usage

In the section about
named access-to-subprogram types, we've
seen a couple of different usages for those types. In all those examples
we discussed, we could instead have used anonymous access-to-subprogram types.
Let's see a code example that illustrates that:


all_anonymous_access_to_subprogram.ads

 1package All_Anonymous_Access_To_Subprogram is
 2
 3   --
 4   --  Anonymous access-to-subprogram as
 5   --  subprogram parameter:
 6   --
 7   procedure Proc
 8     (P : access procedure (I : in out Integer));
 9
10   --
11   --  Anonymous access-to-subprogram in
12   --  array type declaration:
13   --
14   type Access_To_Procedure_Array is
15     array (Positive range <>) of
16       access procedure (I : in out Integer);
17
18   protected type Protected_Integer is
19
20     procedure Mult_Ten;
21
22     procedure Mult_Twenty;
23
24   private
25     I : Integer := 1;
26   end Protected_Integer;
27
28   --
29   --  Anonymous access-to-subprogram as
30   --  component of a record type.
31   --
32   type Rec_Access_To_Procedure is record
33      AP  : access procedure (I : in out Integer);
34   end record;
35
36   --
37   --  Anonymous access-to-subprogram as
38   --  discriminant:
39   --
40   type Rec_Access_To_Procedure_Discriminant
41          (AP : access procedure
42                  (I : in out Integer)) is
43   record
44      I : Integer := 0;
45   end record;
46
47   procedure Process
48     (R : in out
49            Rec_Access_To_Procedure_Discriminant);
50
51   generic
52      type T is private;
53
54      --
55      --  Anonymous access-to-subprogram as
56      --  formal parameter:
57      --
58      Proc_T : access procedure
59                 (Element : in out T);
60   procedure Gen_Process (Element : in out T);
61
62end All_Anonymous_Access_To_Subprogram;








all_anonymous_access_to_subprogram.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body All_Anonymous_Access_To_Subprogram is
 4
 5   procedure Proc
 6     (P : access procedure (I : in out Integer))
 7   is
 8      I : Integer := 0;
 9   begin
10      Put_Line
11        ("Calling procedure for Proc...");
12      P (I);
13      Put_Line ("Finished.");
14   end Proc;
15
16   procedure Process
17     (R : in out
18            Rec_Access_To_Procedure_Discriminant)
19   is
20   begin
21      Put_Line
22        ("Calling procedure for"
23         & " Rec_Access_To_Procedure_Discriminant"
24         & " type...");
25      R.AP (R.I);
26      Put_Line ("Finished.");
27   end Process;
28
29   procedure Gen_Process (Element : in out T) is
30   begin
31      Put_Line
32        ("Calling procedure for Gen_Process...");
33      Proc_T (Element);
34      Put_Line ("Finished.");
35   end Gen_Process;
36
37   protected body Protected_Integer is
38
39      procedure Mult_Ten is
40      begin
41         I := I * 10;
42      end Mult_Ten;
43
44      procedure Mult_Twenty is
45      begin
46         I := I * 20;
47      end Mult_Twenty;
48
49   end Protected_Integer;
50
51end All_Anonymous_Access_To_Subprogram;
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In the All_Anonymous_Access_To_Subprogram package, we see examples of
anonymous access-to-subprogram types:


	as a subprogram parameter;


	in an array type declaration;


	as a component of a record type;


	as a record type discriminant;


	as a formal parameter of a generic procedure.




Let's implement a test application that makes use of this package:


show_anonymous_access_to_subprograms.adb

  1with Ada.Text_IO; use Ada.Text_IO;
  2
  3with Add_Ten;
  4with Add_Twenty;
  5
  6with All_Anonymous_Access_To_Subprogram;
  7use  All_Anonymous_Access_To_Subprogram;
  8
  9procedure Show_Anonymous_Access_To_Subprograms is
 10   --
 11   --  Anonymous access-to-subprogram as
 12   --  an object:
 13   --
 14   P   : access procedure (I : in out Integer);
 15
 16   --
 17   --  Array of anonymous access-to-subprogram
 18   --  components
 19   --
 20   PA  : constant
 21          Access_To_Procedure_Array (1 .. 2) :=
 22            (Add_Ten'Access,
 23             Add_Twenty'Access);
 24
 25   --
 26   --  Anonymous array of anonymous
 27   --  access-to-subprogram components:
 28   --
 29   PAA : constant
 30          array (1 .. 2) of access
 31            procedure (I : in out Integer) :=
 32              (Add_Ten'Access,
 33               Add_Twenty'Access);
 34
 35   --
 36   --  Record with anonymous
 37   --  access-to-subprogram components:
 38   --
 39   RA : constant Rec_Access_To_Procedure :=
 40          (AP => Add_Ten'Access);
 41
 42   --
 43   --  Record with anonymous
 44   --  access-to-subprogram discriminant:
 45   --
 46   RD : Rec_Access_To_Procedure_Discriminant
 47          (AP => Add_Twenty'Access) :=
 48            (AP => Add_Twenty'Access, I => 0);
 49
 50   --
 51   --  Generic procedure with formal anonymous
 52   --  access-to-subprogram:
 53   --
 54   procedure Process_Integer is new
 55     Gen_Process (T      => Integer,
 56                  Proc_T => Add_Twenty'Access);
 57
 58   --
 59   --  Object (APP) of anonymous
 60   --  access-to-protected-subprogram:
 61   --
 62   PI  : Protected_Integer;
 63   APP : constant access protected procedure :=
 64           PI.Mult_Ten'Access;
 65
 66   Some_Int : Integer := 0;
 67begin
 68   Put_Line ("Some_Int: " & Some_Int'Image);
 69
 70   --
 71   --  Using object of
 72   --  anonymous access-to-subprogram type:
 73   --
 74   P := Add_Ten'Access;
 75   Proc (P);
 76   P (Some_Int);
 77
 78   P := Add_Twenty'Access;
 79   Proc (P);
 80   P (Some_Int);
 81
 82   Put_Line ("Some_Int: " & Some_Int'Image);
 83
 84   --
 85   --  Using array with component of
 86   --  anonymous access-to-subprogram type:
 87   --
 88    Put_Line
 89      ("Calling procedure from PA array...");
 90
 91   for I in PA'Range loop
 92      PA (I) (Some_Int);
 93      Put_Line ("Some_Int: " & Some_Int'Image);
 94   end loop;
 95
 96   Put_Line ("Finished.");
 97
 98   Put_Line
 99     ("Calling procedure from PAA array...");
100
101   for I in PA'Range loop
102      PAA (I) (Some_Int);
103      Put_Line ("Some_Int: " & Some_Int'Image);
104   end loop;
105
106   Put_Line ("Finished.");
107
108   Put_Line ("Some_Int: " & Some_Int'Image);
109
110   --
111   --  Using record with component of
112   --  anonymous access-to-subprogram type:
113   --
114   RA.AP (Some_Int);
115   Put_Line ("Some_Int: " & Some_Int'Image);
116
117   --
118   --  Using record with discriminant of
119   --  anonymous access-to-subprogram type:
120   --
121   Process (RD);
122   Put_Line ("RD.I: " & RD.I'Image);
123
124   --
125   --  Using procedure instantiated with
126   --  formal anonymous access-to-subprogram:
127   --
128   Process_Integer (Some_Int);
129   Put_Line ("Some_Int: " & Some_Int'Image);
130
131   --
132   --  Using object of anonymous
133   --  access-to-protected-subprogram type:
134   --
135   APP.all;
136end Show_Anonymous_Access_To_Subprograms;
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Runtime output



Some_Int:  0
Calling procedure for Proc...
Finished.
Calling procedure for Proc...
Finished.
Some_Int:  30
Calling procedure from PA array...
Some_Int:  40
Some_Int:  60
Finished.
Calling procedure from PAA array...
Some_Int:  70
Some_Int:  90
Finished.
Some_Int:  90
Some_Int:  100
Calling procedure for Rec_Access_To_Procedure_Discriminant type...
Finished.
RD.I:  20
Calling procedure for Gen_Process...
Finished.
Some_Int:  120







In the Show_Anonymous_Access_To_Subprograms procedure, we see examples
of anonymous access-to-subprogram types in:


	in objects (P) and (APP);


	in arrays (PA and PAA);


	in records (RA and RD);


	in the binding to a formal parameter (Proc_T) of an instantiated
procedure (Process_Integer);


	as a parameter of a procedure (Proc).




Because we already discussed all these usages in the section about
named access-to-subprogram types, we
won't repeat this discussion here. If anything in this code example is still
unclear to you, make sure to revisit that section from the previous chapter.



Application of anonymous access-to-subprogram types

In general, there isn't much that speaks against using anonymous
access-to-subprogram types. We can say, for example, that they're much more
useful than
anonymous access-to-objects types,
which have
many drawbacks —
as we discussed earlier.

There isn't much to be concerned when using anonymous access-to-subprogram
types. For example, we cannot allocate or deallocate a subprogram. As a
consequence, we won't have storage management issues affecting these types
because the access to those subprograms will always be available and no
memory leak can occur.

Also, anonymous access-to-subprogram types can be easier to use than named
access-to-subprogram types because of their less strict
accessibility rules.
Some of the accessibility issues we might encounter when using named
access-to-subprogram types can be solved by declaring them as anonymous types.
(We discuss the accessibility rules of anonymous access-to-subprogram types in
the next section.)



Readability

Note that readability suffers if you use a cascade of anonymous
access-to-subprograms. For example:


readability_issue.ads

 1package Readability_Issue is
 2
 3   function F
 4     return access
 5       function (A : Integer)
 6                 return access
 7                   function (B : Float)
 8                             return Integer;
 9
10end Readability_Issue;








readability_issue-functions.ads

 1package Readability_Issue.Functions is
 2
 3   function To_Integer (V : Float)
 4                        return Integer is
 5     (Integer (V));
 6
 7   function Select_Conversion
 8     (A : Integer)
 9      return access
10        function (B : Float)
11                  return Integer is
12     (To_Integer'Access);
13
14end Readability_Issue.Functions;








readability_issue.adb

 1with Readability_Issue.Functions;
 2use  Readability_Issue.Functions;
 3
 4package body Readability_Issue is
 5
 6   function F
 7     return access
 8       function (A : Integer)
 9                 return access
10                   function (B : Float)
11                       return Integer is
12     (Select_Conversion'Access);
13
14end Readability_Issue;
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In this example, the definition of F might compile fine, but it's simply
too long to be readable. Not only that: we need to carry this chain to other
functions as well — such as the Select_Conversion function above.
Also, using these functions in an application is not straightforward:


show_readability_issue.adb

 1with Readability_Issue;
 2use  Readability_Issue;
 3
 4procedure Show_Readability_Issue is
 5   F1 : access
 6          function (A : Integer)
 7                    return access
 8                      function (B : Float)
 9                                return Integer
10        := F;
11   F2 : access function (B : Float)
12                         return Integer
13        := F1 (2);
14   I  : Integer := F2 (0.1);
15begin
16   I := F1 (2) (0.1);
17end Show_Readability_Issue;
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Therefore, our recommendation is to avoid this kind of access cascading by
carefully designing your application. In general, you won't need that.




Accessibility Rules and Anonymous Access-To-Subprograms

In principle, the
accessibility rules for anonymous access types
that we've seen before apply to anonymous access-to-subprograms as well. Also,
we had a discussion about
accessibility rules and access-to-subprograms
in the previous chapter. In this section, we review some of the rules that we
already know and discuss how they relate to anonymous access-to-subprograms.
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Named vs. anonymous access-to-subprograms

Let's see an example of a named access-to-subprogram type:


show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Access_To_Subprogram_Error is
 4
 5   type PI is access
 6     procedure (I : in out Integer);
 7
 8   P : PI;
 9
10   I : Integer := 0;
11begin
12   declare
13      procedure Add_One (I : in out Integer) is
14      begin
15         I := I + 1;
16      end Add_One;
17   begin
18      P := Add_One'Access;
19   end;
20end Show_Access_To_Subprogram_Error;
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Build output



show_access_to_subprogram_error.adb:18:12: error: subprogram must not be deeper than access type
gprbuild: *** compilation phase failed







In this example, we get a compilation error because the lifetime of the
Add_One procedure is shorter than the access type PI.

In contrast, using an anonymous access-to-subprogram type eliminates the
compilation error, i.e. the assignment P := Add_One'Access becomes
legal:


show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Show_Access_To_Subprogram_Error is
 4   P : access procedure (I : in out Integer);
 5
 6   I : Integer := 0;
 7begin
 8   declare
 9      procedure Add_One (I : in out Integer) is
10      begin
11         I := I + 1;
12      end Add_One;
13   begin
14      P := Add_One'Access;
15      --  RUNTIME ERROR: Add_One is out-of-scope
16      --                 after this line.
17   end;
18end Show_Access_To_Subprogram_Error;
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Runtime output




raised PROGRAM_ERROR : show_access_to_subprogram_error.adb:14 accessibility check failed







In this case, the compiler introduces an accessibility check, which fails at
runtime because the lifetime of Add_One is shorter than the lifetime of
the access object P.



Named vs. anonymous access-to-subprograms as parameters

Using anonymous access-to-subprograms as parameters allows us to pass
subprograms at any level. For certain applications, the restrictions that are
applied to named access types might be too strict, so using anonymous
access-to-subprograms might be a good way to circumvent those restrictions.
They also allow the component developer to be independent of the clients'
specific access types.

Note that the increased flexibility for anonymous access-to-subprograms means
that some of the checks that are performed at compile time for named
access-to-subprograms are done at runtime for anonymous access-to-subprograms.


Named access-to-subprograms as a parameter

Let's see an example using a named access-to-procedure type:


access_to_subprogram_types.ads

 1package Access_To_Subprogram_Types is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   type Process_Procedure is
 7     access
 8       procedure (Arr : in out Integer_Array);
 9
10   procedure Process
11     (Arr : in out Integer_Array;
12      P   :        Process_Procedure);
13
14end Access_To_Subprogram_Types;








access_to_subprogram_types.adb

 1package body Access_To_Subprogram_Types is
 2
 3   procedure Process
 4     (Arr : in out Integer_Array;
 5      P   :        Process_Procedure) is
 6   begin
 7      P (Arr);
 8   end Process;
 9
10end Access_To_Subprogram_Types;








show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use  Access_To_Subprogram_Types;
 5
 6procedure Show_Access_To_Subprogram_Error is
 7
 8   procedure Add_One
 9     (Arr : in out Integer_Array) is
10   begin
11      for E of Arr loop
12         E := E + 1;
13      end loop;
14   end Add_One;
15
16   procedure Display
17     (Arr : in out Integer_Array) is
18   begin
19      for I in Arr'Range loop
20         Put_Line ("Arr (" &
21                   Integer'Image (I)
22                   & "): "
23                  & Integer'Image (Arr (I)));
24      end loop;
25   end Display;
26
27   Arr : Integer_Array (1 .. 3) := (1, 2, 3);
28begin
29   Process (Arr, Display'Access);
30
31   Put_Line ("Add_One...");
32   Process (Arr, Add_One'Access);
33
34   Process (Arr, Display'Access);
35end Show_Access_To_Subprogram_Error;
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Build output



show_access_to_subprogram_error.adb:29:18: error: subprogram must not be deeper than access type
show_access_to_subprogram_error.adb:32:18: error: subprogram must not be deeper than access type
show_access_to_subprogram_error.adb:34:18: error: subprogram must not be deeper than access type
gprbuild: *** compilation phase failed







In this example, we declare the Process_Procedure type in the
Access_To_Subprogram_Types package and use it in the Process
procedure, which we call in the Show_Access_To_Subprogram_Error
procedure. The accessibility rules trigger a compilation error because the
accesses (Add_One'Access and Display'Access) are at a
deeper level than the access-to-procedure type (Process_Procedure).

As we know already, there's no Unchecked_Access attribute that
we could use here. An easy way to make this code compile could be to move
Add_One and Display to the library level.



Anonymous access-to-subprograms as a parameter

To circumvent the compilation error, we could also use anonymous
access-to-subprograms instead:


access_to_subprogram_types.ads

 1package Access_To_Subprogram_Types is
 2
 3   type Integer_Array is
 4     array (Positive range <>) of Integer;
 5
 6   procedure Process
 7     (Arr : in out Integer_Array;
 8      P   : access procedure
 9              (Arr : in out Integer_Array));
10
11end Access_To_Subprogram_Types;








access_to_subprogram_types.adb

 1package body Access_To_Subprogram_Types is
 2
 3   procedure Process
 4     (Arr : in out Integer_Array;
 5      P   : access procedure
 6              (Arr : in out Integer_Array)) is
 7   begin
 8      P (Arr);
 9   end Process;
10
11end Access_To_Subprogram_Types;








show_access_to_subprogram_error.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Access_To_Subprogram_Types;
 4use  Access_To_Subprogram_Types;
 5
 6procedure Show_Access_To_Subprogram_Error is
 7
 8   procedure Add_One
 9     (Arr : in out Integer_Array) is
10   begin
11      for E of Arr loop
12         E := E + 1;
13      end loop;
14   end Add_One;
15
16   procedure Display
17     (Arr : in out Integer_Array) is
18   begin
19      for I in Arr'Range loop
20         Put_Line ("Arr (" &
21                   Integer'Image (I)
22                   & "): "
23                  & Integer'Image (Arr (I)));
24      end loop;
25   end Display;
26
27   Arr : Integer_Array (1 .. 3) := (1, 2, 3);
28begin
29   Process (Arr, Display'Access);
30
31   Put_Line ("Add_One...");
32   Process (Arr, Add_One'Access);
33
34   Process (Arr, Display'Access);
35end Show_Access_To_Subprogram_Error;
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Runtime output



Arr ( 1):  1
Arr ( 2):  2
Arr ( 3):  3
Add_One...
Arr ( 1):  2
Arr ( 2):  3
Arr ( 3):  4







Now, the code is accepted by the compiler because anonymous
access-to-subprograms used as parameters allow passing of subprograms at any
level. Also, we don't see a run-time exception because the subprograms are
still accessible when we call Process.




Iterator

A typical example that illustrates well the necessity of using anonymous
access-to-subprograms is that of a container iterator. In fact, many of the
standard Ada containers — the child packages of Ada.Containers
— make use of anonymous access-to-subprograms for their Iterate
subprograms.
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Using named access-to-subprograms

Let's start with a simplified container type (Data_Container) using a
named access-to-subprogram type (Process_Element) for iteration:


data_processing.ads

 1generic
 2   type Element is private;
 3package Data_Processing is
 4
 5   type Data_Container (Last : Positive) is
 6     private;
 7
 8   Data_Container_Full : exception;
 9
10   procedure Append (D : in out Data_Container;
11                     E :        Element);
12
13   type Process_Element is
14     not null access procedure (E : Element);
15
16   procedure Iterate
17     (D    : Data_Container;
18      Proc : Process_Element);
19
20private
21
22   type Data_Container_Storage is
23     array (Positive range <>) of Element;
24
25   type Data_Container (Last : Positive) is
26   record
27      S    : Data_Container_Storage (1 .. Last);
28      Curr : Natural := 0;
29   end record;
30
31end Data_Processing;








data_processing.adb

 1package body Data_Processing is
 2
 3   procedure Append (D : in out Data_Container;
 4                     E :        Element) is
 5   begin
 6      if D.Curr < D.S'Last then
 7         D.Curr := D.Curr + 1;
 8         D.S (D.Curr) := E;
 9      else
10         raise Data_Container_Full;
11         --  NOTE: This is just a dummy
12         --        implementation. A better
13         --        strategy is to add actual error
14         --        handling when the container is
15         --        full.
16      end if;
17   end Append;
18
19   procedure Iterate
20     (D    : Data_Container;
21      Proc : Process_Element) is
22   begin
23      for I in D.S'First .. D.Curr loop
24         Proc (D.S (I));
25      end loop;
26   end Iterate;
27
28end Data_Processing;
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In this example, we declare the Process_Element type in the
generic Data_Processing package, and we use it in the Iterate
procedure. We then instantiate this package as Float_Data_Processing,
and we use it in the Show_Access_To_Subprograms procedure:


float_data_processing.ads

1with Data_Processing;
2
3package Float_Data_Processing is
4  new Data_Processing (Element => Float);








show_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Float_Data_Processing;
 4use  Float_Data_Processing;
 5
 6procedure Show_Access_To_Subprograms is
 7
 8   procedure Display (F : Float) is
 9   begin
10      Put_Line ("F :" & Float'Image (F));
11   end Display;
12
13   D : Data_Container (5);
14begin
15    Append (D, 1.0);
16    Append (D, 2.0);
17    Append (D, 3.0);
18
19    Iterate (D, Display'Access);
20end Show_Access_To_Subprograms;
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Build output



show_access_to_subprograms.adb:19:17: error: subprogram must not be deeper than access type
gprbuild: *** compilation phase failed







Using Display'Access in the call to Iterate triggers a
compilation error because its lifetime is shorter than the lifetime of the
Process_Element type.



Using anonymous access-to-subprograms

Now, let's use an anonymous access-to-subprogram type in the Iterate
procedure:


data_processing.ads

 1generic
 2   type Element is private;
 3package Data_Processing is
 4
 5   type Data_Container (Last : Positive) is
 6     private;
 7
 8   Data_Container_Full : exception;
 9
10   procedure Append (D : in out Data_Container;
11                     E :        Element);
12
13   procedure Iterate
14     (D    : Data_Container;
15      Proc : not null access
16               procedure (E : Element));
17
18private
19
20   type Data_Container_Storage is
21     array (Positive range <>) of Element;
22
23   type Data_Container (Last : Positive) is
24   record
25      S    : Data_Container_Storage (1 .. Last);
26      Curr : Natural := 0;
27   end record;
28
29end Data_Processing;








data_processing.adb

 1package body Data_Processing is
 2
 3   procedure Append (D : in out Data_Container;
 4                     E :        Element) is
 5   begin
 6      if D.Curr < D.S'Last then
 7         D.Curr := D.Curr + 1;
 8         D.S (D.Curr) := E;
 9      else
10         raise Data_Container_Full;
11         --  NOTE: This is just a dummy
12         --        implementation. A better
13         --        strategy is to add actual error
14         --        handling when the container is
15         --        full.
16      end if;
17   end Append;
18
19   procedure Iterate
20     (D    : Data_Container;
21      Proc : not null access
22               procedure (E : Element)) is
23   begin
24      for I in D.S'First .. D.Curr loop
25         Proc (D.S (I));
26      end loop;
27   end Iterate;
28
29end Data_Processing;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Rules_Anonymous_Access_To_Subprograms.Iterator_Anonymous
MD5: fa56595ef1734f2f07ad719c36dfd8b5







Note that the only changes we did to the package were to remove the
Process_Element type and replace the type of the Proc parameter
of the Iterate procedure from a named type (Process_Element) to
an anonymous type (not null access procedure (E : Element)).

Now, the same test application we used before
(Show_Access_To_Subprograms) compiles as expected:


float_data_processing.ads

1with Data_Processing;
2
3package Float_Data_Processing is
4  new Data_Processing (Element => Float);








show_access_to_subprograms.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Float_Data_Processing;
 4use  Float_Data_Processing;
 5
 6procedure Show_Access_To_Subprograms is
 7
 8   procedure Display (F : Float) is
 9   begin
10      Put_Line ("F :" & Float'Image (F));
11   end Display;
12
13   D : Data_Container (5);
14begin
15    Append (D, 1.0);
16    Append (D, 2.0);
17    Append (D, 3.0);
18
19    Iterate (D, Display'Access);
20end Show_Access_To_Subprograms;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Anonymous_Access_Types.Accessibility_Rules_Anonymous_Access_To_Subprograms.Iterator_Anonymous
MD5: 64ee435aac5f2817b7d9cecf538a1e4c








Runtime output



F : 1.00000E+00
F : 2.00000E+00
F : 3.00000E+00







Remember that the compiler introduces an accessibility check in the call to
Iterate, which is successful because the lifetime of
Display'Access is the same as the lifetime of the Proc parameter
of Iterate.
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Limited Types

So far, we discussed nonlimited types in most cases. In this chapter, we
discuss limited types.

We can think of limited types as an easy way to avoid inappropriate semantics.
For example, a lock should not be copied — neither directly, via
assignment, nor with pass-by-copy. Similarly, a file, which is really a file
descriptor, should not be copied. In this chapter, we'll see example of
unwanted side-effects that arise if we don't use limited types for these cases.


Assignment and equality

Limited types have the following restrictions, which we discussed in the
Introduction to Ada[#1] course:


	copying objects of limited types via direct assignments is forbidden; and


	there's no predefined equality operator for limited types.




(Of course, in the case of nonlimited types, assignments are possible and the
equality operator is available.)

By having these restrictions for limited types, we avoid inappropriate
side-effects for assignment and equality operations. As an example of
inappropriate side-effects, consider the case when we apply those operations on
record types that have components of access types:


nonlimited_types.ads

 1package Nonlimited_Types is
 2
 3   type Simple_Rec is private;
 4
 5   type Integer_Access is access Integer;
 6
 7   function Init (I : Integer) return Simple_Rec;
 8
 9   procedure Set (E : Simple_Rec;
10                  I : Integer);
11
12   procedure Show (E      : Simple_Rec;
13                   E_Name : String);
14
15private
16
17   type Simple_Rec is record
18      V : Integer_Access;
19   end record;
20
21end Nonlimited_Types;








nonlimited_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Nonlimited_Types is
 4
 5   function Init (I : Integer) return Simple_Rec
 6   is
 7   begin
 8      return E : Simple_Rec do
 9         E.V := new Integer'(I);
10      end return;
11   end Init;
12
13   procedure Set (E : Simple_Rec;
14                  I : Integer) is
15   begin
16      E.V.all := I;
17   end Set;
18
19   procedure Show (E      : Simple_Rec;
20                   E_Name : String) is
21   begin
22      Put_Line (E_Name
23                & ".V.all = "
24                & Integer'Image (E.V.all));
25   end Show;
26
27end Nonlimited_Types;








show_wrong_assignment_equality.adb

 1with Ada.Text_IO;      use Ada.Text_IO;
 2with Nonlimited_Types; use Nonlimited_Types;
 3
 4procedure Show_Wrong_Assignment_Equality is
 5   A, B : Simple_Rec := Init (0);
 6
 7   procedure Show_Compare is
 8   begin
 9      if A = B then
10         Put_Line ("A = B");
11      else
12         Put_Line ("A /= B");
13      end if;
14   end Show_Compare;
15begin
16
17   Put_Line ("A := Init (0); A := Init (0);");
18   Show (A, "A");
19   Show (B, "B");
20   Show_Compare;
21   Put_Line ("--------");
22
23   Put_Line ("Set (A, 2); Set (B, 3);");
24   Set (A, 2);
25   Set (B, 3);
26
27   Show (A, "A");
28   Show (B, "B");
29   Put_Line ("--------");
30
31   Put_Line ("B := A");
32   B := A;
33
34   Show (A, "A");
35   Show (B, "B");
36   Show_Compare;
37   Put_Line ("--------");
38
39   Put_Line ("Set (B, 7);");
40   Set (B, 7);
41
42   Show (A, "A");
43   Show (B, "B");
44   Show_Compare;
45   Put_Line ("--------");
46
47end Show_Wrong_Assignment_Equality;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Assignment_Equality.Wrong_Assignment_Equality
MD5: 72cf7145cd26a8628580c5a837d9cb61








Runtime output



A := Init (0); A := Init (0);
A.V.all =  0
B.V.all =  0
A /= B
--------
Set (A, 2); Set (B, 3);
A.V.all =  2
B.V.all =  3
--------
B := A
A.V.all =  2
B.V.all =  2
A = B
--------
Set (B, 7);
A.V.all =  7
B.V.all =  7
A = B
--------







In this code, we declare the Simple_Rec type in the
Nonlimited_Types package and use it in the
Show_Wrong_Assignment_Equality procedure. In principle, we're already
doing many things right here. For example, we're declaring the
Simple_Rec type private, so that the component V of access
type is encapsulated. Programmers that declare objects of this type cannot
simply mess up with the V component. Instead, they have to call the
Init function and the Set procedure to initialize and change,
respectively, objects of the Simple_Rec type. That being said, there are
two problems with this code, which we discuss next.

The first problem we can identify is that the first call to Show_Compare
shows that A and B are different, although both have the same
value in the V component (A.V.all = 0 and B.V.all = 0)
— this was set by the call to the Init function. What's happening
here is that the A = B expression is comparing the access values
(A.V = B.V), while we might have been expecting it to compare the actual
integer values after dereferencing (A.V.all = B.V.all). Therefore, the
predefined equality function of the Simple_Rec type is useless and
dangerous for us, as it misleads us to expect something that it doesn't do.

After the assignment of A to B (B := A), the information
that the application displays seems to be correct — both A.V.all
and B.V.all have the same value of two. However, when assigning the
value seven to B by calling Set (B, 7), we see that the value of
A.V.all has also changed. What's happening here is that the previous
assignment (B := A) has actually assigned access values
(B.V := A.V), while we might have been expecting it to assign the
dereferenced values (B.V.all := A.V.all). Therefore, we cannot simply
directly assign objects of Simple_Rec type, as this operation changes
the internal structure of the type due to the presence of components of access
type.

For these reasons, forbidding these operations for the Simple_Rec type
is the most appropriate software design decision. If we still need assignment
and equality operators, we can implement custom subprograms for the limited
type. We'll discuss this topic in the next sections.

In addition to the case when we have components of access types, limited types
are useful for example when we want to avoid the situation in which the same
information is copied to multiple objects of the same type.


In the Ada Reference Manual


	7.5 Limited Types[#2]







Assignments

Assignments are forbidden when using objects of limited types. For example:


limited_types.ads

 1package Limited_Types is
 2
 3   type Simple_Rec is limited private;
 4
 5   type Integer_Access is access Integer;
 6
 7   function Init (I : Integer) return Simple_Rec;
 8
 9private
10
11   type Simple_Rec is limited record
12      V : Integer_Access;
13   end record;
14
15end Limited_Types;








limited_types.adb

 1package body Limited_Types is
 2
 3   function Init (I : Integer) return Simple_Rec
 4   is
 5   begin
 6      return E : Simple_Rec do
 7         E.V := new Integer'(I);
 8      end return;
 9   end Init;
10
11end Limited_Types;








show_limited_assignment.adb

1with Limited_Types; use Limited_Types;
2
3procedure Show_Limited_Assignment is
4   A, B : Simple_Rec := Init (0);
5begin
6   B := A;
7end Show_Limited_Assignment;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Assignment_Equality.Assignment
MD5: 019c16f7feac896fd8c37d40d0522dc8








Build output



show_limited_assignment.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed







In this example, we declare the limited private type Simple_Rec and two
objects of this type (A and B) in the
Show_Limited_Assignment procedure. (We discuss more about limited
private types later).

As expected, we get a compilation error for the B := A statement (in the
Show_Limited_Assignment procedure). If we
need to copy two objects of limited type, we have to provide a custom procedure
to do that. For example, we can implement a Copy procedure for the
Simple_Rec type:


limited_types.ads

 1package Limited_Types is
 2
 3   type Integer_Access is access Integer;
 4
 5   type Simple_Rec is limited private;
 6
 7   function Init (I : Integer) return Simple_Rec;
 8
 9   procedure Copy (From :        Simple_Rec;
10                   To   : in out Simple_Rec);
11
12private
13
14   type Simple_Rec is limited record
15      V : Integer_Access;
16   end record;
17
18end Limited_Types;








limited_types.adb

 1package body Limited_Types is
 2
 3   function Init (I : Integer) return Simple_Rec
 4   is
 5   begin
 6      return E : Simple_Rec do
 7         E.V := new Integer'(I);
 8      end return;
 9   end Init;
10
11   procedure Copy (From :        Simple_Rec;
12                   To   : in out Simple_Rec)
13   is
14   begin
15      --  Copying record components
16      To.V.all := From.V.all;
17   end Copy;
18
19end Limited_Types;








show_limited_assignment.adb

1with Limited_Types; use Limited_Types;
2
3procedure Show_Limited_Assignment is
4   A, B : Simple_Rec := Init (0);
5begin
6   Copy (From => A, To => B);
7end Show_Limited_Assignment;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Assignment_Equality.Assignment
MD5: 2c017c3592c93be8c19fe247e9241fcb







The Copy procedure from this example copies the dereferenced values of
From to To, which matches our expectation for the
Simple_Rec. Note that we could have also implemented a
Shallow_Copy procedure to copy the actual access values (i.e.
To.V := From.V). However, having this kind of procedure can be dangerous
in many case, so this design decision must be made carefully. In any case,
using limited types ensures that only the assignment subprograms that are
explicitly declared in the package specification are available.



Equality

Limited types don't have a predefined equality operator. For example:


limited_types.ads

 1package Limited_Types is
 2
 3   type Integer_Access is access Integer;
 4
 5   type Simple_Rec is limited private;
 6
 7   function Init (I : Integer) return Simple_Rec;
 8
 9private
10
11   type Simple_Rec is limited record
12      V : Integer_Access;
13   end record;
14
15end Limited_Types;








limited_types.adb

 1package body Limited_Types is
 2
 3   function Init (I : Integer) return Simple_Rec
 4   is
 5   begin
 6      return E : Simple_Rec do
 7         E.V := new Integer'(I);
 8      end return;
 9   end Init;
10
11end Limited_Types;








show_limited_equality.adb

 1with Ada.Text_IO;   use Ada.Text_IO;
 2with Limited_Types; use Limited_Types;
 3
 4procedure Show_Limited_Equality is
 5   A : Simple_Rec := Init (5);
 6   B : Simple_Rec := Init (6);
 7begin
 8   if A = B then
 9      Put_Line ("A = B");
10   else
11      Put_Line ("A /= B");
12   end if;
13end Show_Limited_Equality;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Assignment_Equality.Equality
MD5: dad31b5e36de0b3b7824f723a60e5aa0








Build output



show_limited_equality.adb:8:09: error: there is no applicable operator "=" for private type "Simple_Rec" defined at limited_types.ads:5
gprbuild: *** compilation phase failed







As expected, the comparison A = B triggers a compilation error because
no predefined = operator is available for the Simple_Rec type.
If we want to be able to compare objects of this type, we have to implement
the = operator ourselves. For example, we can do that for the
Simple_Rec type:


limited_types.ads

 1package Limited_Types is
 2
 3   type Integer_Access is access Integer;
 4
 5   type Simple_Rec is limited private;
 6
 7   function Init (I : Integer) return Simple_Rec;
 8
 9   function "=" (Left, Right : Simple_Rec)
10                 return Boolean;
11
12private
13
14   type Simple_Rec is limited record
15      V : Integer_Access;
16   end record;
17
18end Limited_Types;








limited_types.adb

 1package body Limited_Types is
 2
 3   function Init (I : Integer) return Simple_Rec
 4   is
 5   begin
 6      return E : Simple_Rec do
 7         E.V := new Integer'(I);
 8      end return;
 9   end Init;
10
11   function "=" (Left, Right : Simple_Rec)
12                 return Boolean is
13   begin
14      --  Comparing record components
15      return Left.V.all = Right.V.all;
16   end "=";
17
18end Limited_Types;








show_limited_equality.adb

 1with Ada.Text_IO;   use Ada.Text_IO;
 2with Limited_Types; use Limited_Types;
 3
 4procedure Show_Limited_Equality is
 5   A : Simple_Rec := Init (5);
 6   B : Simple_Rec := Init (6);
 7begin
 8   if A = B then
 9      Put_Line ("A = B");
10   else
11      Put_Line ("A /= B");
12   end if;
13end Show_Limited_Equality;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Assignment_Equality.Equality
MD5: f56b2229443a5e4e33c402b41b02d318








Runtime output



A /= B







Here, the = operator compares the dereferenced values of Left.V
and Right.V, which matches our expectation for the Simple_Rec
type. Declaring types as limited ensures that we don't have unreasonable
equality comparisons, and allows us to create reasonable replacements when
required.


In other languages

In C++, you can overload the assignment operator. For example:

class Simple_Rec
{
public:
    // Overloaded assignment
    Simple_Rec& operator= (const Simple_Rec& obj);
private:
int *V;
};





In Ada, however, we can only define the equality operator (=).
Defining the assignment operator (:=) is not possible. The following
code triggers a compilation error as expected:

package Limited_Types is

   type Integer_Access is access Integer;

   type Simple_Rec is limited private;

   procedure ":=" (To   : in out Simple_Rec
                   From :        Simple_Rec);

   -- ...

end Limited_Types;










Limited private types

As we've seen in code examples from the previous section, we can apply
information hiding to limited types. In other words,
we can declare a type as limited private instead of just limited.
For example:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Rec is limited private;
 4
 5private
 6
 7   type Rec is limited record
 8      I : Integer;
 9   end record;
10
11end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Limited_Private
MD5: ececb364f5365a74db43952e9421dee0







In this case, in addition to the fact that assignments are forbidden for
objects of this type (because Rec is limited), we cannot access the
record components.

Note that in this example, both partial and full views of the Rec
record are of limited type. In the next sections, we discuss how the partial
and full views can have non-matching declarations.


In the Ada Reference Manual


	7.5 Limited Types[#3]







Non-Record Limited Types

In principle, only record types can be declared limited, so we cannot use
scalar or array types. For example, the following declarations won't compile:


non_record_limited_error.ads

 1package Non_Record_Limited_Error is
 2
 3   type Limited_Enumeration is
 4     limited (Off, On);
 5
 6   type Limited_Integer is new
 7     limited Integer;
 8
 9   type Integer_Array is
10     array (Positive range <>) of Integer;
11
12   type Rec is new
13     limited Integer_Array (1 .. 2);
14
15end Non_Record_Limited_Error;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Non_Record_Limited_Error
MD5: c155e02d809caf28352cbbb579deb861







However, we've mentioned
in a previous chapter that private
types don't have to be record types necessarily. In this sense, limited private
types makes it possible for us to use types other than record types in the full
view and still benefit from the restrictions of limited types. For example:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Limited_Enumeration is
 4     limited private;
 5
 6   type Limited_Integer is
 7     limited private;
 8
 9   type Limited_Integer_Array_2 is
10     limited private;
11
12private
13
14   type Limited_Enumeration is (Off, On);
15
16   type Limited_Integer is new Integer;
17
18   type Integer_Array is
19     array (Positive range <>) of Integer;
20
21   type Limited_Integer_Array_2 is
22     new Integer_Array (1 .. 2);
23
24end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Non_Record_Limited
MD5: 9e65b56a5cb3d7a3da11c7f63ee9bb19







Here, Limited_Enumeration, Limited_Integer, and
Limited_Integer_Array_2 are limited private types that encapsulate an
enumeration type, an integer type, and a constrained array type, respectively.



Partial and full view of limited types

In the previous example, both partial and full views of the Rec type
were limited. We may actually declare a type as limited private (in the
public part of a package), while its full view is nonlimited. For example:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Rec is limited private;
 4   --  Partial view of Rec is limited
 5
 6private
 7
 8   type Rec is record
 9   --  Full view of Rec is nonlimited
10      I : Integer;
11   end record;
12
13end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Limited_Partial_Full_View
MD5: 5d0dbc3e87531476856f0ac1f9b22c78







In this case, only the partial view of Rec is limited, while its full
view is nonlimited. When deriving from Rec, the view of the derived
type is the same as for the parent type:


simple_recs-child.ads

1package Simple_Recs.Child
2is
3   type Rec_Derived is new Rec;
4   --  As for its parent, the
5   --  partial view of Rec_Derived
6   --  is limited, but the full view
7   --  is nonlimited.
8
9end Simple_Recs.Child;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Limited_Partial_Full_View
MD5: fdf0ffa87ac2b8766830bf8e17ac7b5e







Clients must nevertheless comply with their partial view, and treat the type as
if it is in fact limited. In other words, if you use the Rec type in a
subprogram or package outside of the Simple_Recs package (or its child
packages), the type is limited from that perspective:


use_rec_in_subprogram.adb

1with Simple_Recs; use Simple_Recs;
2
3procedure Use_Rec_In_Subprogram is
4   R1, R2 : Rec;
5begin
6   R1.I := 1;
7   R2   := R1;
8end Use_Rec_In_Subprogram;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Limited_Partial_Full_View
MD5: f0af323a951853b97a2b67ce9b13e732








Build output



use_rec_in_subprogram.adb:6:04: error: invalid prefix in selected component "R1"
use_rec_in_subprogram.adb:7:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed







Here, compilation fails because the type Rec is limited from the
procedure's perspective.


Limitations

Note that the opposite — declaring a type as private and its full
full view as limited private — is not possible. For example:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Rec is private;
 4
 5private
 6
 7   type Rec is limited record
 8      I : Integer;
 9   end record;
10
11end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Limited_Partial_Full_View
MD5: ec1c8a2dcf3cc2c49b1497cf4c9d3a5a








Build output



use_rec_in_subprogram.adb:6:04: error: invalid prefix in selected component "R1"
simple_recs.ads:7:09: error: completion of nonlimited type cannot be limited
gprbuild: *** compilation phase failed







As expected, we get a compilation error in this case. The issue is that the
partial view cannot be allowed to mislead the client about what's possible.
In this case, if the partial view allows assignment, then the full view must
actually provide assignment. But the partial view can restrict what is actually
possible, so a limited partial view need not be completed in the full view as a
limited type.

In addition, tagged limited private types cannot have a nonlimited full view.
For example:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Rec is tagged limited private;
 4
 5private
 6
 7   type Rec is tagged record
 8      I : Integer;
 9   end record;
10
11end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Limited_Partial_Full_View
MD5: cadb9ca1346a98fb65f9059fdb29f865








Build output



simple_recs-child.ads:3:28: error: type derived from tagged type must have extension
simple_recs.ads:7:09: error: completion of limited tagged type must be limited
gprbuild: *** compilation phase failed







Here, compilation fails because the type Rec is nonlimited in its full
view.




Limited and nonlimited in full view

Declaring the full view of a type as limited or nonlimited has implications in
the way we can use objects of this type in the package body. For example:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Rec_Limited_Full is limited private;
 4   type Rec_Nonlimited_Full is limited private;
 5
 6   procedure Copy
 7     (From :        Rec_Limited_Full;
 8      To   : in out Rec_Limited_Full);
 9   procedure Copy
10     (From :        Rec_Nonlimited_Full;
11      To   : in out Rec_Nonlimited_Full);
12
13private
14
15   type Rec_Limited_Full is limited record
16      I : Integer;
17   end record;
18
19   type Rec_Nonlimited_Full is record
20      I : Integer;
21   end record;
22
23end Simple_Recs;








simple_recs.adb

 1package body Simple_Recs is
 2
 3   procedure Copy
 4     (From :        Rec_Limited_Full;
 5      To   : in out Rec_Limited_Full)
 6   is
 7   begin
 8      To := From;
 9      --  ERROR: assignment is forbidden because
10      --         Rec_Limited_Full is limited in
11      --         its full view.
12   end Copy;
13
14   procedure Copy
15     (From :        Rec_Nonlimited_Full;
16      To   : in out Rec_Nonlimited_Full)
17   is
18   begin
19      To := From;
20      --  OK: assignment is allowed because
21      --      Rec_Nonlimited_Full is
22      --      nonlimited in its full view.
23   end Copy;
24
25end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Limited_Non_Limited_Partial_Full_View
MD5: 24b75bb97ddd485bd6825bb8647607c1








Build output



simple_recs.adb:8:07: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed







Here, both Rec_Limited_Full and Rec_Nonlimited_Full are declared
as private limited. However, Rec_Limited_Full type is limited in
its full view, while Rec_Nonlimited_Full is nonlimited. As expected,
the compiler complains about the To := From assignment in the
Copy procedure for the Rec_Limited_Full type because its full
view is limited (so no assignment is possible). Of course, in the case of the
objects of Rec_Nonlimited_Full type, this assignment is perfectly fine.



Limited private component

Another example mentioned by the
Ada Reference Manual (7.3.1[#4], 5/1) is about an array type whose
component type is limited private, but nonlimited in its full view. Let's see a
complete code example for that:


limited_nonlimited_arrays.ads

 1package Limited_Nonlimited_Arrays is
 2
 3   type Limited_Private is
 4     limited private;
 5
 6   function Init return Limited_Private;
 7
 8   --  The array type Limited_Private_Array
 9   --  is limited because the type of its
10   --  component is limited.
11   type Limited_Private_Array is
12     array (Positive range <>) of
13       Limited_Private;
14
15private
16
17   type Limited_Private is
18   record
19      A : Integer;
20   end record;
21
22   --  Limited_Private_Array type is
23   --  nonlimited at this point because
24   --  its component is nonlimited.
25   --
26   --  The assignments below are OK:
27   A1 : Limited_Private_Array (1 .. 5);
28
29   A2 : Limited_Private_Array := A1;
30
31end Limited_Nonlimited_Arrays;








limited_nonlimited_arrays.adb

1package body Limited_Nonlimited_Arrays is
2
3   function Init return Limited_Private is
4     ((A => 1));
5
6end Limited_Nonlimited_Arrays;








show_limited_nonlimited_array.adb

 1with Limited_Nonlimited_Arrays;
 2use  Limited_Nonlimited_Arrays;
 3
 4procedure Show_Limited_Nonlimited_Array is
 5   A3 : Limited_Private_Array (1 .. 2) :=
 6          (others => Init);
 7   A4 : Limited_Private_Array (1 .. 2);
 8begin
 9   --  ERROR: this assignment is illegal because
10   --  Limited_Private_Array is limited, as
11   --  its component is limited at this point.
12   A4 := A3;
13end Show_Limited_Nonlimited_Array;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Limited_Nonlimited_Array
MD5: 211670e99e6e3a63a785bb2dde255b58








Build output



show_limited_nonlimited_array.adb:12:04: error: left hand of assignment must not be limited type
show_limited_nonlimited_array.adb:12:04: error: component type "Limited_Private" of subtype of "Limited_Private_Array" is limited
gprbuild: *** compilation phase failed







As we can see in this example, the limitedness of the array type
Limited_Private_Array depends on the limitedness of its component type
Limited_Private. In the private part of Limited_Nonlimited_Arrays
package, where Limited_Private is nonlimited, the array type
Limited_Private_Array becomes nonlimited as well. In contrast, in the
Show_Limited_Nonlimited_Array, the array type is limited because its
component is limited in that scope.
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Tagged limited private types

For tagged private types, the partial and full views must match: if a tagged
type is limited in the partial view, it must be limited in the full view. For
example:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Rec is tagged limited private;
 4
 5private
 6
 7   type Rec is tagged limited record
 8      I : Integer;
 9   end record;
10
11end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Private_Types.Tagged_Limited_Private_Types
MD5: bee48bd7e0d70ddfd288c0de5e21b039







Here, the tagged Rec type is limited both in its partial and full views.
Any mismatch in one of the views triggers a compilation error. (As an
exercise, you may remove any of the limited keywords from the code
example and try to compile it.)


For further reading...

This rule is for the sake of dynamic dispatching and classwide types. The
compiler must not allow any of the types in a derivation class — the
set of types related by inheritance — to be different regarding
assignment and equality (and thus inequality). That's necessary because we
are meant to be able to manipulate objects of any type in the entire set of
types via the partial view presented by the root type, without knowing which
specific tagged type is involved.






Explicitly limited types

Under certain conditions, limited types can be called explicitly limited
— note that using the limited keyword in a part of the declaration
doesn't necessary ensure this, as we'll see later.

Let's start with an example of an explicitly limited type:


simple_recs.ads

1package Simple_Recs is
2
3   type Rec is limited record
4      I : Integer;
5   end record;
6
7end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Explicitly_Limited_Types.Explicitly_Limited_Types
MD5: de73a20140628420830ed9fe0b2dedb5







The Rec type is also explicitly limited when it's declared limited in
the private type's completion (in the package's private part):


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Rec is limited private;
 4
 5private
 6
 7   type Rec is limited record
 8      I : Integer;
 9   end record;
10
11end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Explicitly_Limited_Types.Explicitly_Limited_Types
MD5: ececb364f5365a74db43952e9421dee0







In this case, Rec is limited both in the partial and in the full view,
so it's considered explicitly limited.

However, as we've learned before,
we may actually declare a type as limited private in the
public part of a package, while its full view is nonlimited. In this case, the
limited type is not considered explicitly limited anymore.

For example, if we make the full view of the Rec nonlimited (by
removing the limited keyword in the private part), then the Rec
type isn't explicitly limited anymore:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Rec is limited private;
 4
 5private
 6
 7   type Rec is record
 8      I : Integer;
 9   end record;
10
11end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Explicitly_Limited_Types.Explicitly_Limited_Types
MD5: bd54dec4f9b67d3d14d80511b3ac311f







Now, even though the Rec type was declared as limited private, the full
view indicates that it's actually a nonlimited type, so it isn't explicitly
limited.

Note that
tagged limited private types are
always explicitly limited types — because, as we've learned before,
they cannot have a nonlimited type declaration in its full view.
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Subtypes of Limited Types

We can declare subtypes of limited types. For example:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Limited_Integer_Array (L : Positive) is
 4     limited private;
 5
 6   subtype Limited_Integer_Array_2 is
 7     Limited_Integer_Array (2);
 8
 9private
10
11   type Integer_Array is
12     array (Positive range <>) of Integer;
13
14   type Limited_Integer_Array (L : Positive) is
15     limited record
16      Arr : Integer_Array (1 .. L);
17   end record;
18
19end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Limited_Subtype
MD5: 2a82c3c96fad2a01b9a8c15912d4b974







Here, Limited_Integer_Array_2 is a subtype of the
Limited_Integer_Array type. Since Limited_Integer_Array is a
limited type, the Limited_Integer_Array_2 subtype is limited as well.
A subtype just introduces a name for some constraints on an existing type. As
such, a subtype doesn't change the limitedness of the constrained type.

We can test this in a small application:


test_limitedness.adb

1with Simple_Recs; use Simple_Recs;
2
3procedure Test_Limitedness is
4   Dummy_1, Dummy_2 : Limited_Integer_Array_2;
5begin
6   Dummy_2 := Dummy_1;
7end Test_Limitedness;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Limited_Subtype
MD5: c24d07be96f27298a97e18d955cc6161








Build output



test_limitedness.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed







As expected, compilations fails because Limited_Integer_Array_2 is a
limited (sub)type.



Deriving from limited types

In this section, we discuss the implications of deriving from limited types.
As usual, let's start with a simple example:


simple_recs.ads

1package Simple_Recs is
2
3   type Rec is limited null record;
4
5   type Rec_Derived is new Rec;
6
7end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Derived_Limited_Type
MD5: cd23dfb69645ba5f1ebfdd65ee761ebe







In this example, the Rec_Derived type is derived from the Rec
type. Note that the Rec_Derived type is limited because its ancestor is
limited, even though the limited keyword doesn't show up in the
declaration of the Rec_Derived type. Note that we could have actually
used the limited keyword here:

type Rec_Derived is limited new Rec;





Therefore, we cannot use the assignment operator for objects of
Rec_Derived type:


test_limitedness.adb

1with Simple_Recs; use Simple_Recs;
2
3procedure Test_Limitedness is
4   Dummy_1, Dummy_2 : Rec_Derived;
5begin
6   Dummy_2 := Dummy_1;
7end Test_Limitedness;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Derived_Limited_Type
MD5: ce1b5fc8c96c4ede0cc6768b84296b51








Build output



test_limitedness.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed







Note that we cannot derive a limited type from a nonlimited ancestor:


simple_recs.ads

1package Simple_Recs is
2
3   type Rec is null record;
4
5   type Rec_Derived is limited new Rec;
6
7end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Derived_Limited_Type_Nonlimited_Ancestor
MD5: 78a7574cc6233ddc826359acb6e644ee








Build output



simple_recs.ads:5:04: error: parent type "Rec" of limited type must be limited
gprbuild: *** compilation phase failed







As expected, the compiler indicates that the ancestor Rec should be of
limited type.

In fact, all types in a derivation class are the same — either
limited or not. (That is especially important with dynamic dispatching via
tagged types. We discuss this topic in another chapter.)
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Deriving from limited private types

Of course, we can also derive from limited private types. However, there are
more rules in this case than the ones we've seen so far. Let's start with an
example:


simple_recs.ads

1package Simple_Recs is
2
3   type Rec is limited private;
4
5private
6
7   type Rec is limited null record;
8
9end Simple_Recs;








simple_recs-ext.ads

 1package Simple_Recs.Ext is
 2
 3   type Rec_Derived is new Rec;
 4
 5   --  OR:
 6   --
 7   --  type Rec_Derived is
 8   --    limited new Rec;
 9
10end Simple_Recs.Ext;








test_limitedness.adb

1with Simple_Recs.Ext; use Simple_Recs.Ext;
2
3procedure Test_Limitedness is
4   Dummy_1, Dummy_2 : Rec_Derived;
5begin
6   Dummy_2 := Dummy_1;
7end Test_Limitedness;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Derived_Limited_Private_Type
MD5: c6eed14520589b9c1e11c17bd6179c19








Build output



test_limitedness.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed







Here, Rec_Derived is a limited type derived from the (limited private)
Rec type. We can verify that Rec_Derived type is limited
because the compilation of the Test_Limitedness procedure fails.



Deriving from non-explicitly limited private types

Up to this point, we have discussed
explicitly limited types. Now, let's
see how derivation works with non-explicitly limited types.

Any type derived from a limited type is always limited, even if the full view
of its ancestor is nonlimited. For example, let's modify the full view of
Rec and make it nonlimited (i.e. make it not explicitly limited):


simple_recs.ads

1package Simple_Recs is
2
3   type Rec is limited private;
4
5private
6
7   type Rec is null record;
8
9end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Derived_Limited_Private_Type
MD5: 30a2a88ff46b7e528bb8d75d3d6ad6ce








Build output



simple_recs.ads:1: Simple_Recs cannot be used as a main program
gprbind: invocation of gnatbind failed
gprbuild: unable to bind simple_recs.ads







Here, Rec_Derived is a limited type because the partial view of
Rec is limited. The fact that the full view of Rec is nonlimited
doesn't affect the Rec_Derived type — as we can verify with the
compilation error in the Test_Limitedness procedure.

Note, however, that a derived type becomes nonlimited in the
private part or the body of a child package if it isn't explicitly limited.
In this sense, the derived type inherits the nonlimitedness of the parent's
full view. For example,
because we're declaring Rec_Derived as is new Rec in the child
package (Simple_Recs.Ext), we're saying that Rec_Derived is
limited outside this package, but nonlimited in the private part and body of
the Simple_Recs.Ext package. We can verify this by copying the code from
the Test_Limitedness procedure to a new procedure in the body of the
Simple_Recs.Ext package:


simple_recs-ext.ads

 1package Simple_Recs.Ext
 2  with Elaborate_Body is
 3
 4  --  Rec_Derived is derived from Rec, which is a
 5  --  limited private type that is nonlimited in
 6  --  its full view.
 7  --
 8  --  Rec_Derived isn't explicitly limited.
 9  --  Therefore, it's nonlimited in the private
10  --  part of Simple_Recs.Ext and its package
11  --  body.
12  --
13  type Rec_Derived is new Rec;
14
15end Simple_Recs.Ext;








simple_recs-ext.adb

 1package body Simple_Recs.Ext is
 2
 3   procedure Test_Child_Limitedness is
 4      Dummy_1, Dummy_2 : Rec_Derived;
 5   begin
 6      --  Here, Rec_Derived is a nonlimited
 7      --  type because Rec is nonlimited in
 8      --  its full view.
 9
10      Dummy_2 := Dummy_1;
11   end Test_Child_Limitedness;
12
13end Simple_Recs.Ext;








test_limitedness.adb

 1--  We copied the code to the
 2--  Test_Child_Limitedness procedure (in the
 3--  body of the Simple_Recs.Ext package) and
 4--  commented it out here.
 5--
 6--  You may uncomment the code to verify
 7--  that Rec_Derived is limited in this
 8--  procedure.
 9--
10
11--  with Simple_Recs.Ext; use Simple_Recs.Ext;
12
13procedure Test_Limitedness is
14   --  Dummy_1, Dummy_2 : Rec_Derived;
15begin
16   --  Dummy_2 := Dummy_1;
17   null;
18end Test_Limitedness;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Derived_Limited_Private_Type
MD5: f480cd05afff622e451684a0293cb982







In the Test_Child_Limitedness procedure of the Simple_Recs.Ext
package, we can use the Rec_Derived as a nonlimited type because its
ancestor Rec is nonlimited in its full view. (
As we've learned before, if a
limited type is nonlimited in its full view, we can copy objects of this type
in the private part of the package specification or in the package body.)

Outside of the package, both Rec and Rec_Derived types are
limited types. Therefore, if we uncomment the code in the
Test_Limitedness procedure, compilation fails there (because
Rec_Derived is viewed as descending from a limited type).


Deriving from tagged limited private types

The rules for deriving from tagged limited private types are slightly different
than the rules we've seen so far. This is because tagged limited types are
always explicitly limited types.

Let's look at an example:


simple_recs.ads

1package Simple_Recs is
2
3   type Tagged_Rec is tagged limited private;
4
5private
6
7   type Tagged_Rec is tagged limited null record;
8
9end Simple_Recs;








simple_recs-ext.ads

 1package Simple_Recs.Ext is
 2
 3   type Rec_Derived is new
 4     Tagged_Rec with private;
 5
 6private
 7
 8   type Rec_Derived is new
 9     Tagged_Rec with null record;
10
11end Simple_Recs.Ext;








test_limitedness.adb

1with Simple_Recs.Ext; use Simple_Recs.Ext;
2
3procedure Test_Limitedness is
4   Dummy_1, Dummy_2 : Rec_Derived;
5begin
6   Dummy_2 := Dummy_1;
7end Test_Limitedness;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Derived_Tagged_Limited_Private_Type
MD5: 81c8a010f093d8823b84bb6e69c4114e








Build output



test_limitedness.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed







In this example, Rec_Derived is a tagged limited type derived from the
Tagged_Rec type. (Again, we can verify the limitedness of the
Rec_Derived type with the Test_Limitedness procedure.)

As explained previously, the derived type (Rec_Derived) is a limited
type, even though the limited keyword doesn't appear in its
declaration. We could, of course, include the limited keyword in the
declaration of Rec_Derived:


simple_recs-ext.ads

 1package Simple_Recs.Ext is
 2
 3   type Rec_Derived is limited new
 4     Tagged_Rec with private;
 5
 6private
 7
 8   type Rec_Derived is limited new
 9     Tagged_Rec with null record;
10
11end Simple_Recs.Ext;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Derived_Tagged_Limited_Private_Type
MD5: b82a58a4bf9701b321000c52bf121977








Build output



simple_recs-ext.ads:1: Simple_Recs.ext cannot be used as a main program
gprbind: invocation of gnatbind failed
gprbuild: unable to bind simple_recs-ext.ads







(Obviously, if we include the limited keyword in the partial view of
the derived type, we must include it in its full view as well.)



Deriving from limited interfaces

The rules for limited interfaces are different from the ones for limited tagged
types. In contrast to the rule we've seen in the previous section, a type that
is derived from a limited type isn't automatically limited. In other words, it
does not inherit the limitedness from the interface. For example:


simple_recs.ads

1package Simple_Recs is
2
3   type Limited_IF is limited interface;
4
5end Simple_Recs;








simple_recs-ext.ads

 1package Simple_Recs.Ext is
 2
 3   type Rec_Derived is new
 4     Limited_IF with private;
 5
 6private
 7
 8   type Rec_Derived is new
 9     Limited_IF with null record;
10
11end Simple_Recs.Ext;








test_limitedness.adb

1with Simple_Recs.Ext; use Simple_Recs.Ext;
2
3procedure Test_Limitedness is
4   Dummy_1, Dummy_2 : Rec_Derived;
5begin
6   Dummy_2 := Dummy_1;
7end Test_Limitedness;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Derived_Interface_Limited_Private
MD5: d9cf0bd26b86d0caec82eff2a2ec6ead







Here, Rec_Derived is derived from the limited Limited_IF
interface. As we can see, the Test_Limitedness compiles fine because
Rec_Derived is nonlimited.

Of course, if we want Rec_Derived to be limited, we can make this
explicit in the type declaration:


simple_recs-ext.ads

 1package Simple_Recs.Ext is
 2
 3   type Rec_Derived is limited new
 4     Limited_IF with private;
 5
 6private
 7
 8   type Rec_Derived is limited new
 9     Limited_IF with null record;
10
11end Simple_Recs.Ext;








test_limitedness.adb

1with Simple_Recs.Ext; use Simple_Recs.Ext;
2
3procedure Test_Limitedness is
4   Dummy_1, Dummy_2 : Rec_Derived;
5begin
6   Dummy_2 := Dummy_1;
7end Test_Limitedness;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Deriving_From_Limited_Types.Derived_Interface_Limited_Private
MD5: abb295cbfd5ade5f351991c2fbaf519c








Build output



test_limitedness.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed







Now, compilation of Test_Limitedness fails because Rec_Derived is
explicitly limited.





Immutably Limited Types

According to the Annotated Ada Reference Manual (7.5, 8.b/3)[#11],
"an immutably limited type is
a type that cannot become nonlimited subsequently in a private part or in a
child unit." In fact, while we were talking about
partial and full view of limited types,
we've seen that limited private types can become nonlimited in their full view.
Such limited types are not immutably limited.

The Annotated Ada Reference Manual also says that "if a view of the type makes
it immutably limited, then no copying (assignment) operations are ever
available for objects of the type. This allows other properties; for instance,
it is safe for such objects to have access discriminants that have defaults or
designate other limited objects." We'll see examples of this later on.

Immutably limited types include:


	explicitly limited types


	tagged limited types (i.e. with the keywords tagged limited);


	tagged limited private types;


	limited private type that have at least one
access discriminant with a
default expression;


	task types, protected types, and synchronized interfaces;


	any types derived from immutably limited types.




Let's look at a code example that shows instances of immutably limited types:


show_immutably_limited_types.ads

 1package Show_Immutably_Limited_Types is
 2
 3   --
 4   --  Explicitly limited type
 5   --
 6   type Explicitly_Limited_Rec is limited
 7   record
 8      A : Integer;
 9   end record;
10
11   --
12   --  Tagged limited type
13   --
14   type Limited_Tagged_Rec is tagged limited
15   record
16      A : Integer;
17   end record;
18
19   --
20   --  Tagged limited private type
21   --
22   type Limited_Tagged_Private is
23     tagged limited private;
24
25   --
26   --  Limited private type with an access
27   --  discriminant that has a default
28   --  expression
29   --
30   type Limited_Rec_Access_D
31     (AI : access Integer := new Integer) is
32       limited private;
33
34   --
35   --  Task type
36   --
37   task type TT is
38     entry Start;
39     entry Stop;
40   end TT;
41
42   --
43   --  Protected type
44   --
45   protected type PT is
46     function Value return Integer;
47   private
48     A : Integer;
49   end PT;
50
51  --
52  --  Synchronized interface
53  --
54  type SI is synchronized interface;
55
56  --
57  --  A type derived from an immutably
58  --  limited type
59  --
60  type Derived_Immutable is new
61    Explicitly_Limited_Rec;
62
63private
64
65   type Limited_Tagged_Private is tagged limited
66   record
67      A : Integer;
68   end record;
69
70   type Limited_Rec_Access_D
71     (AI : access Integer := new Integer)
72   is limited
73     record
74       A : Integer;
75     end record;
76
77end Show_Immutably_Limited_Types;








show_immutably_limited_types.adb

 1package body Show_Immutably_Limited_Types is
 2
 3   task body TT is
 4   begin
 5     accept Start;
 6     accept Stop;
 7   end TT;
 8
 9   protected body PT is
10     function Value return Integer is
11       (PT.A);
12   end PT;
13
14end Show_Immutably_Limited_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Immutably_Limited_Types.Example
MD5: 6bcb9582a10eedc96040ab11cd320153








Build output



show_immutably_limited_types.ads:31:30: warning: coextension will not be deallocated when its associated owner is deallocated [enabled by default]







In the Show_Immutably_Limited_Types package above, we see multiple
instances of immutably limited types. (The comments in the source code indicate
each type.)
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Non immutably limited types

Not every limited type is immutably limited. We already mentioned untagged
private limited types, which can
become nonlimited in their full view.
In
addition, we have nonsynchronized limited interface types. As mentioned earlier
in this chapter, a
type derived from a nonsynchronized limited interface,
can be nonlimited, so it's not immutably limited.
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Limited Types with Discriminants

In this section, we look into the implications of using discriminants with
limited types. Actually, most of the topics mentioned here have already been
covered in different sections of previous chapters, as well as in this chapter.
Therefore, this section is in most parts just a review of what we've already
discussed.

Let's start with a simple example:


simple_recs.ads

1package Simple_Recs is
2
3   type Rec (L : Positive)
4     is limited null record;
5
6end Simple_Recs;








test_limitedness.adb

 1with Simple_Recs; use Simple_Recs;
 2
 3procedure Test_Limitedness is
 4   Dummy_1 : Rec (2);
 5   Dummy_2 : Rec (3);
 6begin
 7   Dummy_2 := Dummy_1;
 8   --  ^^^^^^^^^^^^^^
 9   --  ERRORS:
10   --    1. Cannot assign objects of
11   --       limited types.
12   --    2. Cannot assign objects with
13   --       different discriminants.
14end Test_Limitedness;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Discriminants.Simple_Example
MD5: 7b4a62c0341becf16f59e163b4359397








Build output



test_limitedness.adb:7:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed







In this example, we see the declaration of the limited type Rec, which
has the discriminant L. For objects of type Rec, we not only have
the typical restrictions that
equality and assignment aren't available,
but we also have the restriction that we won't be able to assign objects
with different discriminants.
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Default Expressions

On the other hand, there are restrictions that apply to nonlimited types with
discriminants, but not to limited types with discriminants. This concerns
mostly default expressions, which are generally allowed for discriminants of
limited types.


Discriminants of tagged limited types

As we've discussed previously, we can use default expressions for discriminants
of tagged limited types. Let's see an example:


recs.ads

1package Recs is
2
3   type LTT (L : Positive := 1;
4             M : Positive := 2) is
5     tagged limited null record;
6
7end Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Discriminants.Discriminant_Default_Value_Tagged_TYpe
MD5: ebd28ee124c6a84765c61ea609ba0595







Obviously, the same applies to
tagged limited private types:


recs.ads

 1package Recs is
 2
 3   type LTT (L : Positive := 1;
 4             M : Positive := 2) is
 5     tagged limited private;
 6
 7private
 8
 9   type LTT (L : Positive := 1;
10             M : Positive := 2) is
11     tagged limited null record;
12
13end Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Discriminants.Discriminant_Default_Value_Tagged_TYpe
MD5: dd3d5a25ad9d050f7e7467d859dd9e14







In the case of tagged, nonlimited types, using default expressions in this
context isn't allowed.



Access discriminant

Similarly, when using limited types, we can specify default expressions for
access discriminants:


custom_recs.ads

 1package Custom_Recs is
 2
 3   --  Specifying a default expression for
 4   --  an access discriminant:
 5   type Rec (IA : access Integer :=
 6                    new Integer'(0)) is limited
 7   record
 8      I : Integer := IA.all;
 9   end record;
10
11end Custom_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Discriminants.Access_Discriminant_Default_Expression
MD5: 23703d9dc80e9f1c8fe237c76b9dd6b0








Build output



custom_recs.ads:6:21: warning: coextension will not be deallocated when its associated owner is deallocated [enabled by default]







In fact,
as we've discussed before,
this isn't possible for nonlimited types.

Note, however, that we can only assign a default expression to an access
discriminant of an
immutably limited type.



Discriminants of nontagged limited types

In addition to tagged limited types, we can use default expressions for
discriminants of nontagged limited types. Let's see an example:


recs.ads

1package Recs is
2
3   type LTT (L : Positive := 1;
4             M : Positive := 2) is
5     limited null record;
6
7end Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Discriminants.Discriminant_Default_Value_Tagged_TYpe
MD5: 8d189b814c6afb4f060e9a41558c18c6







Obviously, the same applies to
limited private types:


recs.ads

 1package Recs is
 2
 3   type LTT (L : Positive := 1;
 4             M : Positive := 2) is
 5     limited private;
 6
 7private
 8
 9   type LTT (L : Positive := 1;
10             M : Positive := 2) is
11     limited null record;
12
13end Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Discriminants.Discriminant_Default_Value_Tagged_TYpe
MD5: 536d7dfbe84c818cb94a8b972e3d77cb







Note that using default expressions for discriminants of nonlimited, nontagged
types is OK as well.



Mutable subtypes and Limitedness

As we've mentioned before, an unconstrained discriminated subtype with defaults
is called a mutable subtype. An important feature of mutable subtypes is that
it allows changing the discriminants of an object, e.g. via assignments.
However, as we know, we cannot assign to objects of limited types. Therefore,
in essence, a type should be nonlimited to be considered a mutable subtype.

Let's look at a code example:


recs.ads

 1package Recs is
 2
 3   type LTT (L : Positive := 1;
 4             M : Positive := 2) is
 5     limited null record;
 6
 7   function Init (L : Positive;
 8                  M : Positive)
 9                  return LTT is
10     ((L => L, M => M));
11
12   procedure Copy (From :        LTT;
13                   To   : in out LTT);
14
15end Recs;








recs.adb

 1package body Recs is
 2
 3   procedure Copy (From :        LTT;
 4                   To   : in out LTT) is
 5   begin
 6      To := Init (L => From.L,
 7                  M => From.M);
 8      --  ERROR: cannot assign to object of
 9      --         limited type
10
11      To.L := From.L;
12      To.M := From.M;
13      --  ERROR: cannot change discriminants
14   end Copy;
15
16end Recs;








show.adb

1with Recs; use Recs;
2
3procedure Show is
4   A : LTT;
5   B : LTT := Init (10, 12);
6begin
7   Copy (From => B, To => A);
8end Show;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Discriminants.Discriminant_Default_Value_Tagged_TYpe
MD5: e8dfb1e99e33923aa4023428ecb17372








Build output



recs.adb:6:07: error: left hand of assignment must not be limited type
recs.adb:11:09: error: assignment to discriminant not allowed
recs.adb:12:09: error: assignment to discriminant not allowed
gprbuild: *** compilation phase failed







As we can see in the Copy procedure, it's not possible to properly
assign to the target object. Using Init is forbidden because the
assignment is not initializing the target object — as we're not declaring
To at this point. Also, changing the individual discriminants is
forbidden as well. Therefore, we don't have any means to change the
discriminants of the target object. (In contrast, if LTT was a
nonlimited type, we would be able to implement Copy by using the call to
the Init function.)




Limited private type with unknown discriminants

We can declare limited private types with
unknown discriminants. Let's see an
example:


limited_private_unknown_discriminants.ads

 1package Limited_Private_Unknown_Discriminants is
 2
 3   type Rec (<>) is limited private;
 4
 5private
 6
 7   type Rec is limited
 8   record
 9      I : Integer;
10   end record;
11
12end Limited_Private_Unknown_Discriminants;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Discriminants.Limited_Private_Unknown_Discriminants
MD5: 74184919132a084da76bd3e1445c22e5







In this example, we declare type Rec, which has unknown discriminants.

As we mentioned earlier, when we use a private type with unknown discriminants,
we gain extra control over its initialization. In addition, if we declare those
types as limited, we gain even more control. In fact, this is what the
Annotated Ada Reference Manual (3.7, 26.b/2)[#16] says:


"A subtype with unknown discriminants is indefinite, and hence an object of
such a subtype needs explicit initialization. A limited private type with
unknown discriminants is 'extremely' limited; objects of such a type can be
initialized only by subprograms (either procedures with a parameter of the
type, or a function returning the type) declared in the package.
Subprograms declared elsewhere can operate on and even return the type, but
they can only initialize the object by calling (ultimately) a subprogram in
the package declaring the type. Such a type is useful for keeping complete
control over object creation within the package declaring the type."




Let's reuse a code example from the
previous section on unknown discriminants
and use limited types:


limited_private_unknown_discriminants.ads

 1package Limited_Private_Unknown_Discriminants is
 2
 3   type Rec (<>) is limited private;
 4
 5   function Init return Rec;
 6
 7private
 8
 9   type Rec is limited
10   record
11      I : Integer;
12   end record;
13
14   function Init return Rec is
15     ((I => 0));
16
17end Limited_Private_Unknown_Discriminants;








show_constructor_function.adb

1with Limited_Private_Unknown_Discriminants;
2use  Limited_Private_Unknown_Discriminants;
3
4procedure Show_Constructor_Function is
5   R : Rec := Init;
6begin
7   null;
8end Show_Constructor_Function;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Discriminants.Limited_Private_Unknown_Discriminants
MD5: f4b1de2a83837e2e52b0b57214f0eaf9







A function such as Init is called a
constructor function for limited types.
We discuss this topic in more detail later on.




Record components of limited type

In this section, we discuss the implications of using components of limited
type. Let's start by declaring a record component of limited type:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Int_Rec is limited record
 4      V : Integer;
 5   end record;
 6
 7   type Rec is limited record
 8      IR : Int_Rec;
 9   end record;
10
11end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Record_Components_Limited_Type.Record_Components_Limited_Type
MD5: 71badd1e38cc4ff37f16d99dd203614b







As soon as we declare a record component of some limited type, the whole record
is limited. In this example, the Rec record is limited due to the
presence of the IR component of limited type.

Also, if we change the declaration of the Rec record from the previous
example and remove the limited keyword, the type itself remains
implicitly limited. We can see that when trying to assign to objects of
Rec type in the Show_Implicitly_Limited procedure:


simple_recs.ads

 1package Simple_Recs is
 2
 3   type Int_Rec is limited record
 4      V : Integer;
 5   end record;
 6
 7   type Rec is record
 8      IR : Int_Rec;
 9   end record;
10
11end Simple_Recs;








show_implicitly_limited.adb

1with Simple_Recs; use Simple_Recs;
2
3procedure Show_Implicitly_Limited is
4   A, B : Rec;
5begin
6   B := A;
7end Show_Implicitly_Limited;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Record_Components_Limited_Type.Record_Components_Limited_Type
MD5: 39770daecfc4579407a799e14f9feff9








Build output



show_implicitly_limited.adb:6:04: error: left hand of assignment must not be limited type
show_implicitly_limited.adb:6:04: error: component "IR" of type "Rec" has limited type
gprbuild: *** compilation phase failed







Here, the compiler indicates that the assignment is forbidden because the
Rec type has a component of limited type. The rationale for this rule is
that an object of a limited type doesn't allow assignment or equality,
including the case in which that object is a component of some enclosing
composite object. If we allowed the enclosing object to be copied or tested for
equality, we'd be doing it for all the components, too.


In the Ada Reference Manual


	3.8 Record Types[#17]








Limited types and aggregates


Note

This section was originally written by Robert A. Duff and published as
Gem #1: Limited Types in Ada 2005[#18]
and Gem #2[#19].



In this section, we focus on using aggregates to initialize limited types.


Historically

Prior to Ada 2005, aggregates were illegal for limited types. Therefore,
we would be faced with a difficult choice: Make the type limited, and
initialize it like this:


persons.ads

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4package Persons is
 5
 6   type Limited_Person;
 7   type Limited_Person_Access is
 8     access all Limited_Person;
 9
10   type Limited_Person is limited record
11      Name      : Unbounded_String;
12      Age       : Natural;
13   end record;
14
15end Persons;








show_non_aggregate_init.adb

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4with Persons; use Persons;
 5
 6procedure Show_Non_Aggregate_Init is
 7   X : Limited_Person;
 8begin
 9   X.Name := To_Unbounded_String ("John Doe");
10   X.Age := 25;
11end Show_Non_Aggregate_Init;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_Aggregates.Full_Coverage_Rules_Limited_Ada95
MD5: fd3dcb6251f7b6912dafcca052932be2







which has the maintenance problem the full coverage rules are supposed to
prevent. Or, make the type nonlimited, and gain the benefits of
aggregates, but lose the ability to prevent copies.




Full coverage rules for limited types

Previously, we discussed
full coverage rules for aggregates.
They also apply to limited types.


Historically

The full coverage rules have been aiding maintenance since Ada 83. However,
prior to Ada 2005, we couldn't use them for limited types.



Suppose we have the following limited type:


persons.ads

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4package Persons is
 5
 6   type Limited_Person;
 7   type Limited_Person_Access is
 8     access all Limited_Person;
 9
10   type Limited_Person is limited record
11      Self : Limited_Person_Access :=
12               Limited_Person'Unchecked_Access;
13      Name : Unbounded_String;
14      Age  : Natural;
15      Shoe_Size : Positive;
16   end record;
17
18end Persons;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_Aggregates.Full_Coverage_Rules_Limited
MD5: b8ece44a10d512061cb138be21e42034







This type has a self-reference; it doesn't make sense to copy objects,
because Self would end up pointing to the wrong place. Therefore,
we would like to make the type limited, to prevent developers from
accidentally making copies. After all, the type is probably private, so
developers using this package might not be aware of the problem. We could
also solve that problem with controlled types, but controlled types are
expensive, and add unnecessary complexity if not needed.

We can initialize objects of limited type with an aggregate. Here, we can say:


show_aggregate_box_init.adb

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4with Persons; use Persons;
 5
 6procedure Show_Aggregate_Box_Init is
 7   X : aliased Limited_Person :=
 8         (Self      => <>,
 9          Name      =>
10            To_Unbounded_String ("John Doe"),
11          Age       => 25,
12          Shoe_Size => 10);
13begin
14   null;
15end Show_Aggregate_Box_Init;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_Aggregates.Full_Coverage_Rules_Limited
MD5: ded40ff29b53ea5528efba94efaadbec







The Self => <> means use the default value of
Limited_Person'Unchecked_Access. Since Limited_Person
appears inside the type declaration, it refers to the "current instance"
of the type, which in this case is X. Thus, we are setting
X.Self to be X'Unchecked_Access.

One very important requirement should be noted: the implementation is
required to build the value of X in place; it cannot construct
the aggregate in a temporary variable and then copy it into X,
because that would violate the whole point of limited objects —
you can't copy them.


Historically

Since Ada 2005, an aggregate is allowed to be limited; we can say:


show_aggregate_init.adb

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3with Persons; use Persons;
 4
 5procedure Show_Aggregate_Init is
 6
 7   X : aliased Limited_Person :=
 8         (Self      => null, -- Wrong!
 9          Name      =>
10            To_Unbounded_String ("John Doe"),
11          Age       => 25,
12          Shoe_Size => 10);
13begin
14   X.Self := X'Unchecked_Access;
15end Show_Aggregate_Init;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_Aggregates.Full_Coverage_Rules_Limited
MD5: 793ee000fd777d0aa5c15e16132ec411







It seems uncomfortable to set the value of Self to the wrong value
(null) and then correct it. It also seems annoying that we have a
(correct) default value for Self, but prior to Ada 2005, we
couldn't use defaults with aggregates. Since Ada 2005, a new syntax in
aggregates is available: <> means "use the default value, if any".
Therefore, we can replace Self => null by Self => <>.




Important

Note that using <> in an aggregate can be dangerous, because it can
leave some components uninitialized. <> means "use the default
value". If the type of a component is scalar, and there is no
record-component default, then there is no default value.

For example, if we have an aggregate of type String, like this:


show_string_box_init.adb

1procedure Show_String_Box_Init is
2    Uninitialized_Const_Str : constant String :=
3                                (1 .. 10 => <>);
4begin
5   null;
6end Show_String_Box_Init;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_Aggregates.String_Box_Init
MD5: 28931ced4e1113d55bdc9dc64b42f70a







we end up with a 10-character string all of whose characters are invalid
values. Note that this is no more nor less dangerous than this:


show_dangerous_string.adb

 1procedure Show_Dangerous_String is
 2    Uninitialized_String_Var : String (1 .. 10);
 3    --  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 4    --  no initialization
 5
 6    Uninitialized_Const_Str : constant String :=
 7        Uninitialized_String_Var;
 8begin
 9   null;
10end Show_Dangerous_String;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_Aggregates.Dangerous_String
MD5: 6c26e9c8d5d031d4e6eac1ac8458f17e








Build output



show_dangerous_string.adb:2:05: warning: variable "Uninitialized_String_Var" is read but never assigned [-gnatwv]







As always, one must be careful about uninitialized scalar objects.






Constructor functions for limited types


Note

This section was originally written by Robert A. Duff and published as
Gem #3[#20].



Given that we can use build-in-place aggregates for limited types,
the obvious next step is to allow such aggregates to be wrapped in an
abstraction — namely, to return them from functions. After all,
interesting types are usually private, and we need some way for clients
to create and initialize objects.


Historically

Prior to Ada 2005, constructor functions (that is, functions that create
new objects and return them) were not allowed for limited types. Since
Ada 2005, fully-general constructor functions are allowed.



Let's see an example:


p.ads

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4package P is
 5   task type Some_Task_Type;
 6
 7   protected type Some_Protected_Type is
 8      --  dummy type
 9   end Some_Protected_Type;
10
11   type T (<>) is limited private;
12   function Make_T (Name : String) return T;
13   --       ^^^^^^
14   --  constructor function
15private
16   type T is limited
17      record
18         Name    : Unbounded_String;
19         My_Task : Some_Task_Type;
20         My_Prot : Some_Protected_Type;
21      end record;
22end P;








p.adb

 1package body P is
 2
 3   task body Some_Task_Type is
 4   begin
 5      null;
 6   end Some_Task_Type;
 7
 8   protected body Some_Protected_Type is
 9   end Some_Protected_Type;
10
11   function Make_T (Name : String) return T is
12   begin
13      return (Name   =>
14                To_Unbounded_String (Name),
15              others => <>);
16   end Make_T;
17
18end P;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_Functions_Limited_Types.Constructor_Functions
MD5: 2e73eea0ba7852d45ba96dc1f6fae14d







Given the above, clients can say:


show_constructor_function.adb

1with P; use P;
2
3procedure Show_Constructor_Function is
4   My_T : T := Make_T
5                 (Name => "Bartholomew Cubbins");
6begin
7   null;
8end Show_Constructor_Function;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_Functions_Limited_Types.Constructor_Functions
MD5: 52801fafbd58fedbf268a6704008627b







As for aggregates, the result of Make_T is built in place (that is,
in My_T), rather than being created and then copied into
My_T. Adding another level of function call, we can do:


show_rumplestiltskin_constructor.adb

 1with P; use P;
 2
 3procedure Show_Rumplestiltskin_Constructor is
 4
 5   function Make_Rumplestiltskin return T is
 6   begin
 7       return Make_T (Name => "Rumplestiltskin");
 8   end Make_Rumplestiltskin;
 9
10   Rumplestiltskin_Is_My_Name : constant T :=
11     Make_Rumplestiltskin;
12begin
13   null;
14end Show_Rumplestiltskin_Constructor;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_Functions_Limited_Types.Constructor_Functions
MD5: d8d9e9f22a0f2f034057fe97f75eacfe







It might help to understand the implementation model: In this case,
Rumplestiltskin_Is_My_Name is allocated in the usual way (on the
stack, presuming it is declared local to some subprogram). Its address is
passed as an extra implicit parameter to Make_Rumplestiltskin,
which then passes that same address on to Make_T, which then builds
the aggregate in place at that address. Limited objects must never be
copied! In this case, Make_T will initialize the Name
component, and create the My_Task and My_Prot components,
all directly in Rumplestiltskin_Is_My_Name.


Historically

Note that Rumplestiltskin_Is_My_Name is constant. Prior to
Ada 2005, it was impossible to create a constant limited object, because
there was no way to initialize it.



As we discussed before,
the (<>) on type T means that it has unknown
discriminants from the point of view of the client. This is a trick that
prevents clients from creating default-initialized objects (that is,
X : T; is illegal). Thus clients must call Make_T whenever
an object of type T is created, giving package P full
control over initialization of objects.

Ideally, limited and nonlimited types should be just the same, except for
the essential difference: you can't copy limited objects (and there's no
language-defined equality operator). By allowing
functions and aggregates for limited types, we're very close to this goal.
Some languages have a specific feature called constructor. In Ada, a
constructor is just a function that creates a new object.


Historically

Prior to Ada 2005, constructors only worked for nonlimited types. For
limited types, the only way to construct on declaration was via default
values, which limits you to one constructor. And the only way to pass
parameters to that construction was via discriminants.

Consider the following package:


aux.ads

 1with Ada.Containers.Ordered_Sets;
 2
 3package Aux is
 4   generic
 5      with package OS is new
 6        Ada.Containers.Ordered_Sets (<>);
 7   function Gen_Singleton_Set
 8     (Element : OS.Element_Type)
 9      return OS.Set;
10end Aux;








aux.adb

 1package body Aux is
 2   function Gen_Singleton_Set
 3     (Element : OS.Element_Type)
 4      return OS.Set
 5   is
 6   begin
 7      return S : OS.Set := OS.Empty_Set do
 8         S.Insert (Element);
 9      end return;
10   end Gen_Singleton_Set;
11end Aux;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_Functions_Limited_Types.Constructor_Functions_2
MD5: b715ae504c49ed59b7fd5ead4cc7bbb4







Since Ada 2005, we can say:


show_set_decl.adb

 1with Ada.Containers.Ordered_Sets;
 2with Aux;
 3
 4procedure Show_Set_Decl is
 5
 6   package Integer_Sets is new
 7     Ada.Containers.Ordered_Sets
 8       (Element_Type => Integer);
 9   use Integer_Sets;
10
11   function Singleton_Set is new
12     Aux.Gen_Singleton_Set
13       (OS => Integer_Sets);
14
15   This_Set : Set := Empty_Set;
16   That_Set : Set := Singleton_Set
17                       (Element => 42);
18begin
19   null;
20end Show_Set_Decl;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_Functions_Limited_Types.Constructor_Functions_2
MD5: 443fc3390b0f3e5516d91c80f16bed3f







whether or not Set is limited. This_Set : Set := Empty_Set;
seems clearer than:


show_set_decl.adb

 1with Ada.Containers.Ordered_Sets;
 2
 3procedure Show_Set_Decl is
 4
 5   package Integer_Sets is new
 6     Ada.Containers.Ordered_Sets
 7       (Element_Type => Integer);
 8   use Integer_Sets;
 9
10   This_Set : Set;
11begin
12   null;
13end Show_Set_Decl;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Constructor_Functions_Limited_Types.Constructor_Functions_2
MD5: e5b6c0e148cfdb1987ab3002ec1f53bd







which might mean "default-initialize to the empty set" or might mean
"leave it uninitialized, and we'll initialize it in later".





Return objects


Extended return statements for limited types


Note

This section was originally written by Robert A. Duff and published as
Gem #10: Limited Types in Ada 2005[#21].



Previously, we discussed
extended return statements.
For most types, extended return statements are no big deal — it's just
syntactic sugar. But for limited types, this syntax is almost essential:


task_construct_error.ads

1package Task_Construct_Error is
2
3   task type Task_Type (Discriminant : Integer);
4
5   function Make_Task (Val : Integer)
6                       return Task_Type;
7
8end Task_Construct_Error;








task_construct_error.adb

 1package body Task_Construct_Error is
 2
 3   task body Task_Type is
 4   begin
 5      null;
 6   end Task_Type;
 7
 8   function Make_Task (Val : Integer)
 9                       return Task_Type
10   is
11      Result : Task_Type
12                 (Discriminant => Val * 3);
13   begin
14      --  some statements...
15      return Result; -- Illegal!
16   end Make_Task;
17
18end Task_Construct_Error;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Extended_Return_Statements_Limited_Types.Extended_Return_Limited_Error
MD5: f55b1c367d2931ece4d352d209fe6b3b







The return statement here is illegal, because Result is local to
Make_Task, and returning it would involve a copy, which makes no
sense (which is why task types are limited). Since Ada 2005, we can write
constructor functions for task types:


task_construct.ads

1package Task_Construct is
2
3   task type Task_Type (Discriminant : Integer);
4
5   function Make_Task (Val : Integer)
6                       return Task_Type;
7
8end Task_Construct;








task_construct.adb

 1package body Task_Construct is
 2
 3   task body Task_Type is
 4   begin
 5      null;
 6   end Task_Type;
 7
 8   function Make_Task (Val : Integer)
 9                       return Task_Type is
10   begin
11      return Result : Task_Type
12                        (Discriminant => Val * 3)
13      do
14         --  some statements...
15         null;
16      end return;
17   end Make_Task;
18
19end Task_Construct;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Extended_Return_Statements_Limited_Types.Extended_Return_Limited
MD5: c91a24f09a76aef1c25d1a55bcbee910







If we call it like this:


show_task_construct.adb

1with Task_Construct; use Task_Construct;
2
3procedure Show_Task_Construct is
4   My_Task : Task_Type := Make_Task (Val => 42);
5begin
6   null;
7end Show_Task_Construct;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Extended_Return_Statements_Limited_Types.Extended_Return_Limited
MD5: 01809b031a844c829f2ead253864ca75







Result is created in place in My_Task. Result is
temporarily considered local to Make_Task during the
-- some statements part, but as soon as Make_Task returns,
the task becomes more global. Result and My_Task really are
one and the same object.

When returning a task from a function, it is activated after the function
returns. The -- some statements part had better not try to call one
of the task's entries, because that would deadlock. That is, the entry
call would wait until the task reaches an accept statement, which will
never happen, because the task will never be activated.



Initialization and function return

As mentioned in the previous section, the object of limited type returned by
the initialization function is built in place. In other words, the return
object is built in the object that is the target of the assignment statement.

For example, we can see this when looking at the address of the object
returned by the Init function, which we call to initialize the limited
type Simple_Rec:


limited_types.ads

 1package Limited_Types is
 2
 3   type Integer_Access is access Integer;
 4
 5   type Simple_Rec is limited private;
 6
 7   function Init (I : Integer) return Simple_Rec;
 8
 9private
10
11   type Simple_Rec is limited record
12      V : Integer_Access;
13   end record;
14
15end Limited_Types;








limited_types.adb

 1with Ada.Text_IO;           use Ada.Text_IO;
 2with System;
 3with System.Address_Image;
 4
 5package body Limited_Types is
 6
 7   function Init (I : Integer) return Simple_Rec
 8   is
 9   begin
10      return E : Simple_Rec do
11         E.V := new Integer'(I);
12
13         Put_Line ("E'Address (Init):  "
14                   & System.Address_Image
15                       (E'Address));
16      end return;
17   end Init;
18
19end Limited_Types;








show_limited_init.adb

 1with Ada.Text_IO;           use Ada.Text_IO;
 2with System;
 3with System.Address_Image;
 4
 5with Limited_Types;         use Limited_Types;
 6
 7procedure Show_Limited_Init is
 8begin
 9   declare
10      A : Simple_Rec := Init (0);
11   begin
12      Put_Line ("A'Address (local): "
13                & System.Address_Image
14                    (A'Address));
15   end;
16   Put_Line ("----");
17
18   declare
19      B : Simple_Rec := Init (0);
20   begin
21      Put_Line ("B'Address (local): "
22                & System.Address_Image
23                    (B'Address));
24   end;
25end Show_Limited_Init;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Extended_Return_Statements_Limited_Types.Initialization_Return_Do
MD5: 67235f804206e07fa4eba3a45cc1096f








Runtime output



E'Address (Init):  00007FFD2287A1D8
A'Address (local): 00007FFD2287A1D8
----
E'Address (Init):  00007FFD2287A1D0
B'Address (local): 00007FFD2287A1D0







When running this code example and comparing the address of the object E
in the Init function and the object that is being initialized in the
Show_Limited_Init procedure, we see that the return object E (of
the Init function) and the local object in the Show_Limited_Init
procedure are the same object.


Important

When we use nonlimited types, we're actually copying the returned object
— which was locally created in the function — to the object that
we're assigning the function to.

For example, let's modify the previous code and make Simple_Rec
nonlimited:




non_limited_types.ads

 1package Non_Limited_Types is
 2
 3   type Integer_Access is access Integer;
 4
 5   type Simple_Rec is private;
 6
 7   function Init (I : Integer)
 8                  return Simple_Rec;
 9
10private
11
12   type Simple_Rec is record
13      V : Integer_Access;
14   end record;
15
16end Non_Limited_Types;








non_limited_types.adb

 1with Ada.Text_IO;           use Ada.Text_IO;
 2with System;
 3with System.Address_Image;
 4
 5package body Non_Limited_Types is
 6
 7   function Init (I : Integer)
 8                  return Simple_Rec is
 9   begin
10      return E : Simple_Rec do
11         E.V := new Integer'(I);
12
13         Put_Line ("E'Address (Init):  "
14                   & System.Address_Image
15                       (E'Address));
16      end return;
17   end Init;
18
19end Non_Limited_Types;








show_non_limited_init_by_copy.adb

 1with Ada.Text_IO;           use Ada.Text_IO;
 2with System;
 3with System.Address_Image;
 4
 5with Non_Limited_Types;
 6use  Non_Limited_Types;
 7
 8procedure Show_Non_Limited_Init_By_Copy is
 9   A, B : Simple_Rec;
10begin
11   declare
12      A : Simple_Rec := Init (0);
13   begin
14      Put_Line ("A'Address (local): "
15                & System.Address_Image
16                    (A'Address));
17   end;
18   Put_Line ("----");
19
20   declare
21      B : Simple_Rec := Init (0);
22   begin
23      Put_Line ("B'Address (local): "
24                & System.Address_Image
25                    (B'Address));
26   end;
27end Show_Non_Limited_Init_By_Copy;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Extended_Return_Statements_Limited_Types.Initialization_Return_Copy
MD5: 6e224b64b90dabdf5064c70364fa80cb








Runtime output



E'Address (Init):  00007FFE90B49890
A'Address (local): 00007FFE90B49988
----
E'Address (Init):  00007FFE90B49890
B'Address (local): 00007FFE90B49980










In this case, we see that the local object E in the Init
function is not the same as the object it's being assigned to in the
Show_Non_Limited_Init_By_Copy procedure. In fact, E is being
copied to A and B.









Building objects from constructors


Note

This section was originally written by Robert A. Duff and published as
Gem #11: Limited Types in Ada 2005[#22].



We've earlier seen examples of constructor functions for limited types
similar to this:


p.ads

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4package P is
 5   task type Some_Task_Type;
 6
 7   protected type Some_Protected_Type is
 8      --  dummy type
 9   end Some_Protected_Type;
10
11   type T is limited private;
12   function Make_T (Name : String) return T;
13   --       ^^^^^^
14   --  constructor function
15private
16   type T is limited
17      record
18         Name    : Unbounded_String;
19         My_Task : Some_Task_Type;
20         My_Prot : Some_Protected_Type;
21      end record;
22end P;








p.adb

 1package body P is
 2
 3   task body Some_Task_Type is
 4   begin
 5      null;
 6   end Some_Task_Type;
 7
 8   protected body Some_Protected_Type is
 9   end Some_Protected_Type;
10
11   function Make_T (Name : String) return T is
12   begin
13      return (Name   =>
14                To_Unbounded_String (Name),
15              others => <>);
16   end Make_T;
17
18end P;








p-aux.ads

1package P.Aux is
2   function Make_Rumplestiltskin return T;
3end P.Aux;








p-aux.adb

1package body P.Aux is
2
3   function Make_Rumplestiltskin return T is
4   begin
5      return Make_T (Name => "Rumplestiltskin");
6   end Make_Rumplestiltskin;
7
8end P.Aux;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_From_Constructors.Building_Objs_From_Constructors
MD5: 1956721292a82899d244afcd10ff63ed







It is useful to consider the various contexts in which these functions may
be called. We've already seen things like:


show_rumplestiltskin_constructor.adb

1with P;     use P;
2with P.Aux; use P.Aux;
3
4procedure Show_Rumplestiltskin_Constructor is
5   Rumplestiltskin_Is_My_Name : constant T :=
6     Make_Rumplestiltskin;
7begin
8   null;
9end Show_Rumplestiltskin_Constructor;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_From_Constructors.Building_Objs_From_Constructors
MD5: 2fe193516df6452eccece8132660f8e5







in which case the limited object is built directly in a standalone object.
This object will be finalized whenever the surrounding scope is left.

We can also do:


show_parameter_constructor.adb

1with P;     use P;
2with P.Aux; use P.Aux;
3
4procedure Show_Parameter_Constructor is
5   procedure Do_Something (X : T) is null;
6begin
7   Do_Something (X => Make_Rumplestiltskin);
8end Show_Parameter_Constructor;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_From_Constructors.Building_Objs_From_Constructors
MD5: 61ccaefb4b7cfc42c065aa15543fc13b







Here, the result of the function is built directly in the formal parameter
X of Do_Something. X will be finalized as soon as we
return from Do_Something.

We can allocate initialized objects on the heap:


show_heap_constructor.adb

 1with P;     use P;
 2with P.Aux; use P.Aux;
 3
 4procedure Show_Heap_Constructor is
 5
 6   type T_Ref is access all T;
 7
 8   Global : T_Ref;
 9
10   procedure Heap_Alloc is
11      Local : T_Ref;
12      To_Global : Boolean := True;
13   begin
14      Local := new T'(Make_Rumplestiltskin);
15      if To_Global then
16         Global := Local;
17      end if;
18   end Heap_Alloc;
19
20begin
21   null;
22end Show_Heap_Constructor;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_From_Constructors.Building_Objs_From_Constructors
MD5: 8eb794884f1dfbdbedf1bc4369f45cf8







The result of the function is built directly in the heap-allocated object,
which will be finalized when the scope of T_Ref is left (long after
Heap_Alloc returns).

We can create another limited type with a component of type T, and
use an aggregate:


show_outer_type.adb

 1with P;     use P;
 2with P.Aux; use P.Aux;
 3
 4procedure Show_Outer_Type is
 5
 6   type Outer_Type is limited record
 7      This : T;
 8      That : T;
 9   end record;
10
11   Outer_Obj : Outer_Type :=
12                (This => Make_Rumplestiltskin,
13                 That => Make_T (Name => ""));
14
15begin
16   null;
17end Show_Outer_Type;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_From_Constructors.Building_Objs_From_Constructors
MD5: 00817649406492b79977d67eb0fd3955







As usual, the function results are built in place, directly in
Outer_Obj.This and Outer_Obj.That, with no copying involved.

The one case where we cannot call such constructor functions is in an
assignment statement:


show_illegal_constructor.adb

1with P;     use P;
2with P.Aux; use P.Aux;
3
4procedure Show_Illegal_Constructor is
5   Rumplestiltskin_Is_My_Name : T;
6begin
7   Rumplestiltskin_Is_My_Name :=
8     Make_T (Name => "");  --  Illegal!
9end Show_Illegal_Constructor;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Building_Objects_From_Constructors.Building_Objs_From_Constructors
MD5: f7b0c78e9fbe2e104b82dfff25ac3e3a








Build output



show_illegal_constructor.adb:7:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed







which is illegal because assignment statements involve copying. Likewise,
we can't copy a limited object into some other object:


show_illegal_constructor.adb

 1with P;     use P;
 2with P.Aux; use P.Aux;
 3
 4procedure Show_Illegal_Constructor is
 5   Rumplestiltskin_Is_My_Name : constant T :=
 6     Make_T (Name => "");
 7   Other : T :=
 8     Rumplestiltskin_Is_My_Name; -- Illegal!
 9begin
10   null;
11end Show_Illegal_Constructor;









Limited types as parameter

Previously, we saw that
parameters can be passed by copy or by reference.
Also, we discussed the concept of by-copy and by-reference types.
Explicitly limited types
are by-reference types. Consequently, parameters of these types
are always passed by reference.


For further reading...

As an example of the importance of this rule, consider the case of a lock
(as an abstract data type). If
such a lock object were passed by copy, the Acquire and
Release operations would be working on copies of this object, not on
the original one. This would lead to timing-dependent bugs.



Let's reuse an example of an explicitly limited type:


simple_recs.ads

1package Simple_Recs is
2
3   type Rec is limited record
4      I : Integer;
5   end record;
6
7end Simple_Recs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_Parameters.Explicitly_Limited_Types
MD5: de73a20140628420830ed9fe0b2dedb5







In this example, Rec is a by-reference type because the type declaration
is an explicit limited record. Therefore, the parameter R of the
Proc procedure is passed by reference.

We can run the Test application below and compare the address of the
R object from Test to the address of the R parameter of
Proc to determine whether both R s refer to the same object or
not:


simple_recs.ads

 1with System;
 2
 3package Simple_Recs is
 4
 5   type Rec is limited record
 6      I : Integer;
 7   end record;
 8
 9   procedure Proc (R : in out Rec;
10                   A :    out System.Address);
11
12end Simple_Recs;








simple_recs.adb

 1package body Simple_Recs is
 2
 3   procedure Proc (R : in out Rec;
 4                   A :    out System.Address) is
 5   begin
 6      R.I := 0;
 7      A   := R'Address;
 8   end Proc;
 9
10end Simple_Recs;








test.adb

 1with Ada.Text_IO;           use Ada.Text_IO;
 2with System;                use System;
 3with System.Address_Image;
 4with Simple_Recs;           use Simple_Recs;
 5
 6procedure Test is
 7   R : Rec;
 8
 9   AR_Proc, AR_Test : System.Address;
10begin
11   AR_Proc := R'Address;
12
13   Proc (R, AR_Test);
14
15   Put_Line ("R'Address (Proc): "
16             & System.Address_Image (AR_Proc));
17   Put_Line ("R'Address (Test): "
18             & System.Address_Image (AR_Test));
19
20   if AR_Proc = AR_Test then
21      Put_Line ("R was passed by reference.");
22   else
23      Put_Line ("R was passed by copy.");
24   end if;
25
26end Test;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Limited_Types.Limited_Types_Parameters.Explicitly_Limited_Types
MD5: d4fe2bb47d2223ef013d22aa305403e5








Runtime output



R'Address (Proc): 00007FFCB8ABA9DC
R'Address (Test): 00007FFCB8ABA9DC
R was passed by reference.







When running the Test application, we confirm that R was passed
by reference. Note, however, that the fact that R was passed by
reference doesn't automatically imply that Rec is a by-reference type:
the type could have been ambiguous, and the compiler could have just decided to
pass the parameter by reference in this case.

Therefore, we have to rely on the rules specified in the Ada Reference Manual:


	If a limited type is explicitly limited, a parameter of this type is a
by-reference type.


	The rule applies to all kinds of explicitly limited types. For example,
consider private limited types where the type is declared limited in the
private type's completion (in the package's private part): a parameter of
this type is a by-reference type.






	If a limited type is not explicitly limited, a parameter of this type is
neither a by-copy nor a by-reference type.


	In this case, the decision whether the parameter is passed by reference or
by copy is made by the compiler.









In the Ada Reference Manual


	6.2 Formal Parameter Modes[#23]


	6.4.1 Parameter Associations[#24]


	7.5 Limited Types[#25]








Footnotes



[#1]
https://learn.adacore.com/courses/intro-to-ada/chapters/privacy.html#intro-ada-limited-types



[#2]
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html



[#3]
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html



[#4]
http://www.ada-auth.org/standards/22rm/html/RM-7-3-1.html



[#5]
http://www.ada-auth.org/standards/22rm/html/RM-7-3-1.html



[#6]
http://www.ada-auth.org/standards/22rm/html/RM-6-2.html



[#7]
http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html



[#8]
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html



[#9]
http://www.ada-auth.org/standards/22rm/html/RM-7-3.html



[#10]
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html



[#11]
http://www.ada-auth.org/standards/22aarm/html/AA-7-5.html



[#12]
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html



[#13]
http://www.ada-auth.org/standards/22rm/html/RM-7-3-1.html



[#14]
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html



[#15]
http://www.ada-auth.org/standards/12rm/html/RM-3-7.html



[#16]
http://www.ada-auth.org/standards/22aarm/html/AA-3-7.html



[#17]
http://www.ada-auth.org/standards/22rm/html/RM-3-8.html



[#18]
https://www.adacore.com/gems/gem-1



[#19]
https://www.adacore.com/gems/gem-2



[#20]
https://www.adacore.com/gems/gem-3



[#21]
https://www.adacore.com/gems/ada-gem-10



[#22]
https://www.adacore.com/gems/ada-gem-11



[#23]
http://www.ada-auth.org/standards/22rm/html/RM-6-2.html



[#24]
http://www.ada-auth.org/standards/22rm/html/RM-6-4-1.html



[#25]
http://www.ada-auth.org/standards/22rm/html/RM-7-5.html





            

          

      

      

    

  

    
      
          
            
  
Controlled Types


Overview

In this section, we introduce the concept of controlled types. We start with a
review of lifetime of objects and discuss how controlled types allow us to
control the initialization, post-copy (e.g. assignment) adjustment and
finalization of objects.


Relevant topics


	Assignment and Finalization[#1]







Lifetime of objects

We already talked about the
lifetime of objects[#2]
previously in the context of
access types.
Again, we assume you understand the concept. In any case, let's quickly review
the typical lifetime of an object:



[image:  @startuml  start  :Create object A;  :Use object A;  :Finalize object A;  stop  @enduml]



In simple terms, an object A is first created before we can make use of
it. When object A is about to get out of scope, it is finalized.
Note that finalization might not entail any actual code execution — but
it often does.

Let's analyze the lifetime of object A in a procedure P:

procedure P is
   A : T;
begin
   P2 (A);
end P;





We could visualize the lifetime as follows:



[image:  @startuml      actor Processing      participant "object A" as A       group block's declarative part          Processing -> A ** : << create >>      end      group block's handled sequence of statements          Processing -> A : << use >>      end      group block's end part          Processing -> A !! : << finalize >>      end  @enduml]



In other words, object A is created in the declarative part of P
and then it's used in P's sequence of statements. Finally, A is
finalized when P ends.



Initialization of objects

Typically, right after an object A is created, it is still uninitialized.
Therefore, we have to explicitly initialize it with a meaningful initial value
— or with the value returned by a function call, for example. Similarly,
when an object A is about to get out of scope, it is going to be
finalized (i.e. destroyed) and its contents are then lost forever.

As we know, for some standard Ada types, objects are initialized by default.
For example, objects of access types are initialized by default to null.
Likewise, we can declare
types with default initial value:


main.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Main is
 4   type Int is new Integer
 5     with Default_Value => 42;
 6
 7   I  : Int;
 8   AI : access Int;
 9begin
10   Put_Line ("I : "
11             & I'Image);
12   Put_Line ("AI : "
13             & AI'Image);
14end Main;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Overview.Default_Initialization
MD5: 14a5929f0635f0f7843c883bab9021d8








Build output



main.adb:8:04: warning: variable "AI" is read but never assigned [-gnatwv]








Runtime output



I :  42
AI : null







In this case, we can visualize the lifetime of those objects as follows:



[image:  @startuml      actor Processing      participant "object A" as A       group block's declarative part          Processing -> A ** : << create >>          Processing -> A : << initialize with \ndefault value >>      end      group block's handled sequence of statements          Processing -> A : << use >>      end      group block's end part          Processing -> A !! : << finalize >>      end  @enduml]



Even though these default initialization methods provide some control over the
objects, they might not be enough in certain situations.
Also, we don't have any means to perform
useful operations right before an object gets out of scope.


For further reading...

In general, record types have a very good default initialization
capability. They're the most common completion for private types, so the
facility is often used. In this sense, default initialization is the first
choice, as it's guaranteed and requires nothing of the client. In addition,
it's cheap at run-time compared to controlled types.





Controlled objects

Controlled objects allow us to better control the initialization and
finalization of an object. For any controlled object A, an
Initialize (A) procedure is called right after the object is created,
and a Finalize (A) procedure is called right before the object is
actually finalized.

We can visualize the lifetime of controlled objects as follows:



[image:  @startuml      actor Processing      participant "object A" as A       Processing -> A ** : << create >>      Processing -> A : Initialize (A)      Processing -> A : << use >>      Processing -> A : Finalize (A)      Processing -> A !! : << finalize >>  @enduml]



In the context of a block statement, the lifetime becomes:



[image:  @startuml      actor Processing      participant "object A" as A       group block's declarative part          Processing -> A ** : << create >>          Processing -> A : Initialize (A)      end      group block's handled sequence of statements          Processing -> A : << use >>      end      group block's end part          Processing -> A : Finalize (A)          Processing -> A !! : << finalize >>      end  @enduml]



Let's look at a simple example:


simple_controlled_types.ads

 1with Ada.Finalization;
 2
 3package Simple_Controlled_Types is
 4
 5   type T is tagged private;
 6
 7   procedure Dummy (E : T);
 8
 9private
10
11   type T is new
12     Ada.Finalization.Controlled
13       with null record;
14
15   overriding
16   procedure Initialize (E : in out T);
17
18   overriding
19   procedure Finalize (E : in out T);
20
21end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   procedure Dummy (E : T) is
 6   begin
 7      Put_Line ("(Dummy...)");
 8   end Dummy;
 9
10   procedure Initialize (E : in out T) is
11   begin
12      Put_Line ("Initialize...");
13   end Initialize;
14
15   procedure Finalize (E : in out T) is
16   begin
17      Put_Line ("Finalize...");
18   end Finalize;
19
20end Simple_Controlled_Types;








show_controlled_types.adb

 1with Simple_Controlled_Types;
 2use  Simple_Controlled_Types;
 3
 4procedure Show_Controlled_Types is
 5   A : T;
 6   --
 7   --  This declaration roughly
 8   --  corresponds to:
 9   --
10   --     A : T;
11   --  begin
12   --     Initialize (A);
13   --
14begin
15   Dummy (A);
16
17   --  When A is about to get out of
18   --  scope:
19   --
20   --  Finalize (A);
21   --
22end Show_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Overview.Simple_Example
MD5: 24f95418bb8c439648ab9dba9f0c953a








Runtime output



Initialize...
(Dummy...)
Finalize...







When we run this application, we see the user messages indicating the calls to
Initialize and Finalize.


For further reading...

Note that if a controlled object isn't used in the application, the compiler
might optimize it out. In this case, procedures Initialize and
Finalize won't be called for this object, as it doesn't actually
exist. You can see this effect by replacing the call to Dummy (A) in
the Show_Controlled_Types procedure by a null statement (null).





Adjustment of controlled objects

An assignment is a full bit-wise copy of the entire right-hand side to the
entire left-hand side. When copying controlled objects, however, we might
need to adjust the target object. This is made possible by overriding the
Adjust procedure, which is called
right after the copy to an object has been performed. (As we'll see later on,
limited controlled types
do not offer an Adjust procedure.)

The deep copy[#3] of objects is a typical
example where adjustments are necessary. When we assign an object B to
an object A, we're essentially doing a
shallow copy[#4]. If we have
references to other objects in the source object B, those references
will be copied as well, so both target A and source B will be
referring to the same objects. When performing a deep copy, however, we want
the information from the dereferenced objects to be copied, not the references
themselves. Therefore, we have to first allocate new objects for the target
object A and copy the information from the original references —
the ones we copied from the source object B — to the new objects.
This kind of processing can be performed in the Adjust procedure.

As an example, let's extend the previous code example and override the
Adjust procedure:


simple_controlled_types.ads

 1with Ada.Finalization;
 2
 3package Simple_Controlled_Types is
 4
 5   type T is tagged private;
 6
 7   procedure Dummy (E : T);
 8
 9private
10
11   type T is new
12     Ada.Finalization.Controlled
13       with null record;
14
15   overriding
16   procedure Initialize (E : in out T);
17
18   overriding
19   procedure Adjust (E : in out T);
20
21   overriding
22   procedure Finalize (E : in out T);
23
24end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   procedure Dummy (E : T) is
 6   begin
 7      Put_Line ("(Dummy...)");
 8   end Dummy;
 9
10   procedure Initialize (E : in out T) is
11   begin
12      Put_Line ("Initialize...");
13   end Initialize;
14
15   procedure Adjust (E : in out T) is
16   begin
17      Put_Line ("Adjust...");
18   end Adjust;
19
20   procedure Finalize (E : in out T) is
21   begin
22      Put_Line ("Finalize...");
23   end Finalize;
24
25end Simple_Controlled_Types;








show_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple_Controlled_Types;
 4use  Simple_Controlled_Types;
 5
 6procedure Show_Controlled_Types is
 7   A, B : T;
 8begin
 9   Put_Line ("A := B");
10   A := B;
11
12   Dummy (A);
13   Dummy (B);
14end Show_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Overview.Simple_Example_2
MD5: 4f4575dab6c9b384ea0cbd8bf9701850








Runtime output



Initialize...
Initialize...
A := B
Finalize...
Adjust...
(Dummy...)
(Dummy...)
Finalize...
Finalize...







When running this application, we see that the Adjust procedure is called
for object A — right after B is copied to A as part
of the A := B assignment. We discuss more
about this procedure later on.



Limited controlled types

Ada offers controlled types in two flavors: nonlimited controlled types —
such as the ones we've seen so far — and limited controlled types. Both
types are declared in the Ada.Finalization package.

The only difference between these types is that limited controlled types don't
have an Adjust procedure that could be overridden, as limited types
do not permit direct copies of objects to be made via assignments.
(Obviously, both controlled and limited controlled types provide
Initialize and Finalize procedures.)

The following table summarizes the information:



	Type

	Name

	Initialize

	Finalize

	Adjust





	Nonlimited
Controlled

	Controlled

	Yes

	Yes

	Yes



	Limited
controlled

	Limited_Controlled

	Yes

	Yes

	Not
available








Simple Example with ID

Although the previous code examples indicated that Initialize,
Finalize and Adjust are called as we expect for controlled
objects, they didn't show us exactly how those objects are actually handled. In
this section, we discuss this by analyzing a code example that assigns a unique
ID to each controlled object.

Let's start with the complete code example:


simple_controlled_types.ads

 1with Ada.Finalization;
 2
 3package Simple_Controlled_Types is
 4
 5   type T is tagged private;
 6
 7   procedure Show (E    : T;
 8                   Name : String);
 9
10private
11
12   protected Id_Gen is
13      procedure New_Id (Id_Out : out Positive);
14   private
15      Id : Natural := 0;
16   end Id_Gen;
17
18   type T is new
19     Ada.Finalization.Controlled with
20   record
21      Id : Positive;
22   end record;
23
24   overriding
25   procedure Initialize (E : in out T);
26
27   overriding
28   procedure Adjust (E : in out T);
29
30   overriding
31   procedure Finalize (E : in out T);
32
33end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   protected body Id_Gen is
 6
 7      procedure New_Id (Id_Out : out Positive) is
 8      begin
 9         Id := Id + 1;
10         Id_Out := Id;
11      end New_Id;
12
13   end Id_Gen;
14
15   procedure Initialize (E : in out T) is
16   begin
17      Id_Gen.New_Id (E.Id);
18      Put_Line ("Initialize: ID => "
19                & E.Id'Image);
20   end Initialize;
21
22   procedure Adjust (E : in out T) is
23      Prev_Id : constant Positive := E.Id;
24   begin
25      Id_Gen.New_Id (E.Id);
26      Put_Line ("Adjust:     ID => "
27                & E.Id'Image);
28      Put_Line ("    (Previous ID => "
29                & Prev_Id'Image
30                & ")");
31   end Adjust;
32
33   procedure Finalize (E : in out T) is
34   begin
35      Put_Line ("Finalize:   ID => "
36                & E.Id'Image);
37   end Finalize;
38
39   procedure Show (E    : T;
40                   Name : String) is
41   begin
42      Put_Line ("Obj. " & Name
43                & ": ID => "
44                & E.Id'Image);
45   end Show;
46
47end Simple_Controlled_Types;








show_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple_Controlled_Types;
 4use  Simple_Controlled_Types;
 5
 6procedure Show_Controlled_Types is
 7   A, B : T;
 8   --
 9   --  Declaration corresponds to:
10   --
11   --  declare
12   --     A, B : T;
13   --  begin
14   --     Initialize (A);
15   --     Initialize (B);
16   --  end;
17begin
18   Put_Line ("--------");
19   Show (A, "A");
20   Show (B, "B");
21
22   Put_Line ("--------");
23   Put_Line ("A := B;");
24
25   A := B;
26   --  Statement corresponds to:
27   --
28   --  Finalize (A);
29   --  A := B;
30   --  Adjust (A);
31
32   Put_Line ("--------");
33   Show (A, "A");
34   Show (B, "B");
35   Put_Line ("--------");
36
37   --  When A and B get out of scope::
38   --
39   --  Finalize (A);
40   --  Finalize (B);
41   --
42end Show_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Overview.Simple_Example_With_Id
MD5: f7b490041616a1b309184086ceef1b24








Runtime output



Initialize: ID =>  1
Initialize: ID =>  2
--------
Obj. A: ID =>  1
Obj. B: ID =>  2
--------
A := B;
Finalize:   ID =>  1
Adjust:     ID =>  3
    (Previous ID =>  2)
--------
Obj. A: ID =>  3
Obj. B: ID =>  2
--------
Finalize:   ID =>  2
Finalize:   ID =>  3







In contrast to the previous versions of the Simple_Controlled_Types
package, type T now has an Id component. Moreover, we use a
protected object Id_Gen that provides us with a unique ID to keep track
of each controlled object. Basically, we assign an ID to each controlled object
(right after it is created) via the call to Initialize. Similarly, this
ID is updated via the calls to Adjust. Besides, we now have a Show
procedure that displays the ID of a controlled object.

When running the application, we see that the calls to Initialize,
Adjust and Finalize happen as expected. In addition, we see the
objects' ID, which we will now analyze in order to understand how each object is
actually handled.

First, we see the two calls to Initialize for objects A and
B. Object A's ID is 1, and object B's ID is 2. This is
later confirmed by the calls to Show.

The A := B assignment triggers two procedure calls: a call to
Finalize (A) and a call to Adjust (A). In fact, this assignment
can be described as follows:


	Finalize (A) is called before the actual copy;


	B's data is copied to object A;


	Adjust (A) is called after that copy.




We can confirm this via the object
ID: the object we handle in the call to Finalize (A) has an ID of 1, and
the object we handle in the call to Adjust (A) has an ID of 2 (which
originates from the copy of B to A) and is later changed
(adjusted) to 3. Again, we can verify the correct IDs by looking at the output
of the calls to Show.

Note that the call to Finalize (A) (before the copy of B's
data) indicates that the previous version of object A is being finalized,
i.e. it's as though the original object A is going to be destroyed and
its contents are going to be lost. Actually, the object's contents are just
overwritten, but the call to Finalize allows us to make proper
adjustments to the object before the previous information is lost.

Finally, the new version of object A (the one whose ID is 3) and object
B are finalized via the calls to Finalize (A) and
Finalize (B) before the Show_Controlled_Types procedure ends.




Initialization

In this section, we cover some details about the initialization of controlled
types. Most of those details are related to the initialization order. In
principle, as stated in the Ada Reference Manual, "Initialize and other
initialization operations are done in an arbitrary order," except in the
situations that we describe later on.


Relevant topics


	Assignment and Finalization[#5]







Subcomponents

We've seen before that default initialization is a way of controlling the
initialization of arbitrary types. In the case of controlled types, the default
initialization of its subcomponents always takes places before the call to
Initialize.

Similarly, a controlled type might have subcomponents of controlled types.
These subcomponents are initialized by a call to the Initialize
procedure of each of those controlled types.

We can visualize the lifetime as follows:



[image:  @startuml      actor Processing      participant "object A" as A       Processing -> A ** : << create >>      Processing -> A : << initialize subcomponents of object A\n(with default values or calls to Initialize) >>      Processing -> A : Initialize (A)      Processing -> A : << use >>      Processing -> A : Finalize (A)      Processing -> A !! : << finalize >>  @enduml]



In order to see this effect, let's start by implementing two controlled types:
Sub_1 and Sub_2:


subs.ads

 1with Ada.Finalization;
 2
 3package Subs is
 4
 5   type Sub_1 is tagged private;
 6
 7   type Sub_2 is tagged private;
 8
 9private
10
11   type Sub_1 is new
12     Ada.Finalization.Controlled
13       with null record;
14
15   overriding
16   procedure Initialize (E : in out Sub_1);
17
18   type Sub_2 is new
19     Ada.Finalization.Controlled
20       with null record;
21
22   overriding
23   procedure Initialize (E : in out Sub_2);
24
25end Subs;








subs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Subs is
 4
 5   procedure Initialize (E : in out Sub_1) is
 6   begin
 7      Put_Line ("Initialize: Sub_1...");
 8   end Initialize;
 9
10   procedure Initialize (E : in out Sub_2) is
11   begin
12      Put_Line ("Initialize: Sub_2...");
13   end Initialize;
14
15end Subs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Initialization.Controlled_Initialization
MD5: f6a7676e82294a62965157d2ffd4ae3b







Now, let's use those controlled types as components of a type T. In
addition, let's declare an integer component I with default
initialization. This is how the complete code looks like:


simple_controlled_types.ads

 1with Ada.Finalization;
 2
 3with Subs; use Subs;
 4
 5package Simple_Controlled_Types is
 6
 7   type T is tagged private;
 8
 9   procedure Dummy (E : T);
10
11private
12
13   function Default_Init return Integer;
14
15   type T is new
16     Ada.Finalization.Controlled with
17   record
18      S1 : Sub_1;
19      S2 : Sub_2;
20      I  : Integer := Default_Init;
21   end record;
22
23   overriding
24   procedure Initialize (E : in out T);
25
26end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   function Default_Init return Integer is
 6   begin
 7      Put_Line ("Default_Init: Integer...");
 8      return 42;
 9   end Default_Init;
10
11   procedure Dummy (E : T) is
12   begin
13      Put_Line ("(Dummy: T...)");
14   end Dummy;
15
16   procedure Initialize (E : in out T) is
17   begin
18      Put_Line ("Initialize: T...");
19   end Initialize;
20
21end Simple_Controlled_Types;








show_controlled_types.adb

1with Simple_Controlled_Types;
2use  Simple_Controlled_Types;
3
4procedure Show_Controlled_Types is
5   A : T;
6begin
7   Dummy (A);
8end Show_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Initialization.Controlled_Initialization
MD5: 39d0efa76c056ac8190573c86f17c890








Runtime output



Initialize: Sub_1...
Initialize: Sub_2...
Default_Init: Integer...
Initialize: T...
(Dummy: T...)







When we run this application, we see that the Sub_1 and Sub_2
components are initialized by calls to their respective Initialize
procedures, and the I component is initialized with its default value
(via a call to the Default_Init function). Finally, after all
subcomponents of type T have been initialized, the Initialize
procedure is called for the type T itself.

This diagram shows the initialization sequence:



[image: @startuml     actor Processing     participant "T" as type_t     participant "T.S1" as Sub_1     participant "T.S2" as Sub_2     participant "T.I" as I      Processing -> type_t : << initialize subcomponents >>     activate type_t         type_t -> Sub_1 : Initialize (Sub_1)         type_t -> Sub_2 : Initialize (Sub_2)         type_t -> I : Default_Init (Integer)     deactivate type_t     Processing -> type_t : Initialize (T) @enduml]





Components with access discriminants

Record types with access discriminants are a special case. In fact, according
to the Ada Reference Manual, "if an object has a component with an access
discriminant constrained by a
per-object expression,
Initialize is applied to this component after any components that do not
have such discriminants. For an object with several components with such a
discriminant, Initialize is applied to them in order of their component
declarations."

Let's see a code example. First, we implement another package with controlled
types:


selections.ads

 1with Ada.Finalization;
 2
 3package Selections is
 4
 5   type Selection is private;
 6
 7   type Selection_1 (S : access Selection) is
 8     tagged private;
 9
10   type Selection_2 (S : access Selection) is
11     tagged private;
12
13private
14
15   type Selection is null record;
16
17   type Selection_1 (S : access Selection) is new
18     Ada.Finalization.Controlled
19       with null record;
20
21   overriding
22   procedure Initialize
23     (E : in out Selection_1);
24
25   type Selection_2 (S : access Selection) is new
26     Ada.Finalization.Controlled
27       with null record;
28
29   overriding
30   procedure Initialize
31     (E : in out Selection_2);
32
33end Selections;








selections.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Selections is
 4
 5   procedure Initialize
 6     (E : in out Selection_1) is
 7   begin
 8      Put_Line ("Initialize: Selection_1...");
 9   end Initialize;
10
11   procedure Initialize
12     (E : in out Selection_2) is
13   begin
14      Put_Line ("Initialize: Selection_2...");
15   end Initialize;
16
17end Selections;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Initialization.Controlled_Initialization
MD5: 01c3639ebd52d37856e77ccfeb057d1b







In this example, we see the declaration of the Selection_1 and
Selection_2 types, which are controlled types with an access
discriminant of Selection type. Now, let's use these types in the
declaration of the T type from the
previous example
and add two new components (Sel_1 and Sel_2):


simple_controlled_types.ads

 1with Ada.Finalization;
 2
 3with Subs;       use Subs;
 4with Selections; use Selections;
 5
 6package Simple_Controlled_Types is
 7
 8   type T (S1 : access Selection;
 9           S2 : access Selection) is
10     tagged private;
11
12   procedure Dummy (E : T);
13
14private
15
16   function Default_Init return Integer;
17
18   type T (S1 : access Selection;
19           S2 : access Selection) is new
20     Ada.Finalization.Controlled with
21   record
22      Sel_1 : Selection_1 (S1);
23      Sel_2 : Selection_2 (S2);
24      S_1   : Sub_1;
25      I     : Integer := Default_Init;
26   end record;
27
28   overriding
29   procedure Initialize (E : in out T);
30
31end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   function Default_Init return Integer is
 6   begin
 7      Put_Line ("Default_Init: Integer...");
 8      return 42;
 9   end Default_Init;
10
11   procedure Dummy (E : T) is
12   begin
13      Put_Line ("(Dummy: T...)");
14   end Dummy;
15
16   procedure Initialize (E : in out T) is
17   begin
18      Put_Line ("Initialize: T...");
19   end Initialize;
20
21end Simple_Controlled_Types;








show_controlled_types.adb

 1with Simple_Controlled_Types;
 2use  Simple_Controlled_Types;
 3
 4with Selections;
 5use  Selections;
 6
 7procedure Show_Controlled_Types is
 8   S1, S2 : aliased Selection;
 9   A : T (S1'Access, S2'Access);
10begin
11   Dummy (A);
12end Show_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Initialization.Controlled_Initialization
MD5: 74f507b912ab746b70aec451a9bc8f74








Runtime output



Initialize: Sub_1...
Default_Init: Integer...
Initialize: Selection_1...
Initialize: Selection_2...
Initialize: T...
(Dummy: T...)







When running this example, we see that all other subcomponents — to be
more precise, those subcomponents that require initialization — are
initialized before the Sub_1 and Sub_2 components are initialized
via calls to their corresponding Initialize procedure. Note that,
although Sub_1 and Sub_2 are the last components to be
initialized, they are still initialized before the call to the
Initialize procedure of type T.

This diagram shows the initialization sequence:



[image: @startuml     actor Processing     participant "T" as type_t     participant "T.Sel_1" as Selection_1     participant "T.Sel_2" as Selection_2     participant "T.S_1" as Sub_1     participant "T.I" as I      Processing -> type_t : << initialize standard subcomponents >>     activate type_t         type_t -> Sub_1 : Initialize (Sub_1)         type_t -> I : Default_Init (Integer)     deactivate type_t      Processing -> type_t : << initialize subcomponents \nwith access discriminant / per-object expression >>     activate type_t         type_t -> Selection_1 : Initialize (Selection_1)         type_t -> Selection_2 : Initialize (Selection_2)     deactivate type_t      Processing -> type_t : Initialize (T) @enduml]





Task activation

Components of task types also require special treatment. According to the Ada
Reference Manual, "for an allocator, any task activations follow all calls on
Initialize."

As always, let's analyze an example that illustrates this. First, we implement
another package called Workers with a simple task type:


workers.ads

1package Workers is
2
3   task type Worker is
4      entry Start;
5      entry Stop;
6   end Worker;
7
8end Workers;








workers.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Workers is
 4
 5   task body Worker is
 6
 7      function Init return Integer is
 8      begin
 9         Put_Line ("Activating Worker task...");
10         return 0;
11      end Init;
12
13      I : Integer := Init;
14   begin
15
16      accept Start do
17        Put_Line ("Worker.Start accepted...");
18         I := I + 1;
19      end Start;
20
21      accept Stop do
22        Put_Line ("Worker.Stop accepted...");
23         I := I - 1;
24      end Stop;
25   end Worker;
26
27end Workers;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Initialization.Controlled_Initialization
MD5: 1d48a78f14a496c8cdadeab9d1bc9070







Let's extend the declaration of the T type from the
previous example
and declare a new component of Worker type. Note that we have to change
T to a limited controlled type because of this new component of task
type. This is the updated code:


simple_controlled_types.ads

 1with Ada.Finalization;
 2
 3with Subs;       use Subs;
 4with Selections; use Selections;
 5with Workers;    use Workers;
 6
 7package Simple_Controlled_Types is
 8
 9   type T (S : access Selection) is
10     tagged limited private;
11
12   procedure Start_Work (E : T);
13   procedure Stop_Work (E : T);
14
15private
16
17   function Default_Init return Integer;
18
19   type T (S : access Selection) is new
20     Ada.Finalization.Limited_Controlled with
21   record
22      W     : Worker;
23      Sel_1 : Selection_1 (S);
24      S1    : Sub_1;
25      I     : Integer := Default_Init;
26   end record;
27
28   overriding
29   procedure Initialize (E : in out T);
30
31end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   function Default_Init return Integer is
 6   begin
 7      Put_Line ("Default_Init: Integer...");
 8      return 42;
 9   end Default_Init;
10
11   procedure Start_Work (E : T) is
12   begin
13      --  Starting Worker task:
14      E.W.Start;
15
16   end Start_Work;
17
18   procedure Stop_Work (E : T) is
19   begin
20      --  Stopping Worker task:
21      E.W.Stop;
22   end Stop_Work;
23
24   procedure Initialize (E : in out T) is
25   begin
26      Put_Line ("Initialize: T...");
27   end Initialize;
28
29end Simple_Controlled_Types;








show_controlled_types.adb

 1with Simple_Controlled_Types;
 2use  Simple_Controlled_Types;
 3
 4with Selections; use Selections;
 5
 6procedure Show_Controlled_Types is
 7   type T_Access is access T;
 8
 9   S : aliased Selection;
10   A : constant T_Access := new T (S'Access);
11begin
12   Start_Work (A.all);
13   Stop_Work (A.all);
14end Show_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Initialization.Controlled_Initialization
MD5: f87adac74205d590ee66ce971918e642








Runtime output



Initialize: Sub_1...
Default_Init: Integer...
Initialize: Selection_1...
Activating Worker task...
Initialize: T...
Worker.Start accepted...
Worker.Stop accepted...







When we run this application, we see that the W component is activated
only after all other subcomponents of type T have been initialized.

This diagram shows the initialization sequence:



[image: @startuml     actor Processing     participant "T" as type_t     participant "T.W" as Worker     participant "T.Sel_1" as Selection_1     participant "T.S_1" as Sub_1     participant "T.I" as I      Processing -> type_t : << initialize standard subcomponents >>     activate type_t         type_t -> Sub_1 : Initialize (Sub_1)         type_t -> I : Default_Init (Integer)     deactivate type_t      Processing -> type_t : << initialize subcomponents \nwith access discriminant / per-object expression >>     activate type_t         type_t -> Selection_1 : Initialize (Selection_1)     deactivate type_t      Processing -> type_t : << activate task components >>     activate type_t         type_t -> Worker : << activate Worker >>     deactivate type_t      Processing -> type_t : Initialize (T) @enduml]






Assignment

We already talked about
adjustments previously.
As we already mentioned, an actual assignment is a full bit-wise copy of the
entire right-hand side to the entire left-hand side, so the adjustment (via a
call to Adjust) is a way to "work around" that, when necessary. In this
section, we'll look into some details about the adjustment of controlled types.


Relevant topics


	Assignment and Finalization[#6]







Assignment using anonymous object

The Ada Reference Manual[#7] mentions that an anonymous object is
created during the assignment of objects of controlled type. A simple
A := B operation for nonlimited controlled types can be expanded to the
following illustrative code:

procedure P is
   A, B: Some_Controlled_Type;
begin
   --
   --  A := B;
   --
   B_To_A_Assignment : declare
      Anon_Obj : Some_Controlled_Type;
   begin
      Anon_Obj := B;
      Adjust (Anon_Obj);
      Finalize (A);
      A := Anon_Obj;
      Finalize (Anon_Obj);
   end B_To_A_Assignment;
end P;





The first assignment happens to the anonymous object Anon_Obj. After the
adjustment of Anon_Obj and the finalization of the original version of
A, the actual assignment to A can take place — and
Anon_Obj can be discarded after it has been properly finalized. With
this strategy, we have a chance to finalize the original version of A
before the assignment overwrites the object.

Of course, this expanded code isn't really efficient, and the compiler has some
freedom to improve the performance of the generated machine code. Whenever
possible, it'll typically optimize the anonymous object out and build the
object in place. (The Ada Reference Manual[#8] describes the rules
when this is possible or not.)

Also, the A := Anon_Obj statement in the code above doesn't necessarily
translate to an actual assignment in the generated machine code. Typically, a
compiler may treat Anon_Obj as the new A and destroy the original
version of A (i.e. the object that used to be A). In this case,
the code becomes something like this:

procedure P is
   A, B: Some_Controlled_Type;
begin
   --
   --  A := B;
   --
   B_To_A_Assignment : declare
      Anon_Obj : Some_Controlled_Type;
   begin
      Anon_Obj := B;
      Finalize (A);
      Adjust (Anon_Obj);
      declare
         A : Some_Controlled_Type renames Anon_Obj;
      begin
         --  Now, we treat Anon_Obj as the new A.
         --  Further processing continues here...

      end;
   end B_To_A_Assignment;
end P;





In some cases, the compiler is required to build the object in place. A typical
example is when an object of controlled type is initialized by assigning an
aggregate to it:

C: constant Some_Controlled_Type :=
    (Ada.Finalization.Controlled with ...);
--  C is built in place,
--  no anonymous object is used here.





Also, it's possible that Adjust and Finalize aren't called at
all. Consider an assignment like this: A := A;. In this case, since the
object on both sides is the same, the compiler is allowed to simply skip the
assignment and not do anything.

For more details about possible optimizations and compiler behavior, please
refer to the Ada Reference Manual[#9] .

In general, the advice is simple: use Adjust and Finalize solely
for their intended purposes. In other words, don't implement extraneous
side-effects into those procedures, as they might not be called at run-time.



Adjustment of subcomponents

In principle, the order in which components are adjusted is arbitrary. However,
adjustments of subcomponents will happen before the adjustment of the component
itself. The subcomponents must be adjusted before the enclosing object because
the semantics of the adjustment of the whole might depend on the states of the
parts (the subcomponents), so those states must already be in place.

Let's revisit a
previous code example.
First, we override the Adjust procedure of the Sub_1 and
Sub_2 types from the Subs package.


subs.ads

 1with Ada.Finalization;
 2
 3package Subs is
 4
 5   type Sub_1 is tagged private;
 6
 7   type Sub_2 is tagged private;
 8
 9private
10
11   type Sub_1 is new
12     Ada.Finalization.Controlled
13       with null record;
14
15   overriding
16   procedure Initialize (E : in out Sub_1);
17
18   overriding
19   procedure Adjust (E : in out Sub_1);
20
21   overriding
22   procedure Finalize (E : in out Sub_1);
23
24   type Sub_2 is new
25     Ada.Finalization.Controlled
26       with null record;
27
28   overriding
29   procedure Initialize (E : in out Sub_2);
30
31   overriding
32   procedure Adjust (E : in out Sub_2);
33
34   overriding
35   procedure Finalize (E : in out Sub_2);
36
37end Subs;








subs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Subs is
 4
 5   procedure Initialize (E : in out Sub_1) is
 6   begin
 7      Put_Line ("Initialize: Sub_1...");
 8   end Initialize;
 9
10   procedure Adjust (E : in out Sub_1) is
11   begin
12      Put_Line ("Adjust: Sub_1...");
13   end Adjust;
14
15   procedure Finalize (E : in out Sub_1) is
16   begin
17      Put_Line ("Finalize: Sub_1...");
18   end Finalize;
19
20   procedure Initialize (E : in out Sub_2) is
21   begin
22      Put_Line ("Initialize: Sub_2...");
23   end Initialize;
24
25   procedure Adjust (E : in out Sub_2) is
26   begin
27      Put_Line ("Adjust: Sub_2...");
28   end Adjust;
29
30   procedure Finalize (E : in out Sub_2) is
31   begin
32      Put_Line ("Finalize: Sub_2...");
33   end Finalize;
34
35end Subs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Adjustment.Controlled_Initialization
MD5: 110d88543a7a897ba433c90f6c2a881c







Next, we override the Adjust procedure of the T type from the
Simple_Controlled_Types package:


simple_controlled_types.ads

 1with Ada.Finalization;
 2
 3with Subs; use Subs;
 4
 5package Simple_Controlled_Types is
 6
 7   type T is tagged private;
 8
 9   procedure Dummy (E : T);
10
11private
12
13   function Default_Init return Integer;
14
15   type T is new
16     Ada.Finalization.Controlled with
17   record
18      S1 : Sub_1;
19      S2 : Sub_2;
20      I  : Integer := Default_Init;
21   end record;
22
23   overriding
24   procedure Initialize (E : in out T);
25
26   overriding
27   procedure Adjust (E : in out T);
28
29   overriding
30   procedure Finalize (E : in out T);
31
32end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   function Default_Init return Integer is
 6   begin
 7      Put_Line ("Default_Init: Integer...");
 8      return 42;
 9   end Default_Init;
10
11   procedure Dummy (E : T) is
12   begin
13      Put_Line ("(Dummy: T...)");
14   end Dummy;
15
16   procedure Initialize (E : in out T) is
17   begin
18      Put_Line ("Initialize: T...");
19   end Initialize;
20
21   procedure Adjust (E : in out T) is
22   begin
23      Put_Line ("Adjust: T...");
24   end Adjust;
25
26   procedure Finalize (E : in out T) is
27   begin
28      Put_Line ("Finalize: T...");
29   end Finalize;
30
31end Simple_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Adjustment.Controlled_Initialization
MD5: 9fb392305df70734994cffe612cb3869







Finally, this is the main application:


show_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple_Controlled_Types;
 4use  Simple_Controlled_Types;
 5
 6procedure Show_Controlled_Types is
 7   A, B : T;
 8begin
 9   Dummy (A);
10
11   Put_Line ("----------");
12   Put_Line ("A := B");
13   A := B;
14   Put_Line ("----------");
15end Show_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Adjustment.Controlled_Initialization
MD5: 1ceaa50cbb18b9f1f997246a614e3a90








Runtime output



Initialize: Sub_1...
Initialize: Sub_2...
Default_Init: Integer...
Initialize: T...
Initialize: Sub_1...
Initialize: Sub_2...
Default_Init: Integer...
Initialize: T...
(Dummy: T...)
----------
A := B
Finalize: T...
Finalize: Sub_2...
Finalize: Sub_1...
Adjust: Sub_1...
Adjust: Sub_2...
Adjust: T...
----------
Finalize: T...
Finalize: Sub_2...
Finalize: Sub_1...
Finalize: T...
Finalize: Sub_2...
Finalize: Sub_1...







When running this code, we see that the S1 and S2 components are
adjusted before the adjustment of the parent type T takes place.

This diagram shows the adjustment sequence:



[image: @startuml     actor Processing     participant "T" as type_t     participant "T.S1" as Sub_1     participant "T.S2" as Sub_2     participant "T.I" as I      Processing -> type_t : << adjust subcomponents >>     activate type_t         type_t -> Sub_1 : Adjust (Sub_1)         type_t -> Sub_2 : Adjust (Sub_2)     deactivate type_t     Processing -> type_t : Adjust (T) @enduml]






Finalization

We mentioned finalization — and the Finalize procedure — at
the
beginning of the chapter.
In this section, we discuss the topic in more detail.


Relevant topics


	Assignment and Finalization[#10]


	Completion and Finalization[#11]







Normal and abnormal completion

When a subprogram has just executed its last statement, normal completion of
this subprogram has been reached. At this point, finalization starts. In the
case of controlled objects, this means that the Finalize procedure is
called for those objects. (As we've already seen
an example of normal completion
at the beginning of the chapter, we won't repeat it here, as we assume you are
already familiar with the concept.)

When an exception is raised or due to an abort, however, a subprogram has an
abnormal completion. We discuss more about exception handling and finalization
later on.



Finalization via unchecked deallocation

When performing unchecked deallocation of a controlled type, the
Finalize procedure is called right before the actual memory for the
controlled object is deallocated.

Let's see a simple example:


simple_controlled_types.ads

 1with Ada.Finalization;
 2with Ada.Unchecked_Deallocation;
 3
 4package Simple_Controlled_Types is
 5
 6   type T is tagged private;
 7
 8   procedure Dummy (E : T);
 9
10   type T_Access is access T;
11
12   procedure Free (A : in out T_Access);
13
14private
15
16   type T is new
17     Ada.Finalization.Controlled
18       with null record;
19
20   overriding
21   procedure Finalize (E : in out T);
22
23   procedure Free_T_Access is
24     new Ada.Unchecked_Deallocation
25       (Object => T,
26        Name   => T_Access);
27
28   procedure Free (A : in out T_Access)
29     renames Free_T_Access;
30
31end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   procedure Dummy (E : T) is
 6   begin
 7      Put_Line ("(Dummy T...)");
 8   end Dummy;
 9
10   procedure Finalize (E : in out T) is
11   begin
12      Put_Line ("Finalize T...");
13   end Finalize;
14
15end Simple_Controlled_Types;








show_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple_Controlled_Types;
 4use  Simple_Controlled_Types;
 5
 6procedure Show_Controlled_Types is
 7   A : T_Access := new T;
 8begin
 9   Dummy (A.all);
10
11   Free (A);
12   --  At this point, Finalize (A.all)
13   --  will be called before the actual
14   --  deallocation.
15
16   Put_Line ("We've just freed A.");
17end Show_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Finalization.Unchecked_Deallocation
MD5: b9388699ee396430f689fe88df41fc32








Runtime output



(Dummy T...)
Finalize T...
We've just freed A.







In this example, we see that a call to Finalize (for type T) is
triggered by the call to Free for the A object — at this
point, we haven't reached the end of the main procedure
(Show_Controlled_Types) yet. After the call to Free, the object
originally referenced by A has been completely finalized — and
deallocated.

When the main procedure completes (after the call to Put_Line in that
procedure), we would normally see the calls to Finalize for controlled
objects. However, at this point, we obviously don't have a second call to the
Finalize procedure for type T, as the object referenced by
A has already been finalized and freed.



Subcomponents

As we've seen in the section about
initialization of subcomponents,
subcomponents of a controlled type are initialized by a call to their
corresponding Initialize procedure before the call to Initialize
for the parent controlled type. In the case of finalization, the reverse order
is applied: first, finalization of the parent type takes place, and then the
finalization of the subcomponents.

We can visualize the lifetime as follows:



[image:  @startuml      actor Processing      participant "object A" as A       Processing -> A : << use >>      Processing -> A : << completion >>      Processing -> A : Finalize (A)      Processing -> A : << finalize subcomponents of object A>>      Processing -> A !! : << finalize >>  @enduml]



Let's show a code example by revisiting the previous implementation of the
controlled types Sub_1 and Sub_2, and adapting it:


subs.ads

 1with Ada.Finalization;
 2
 3package Subs is
 4
 5   type Sub_1 is tagged private;
 6
 7   type Sub_2 is tagged private;
 8
 9private
10
11   type Sub_1 is new
12     Ada.Finalization.Controlled
13       with null record;
14
15   overriding
16   procedure Finalize (E : in out Sub_1);
17
18   type Sub_2 is new
19     Ada.Finalization.Controlled
20       with null record;
21
22   overriding
23   procedure Finalize (E : in out Sub_2);
24
25end Subs;








subs.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Subs is
 4
 5   procedure Finalize (E : in out Sub_1) is
 6   begin
 7      Put_Line ("Finalize: Sub_1...");
 8   end Finalize;
 9
10   procedure Finalize (E : in out Sub_2) is
11   begin
12      Put_Line ("Finalize: Sub_2...");
13   end Finalize;
14
15end Subs;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Finalization.Controlled_Initialization
MD5: 565f0b13586c08e0cdfdc119bcb28780







Now, let's use those controlled types as components of a type T:


simple_controlled_types.ads

 1with Ada.Finalization;
 2
 3with Subs; use Subs;
 4
 5package Simple_Controlled_Types is
 6
 7   type T is tagged private;
 8
 9   procedure Dummy (E : T);
10
11private
12
13   type T is new
14     Ada.Finalization.Controlled with
15   record
16      S1 : Sub_1;
17      S2 : Sub_2;
18   end record;
19
20   overriding
21   procedure Finalize (E : in out T);
22
23end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   procedure Dummy (E : T) is
 6   begin
 7      Put_Line ("(Dummy: T...)");
 8   end Dummy;
 9
10   procedure Finalize (E : in out T) is
11   begin
12      Put_Line ("Finalize: T...");
13   end Finalize;
14
15end Simple_Controlled_Types;








show_controlled_types.adb

1with Simple_Controlled_Types;
2use  Simple_Controlled_Types;
3
4procedure Show_Controlled_Types is
5   A : T;
6begin
7   Dummy (A);
8end Show_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Finalization.Controlled_Initialization
MD5: 6feecb7c544f340bf4841034d7ab5f71








Runtime output



(Dummy: T...)
Finalize: T...
Finalize: Sub_2...
Finalize: Sub_1...







When we run this application, we see that the Finalize procedure is
called for the type T itself — as the first step of the
finalization of type T. Then, the Sub_2 and Sub_1
components are finalized by calls to their respective Finalize
procedures.

This diagram shows the finalization sequence:



[image: @startuml     actor Processing     participant "T" as type_t     participant "T.S1" as Sub_1     participant "T.S2" as Sub_2      Processing -> type_t : Finalize (T)     Processing -> type_t : << finalize subcomponents >>     activate type_t         type_t -> Sub_2 : Finalize (Sub_2)         type_t -> Sub_1 : Finalize (Sub_1)     deactivate type_t @enduml]





Components with access discriminants

We already discussed the
initialization of components with access discriminants constrained by a per-object expression.
In the case of the finalization of such components, they are finalized before
any components that do not fall into this category — in the reverse order
of their component declarations — but after the finalization of the
parent type.

Let's revisit a
previous code example
and adapt it to demonstrate the finalization of components with access
discriminants. First, we implement another package with controlled types:


selections.ads

 1with Ada.Finalization;
 2
 3package Selections is
 4
 5   type Selection is private;
 6
 7   type Selection_1 (S : access Selection) is
 8     tagged private;
 9
10   type Selection_2 (S : access Selection) is
11     tagged private;
12
13private
14
15   type Selection is null record;
16
17   type Selection_1 (S : access Selection) is new
18     Ada.Finalization.Controlled
19       with null record;
20
21   overriding
22   procedure Finalize
23      (E : in out Selection_1);
24
25   type Selection_2 (S : access Selection) is new
26     Ada.Finalization.Controlled
27       with null record;
28
29   overriding
30   procedure Finalize
31     (E : in out Selection_2);
32
33end Selections;








selections.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Selections is
 4
 5   procedure Finalize
 6     (E : in out Selection_1) is
 7   begin
 8      Put_Line ("Finalize: Selection_1...");
 9   end Finalize;
10
11   procedure Finalize
12     (E : in out Selection_2) is
13   begin
14      Put_Line ("Finalize: Selection_2...");
15   end Finalize;
16
17end Selections;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Finalization.Controlled_Initialization
MD5: d1d35eb7ea62742fb130fbf05d898989







In this example, we see the declaration of the Selection_1 and
Selection_2 types, which are controlled types with an access
discriminant of Selection type. Now, let's use these types in the
declaration of a type T and add two new components — Sel_1
and Sel_2:


simple_controlled_types.ads

 1with Ada.Finalization;
 2
 3with Subs;       use Subs;
 4with Selections; use Selections;
 5
 6package Simple_Controlled_Types is
 7
 8   type T (S1 : access Selection;
 9           S2 : access Selection) is
10     tagged private;
11
12   procedure Dummy (E : T);
13
14private
15
16   type T (S1 : access Selection;
17           S2 : access Selection) is new
18     Ada.Finalization.Controlled with
19   record
20      Sel_1 : Selection_1 (S1);
21      Sel_2 : Selection_2 (S2);
22      S_1   : Sub_1;
23   end record;
24
25   overriding
26   procedure Finalize (E : in out T);
27
28end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   procedure Dummy (E : T) is
 6   begin
 7      Put_Line ("(Dummy: T...)");
 8   end Dummy;
 9
10   procedure Finalize (E : in out T) is
11   begin
12      Put_Line ("Finalize: T...");
13   end Finalize;
14
15end Simple_Controlled_Types;








show_controlled_types.adb

 1with Simple_Controlled_Types;
 2use  Simple_Controlled_Types;
 3
 4with Selections;
 5use  Selections;
 6
 7procedure Show_Controlled_Types is
 8   S1, S2 : aliased Selection;
 9   A : T (S1'Access, S2'Access);
10begin
11   Dummy (A);
12end Show_Controlled_Types;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Finalization.Controlled_Initialization
MD5: e421a750f11ade3b4df98569c71b904a








Runtime output



(Dummy: T...)
Finalize: T...
Finalize: Selection_2...
Finalize: Selection_1...
Finalize: Sub_1...







When we run this example, we see that the Finalize procedure of type
T is called as the first step. Then, the Finalize procedure is
called for the components with an access discriminant constrained by a
per-object expression — in this
case, Sel_2 and Sel_1 (of Selection_2 and
Selection_1 types, respectively). Finally, the Sub_1 component
is finalized.

This diagram shows the finalization sequence:



[image: @startuml     actor Processing     participant "T" as type_t     participant "T.Sel_1" as Selection_1     participant "T.Sel_2" as Selection_2     participant "T.S_1" as Sub_1      Processing -> type_t : Finalize (T)      Processing -> type_t : << finalize subcomponents \nwith access discriminant / per-object expression >>     activate type_t         type_t -> Selection_2 : Finalize (Selection_2)         type_t -> Selection_1 : Finalize (Selection_1)     deactivate type_t      Processing -> type_t : << finalize standard subcomponents >>     activate type_t         type_t -> Sub_1 : Finalize (Sub_1)     deactivate type_t  @enduml]






Controlled Types and Exception Handling

In the previous section, we mainly focused on the normal completion of
controlled types. However, when control is transferred out of the normal
execution path due to an abort or an exception being raised, we speak of
abnormal completion. In this section, we focus on those cases.

Let's start with a simple example:


simple_controlled_types.ads

 1with Ada.Finalization;
 2
 3package Simple_Controlled_Types is
 4
 5   type T is tagged private;
 6
 7   procedure Dummy (E : T);
 8
 9private
10
11   type T is new
12     Ada.Finalization.Controlled
13       with null record;
14
15   overriding
16   procedure Initialize (E : in out T);
17
18   overriding
19   procedure Finalize (E : in out T);
20
21end Simple_Controlled_Types;








simple_controlled_types.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Simple_Controlled_Types is
 4
 5   procedure Dummy (E : T) is
 6   begin
 7      Put_Line ("(Dummy...)");
 8   end Dummy;
 9
10   procedure Initialize (E : in out T) is
11   begin
12      Put_Line ("Initialize...");
13   end Initialize;
14
15   procedure Finalize (E : in out T) is
16   begin
17      Put_Line ("Finalize...");
18   end Finalize;
19
20end Simple_Controlled_Types;








show_simple_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Simple_Controlled_Types;
 4use  Simple_Controlled_Types;
 5
 6procedure Show_Simple_Exception is
 7   A : T;
 8
 9   function Int_Last return Integer is
10     (Integer'Last);
11
12   Cnt : Positive := Int_Last;
13begin
14   Cnt := Cnt + 1;
15
16   Dummy (A);
17
18   Put_Line (Cnt'Image);
19
20   --  When A is about to get out of
21   --  scope:
22   --
23   --  Finalize (A);
24   --
25end Show_Simple_Exception;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Exception_Handling.Simple_Exception
MD5: 9461f420f091f058e6ea1ee419b2a5c6








Runtime output



Initialize...
Finalize...

raised CONSTRAINT_ERROR : show_simple_exception.adb:14 overflow check failed







In this example, we're forcing an overflow to happen in the
Show_Simple_Exception by adding one to the integer variable Cnt,
which already has the value Integer'Last. The corresponding
overflow check raises the
Constraint_Error.

However, before this exception is raised, the finalization of the controlled
object A is performed. In this sense, we have normal completion of the
controlled type — even though an exception is being raised.


For further reading...

We already talked about the
allocation check, which may raise a
Program_Error exception. In the code example for that section, we
used controlled types. Feel free to revisit the example.




Relevant topics


	Completion and Finalization[#12]







Exception raising in Initialize

If an exception is raised in the Initialize procedure, we have abnormal
completion. Let's see an example:


ct_initialize_exception.ads

 1with Ada.Finalization;
 2
 3package CT_Initialize_Exception is
 4
 5   type T is tagged private;
 6
 7   procedure Dummy (E : T);
 8
 9private
10
11   type T is new
12     Ada.Finalization.Controlled
13       with null record;
14
15   overriding
16   procedure Initialize (E : in out T);
17
18   overriding
19   procedure Finalize (E : in out T);
20
21end CT_Initialize_Exception;








ct_initialize_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body CT_Initialize_Exception is
 4
 5   function Int_Last return Integer is
 6     (Integer'Last);
 7
 8   Cnt : Positive := Int_Last;
 9
10   procedure Dummy (E : T) is
11   begin
12      Put_Line ("(Dummy...)");
13   end Dummy;
14
15   procedure Initialize (E : in out T) is
16   begin
17      Put_Line ("Initialize...");
18      Cnt := Cnt + 1;
19   end Initialize;
20
21   procedure Finalize (E : in out T) is
22   begin
23      Put_Line ("Finalize...");
24   end Finalize;
25
26end CT_Initialize_Exception;








show_initialize_exception.adb

1with CT_Initialize_Exception;
2use  CT_Initialize_Exception;
3
4procedure Show_Initialize_Exception is
5   A : T;
6begin
7   Dummy (A);
8end Show_Initialize_Exception;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Exception_Handling.CT_Initialize_Exception
MD5: 189a5fafafb01eba31a73c9237fa7aff








Runtime output



Initialize...

raised CONSTRAINT_ERROR : ct_initialize_exception.adb:18 overflow check failed







In the Show_Initialize_Exception procedure, we declare an object
A of controlled type T. As we know, this declaration triggers a
call to the Initialize procedure that we've implemented in the body of
the CT_Initialize_Exception package. In the Initialize procedure,
we're forcing an overflow to happen — by adding one to the Cnt
variable, which already has the Integer'Last value.

This is an example of abnormal completion, as the control is transferred out of
the Initialize procedure, and the corresponding Finalize
procedure is never called for object A.



Bounded errors of controlled types

Bounded errors are an important topic when
talking about exception and
controlled types. In general, if an exception is raised in the Adjust or
Finalize procedure, this is considered a bounded error. If the bounded
error is detected, the Program_Error exception is raised.

Note that the original exception raised in the Adjust or Finalize
procedures could be any possible exception. For example, one of those
procedures could raise a Constraint_Error exception. However, the actual
exception that is raised at runtime is the Program_Error exception. This
is because the bounded error, which raises the Program_Error exception,
is more severe than the original exception coming from those procedures.

(The behavior is different when the Adjust or Finalize procedure
is called explicitly, as we'll see later.)

Not every exception raised during an operation on controlled types is
considered a bounded error. In fact, the case we've seen before, an
exception raised in the Initialize procedure
is not a bounded error.

Here's a code example of a Constraint_Error exception being raised in
the Finalize procedure:


ct_finalize_exception.ads

 1with Ada.Finalization;
 2
 3package CT_Finalize_Exception is
 4
 5   type T is tagged private;
 6
 7   procedure Dummy (E : T);
 8
 9   procedure Reset_Counter;
10
11private
12
13   type T is new
14     Ada.Finalization.Controlled
15       with null record;
16
17   overriding
18   procedure Initialize (E : in out T);
19
20   overriding
21   procedure Adjust (E : in out T);
22
23   overriding
24   procedure Finalize (E : in out T);
25
26end CT_Finalize_Exception;








ct_finalize_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body CT_Finalize_Exception is
 4
 5   Cnt : Integer := Integer'Last;
 6
 7   procedure Dummy (E : T) is
 8   begin
 9      Put_Line ("(Dummy...)");
10   end Dummy;
11
12   procedure Initialize (E : in out T) is
13   begin
14      Put_Line ("Initialize...");
15   end Initialize;
16
17   overriding
18   procedure Adjust (E : in out T) is
19   begin
20      Put_Line ("Adjust...");
21   end Adjust;
22
23   procedure Finalize (E : in out T) is
24   begin
25      Put_Line ("Finalize...");
26      Cnt := Cnt + 1;
27   end Finalize;
28
29   procedure Reset_Counter is
30   begin
31      Cnt := 0;
32   end Reset_Counter;
33
34end CT_Finalize_Exception;








show_finalize_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with CT_Finalize_Exception;
 4use  CT_Finalize_Exception;
 5
 6procedure Show_Finalize_Exception is
 7   A, B : T;
 8begin
 9   Dummy (A);
10
11   --  When A is about to get out of
12   --  scope:
13   --
14   --  Finalize (A);
15   --
16end Show_Finalize_Exception;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Exception_Handling.CT_Finalize_Exception
MD5: eacb64b0a9d68ce3484a3bda9b633495








Runtime output



Initialize...
Initialize...
(Dummy...)
Finalize...
Finalize...

raised PROGRAM_ERROR : show_finalize_exception.adb:6 finalize/adjust raised exception







In this example, we're again forcing an overflow to happen (by adding one to
the integer variable Cnt), this time in the Finalize procedure.
When this procedure is implicitly called — when object A is about
to get out of scope in the Show_Finalize_Exception procedure —
the Constraint_Error exception is raised.

As we've just seen, having an exception be raised during an implicit call to
the Finalize procedure is a bounded error. Therefore, we see that the
Program_Error exception is raised at runtime instead of the original
Constraint_Error exception.

As we hinted in the beginning, when the Adjust or the Finalize
procedure is called explicitly, the exception raised in that procedure is
not considered a bounded error. In this case, the original exception is
raised.

To show an example of such an explicit call, let's first move the overriden
procedures for type T (Initialize, Adjust and
Finalize) out of the private part of the package
CT_Finalize_Exception, so they are now visible to clients. This allows
us to call the Finalize procedure explicitly:


ct_finalize_exception.ads

 1with Ada.Finalization;
 2
 3package CT_Finalize_Exception is
 4
 5   type T is new
 6     Ada.Finalization.Controlled
 7   with null record;
 8
 9   overriding
10   procedure Initialize (E : in out T);
11
12   overriding
13   procedure Adjust (E : in out T);
14
15   overriding
16   procedure Finalize (E : in out T);
17
18   procedure Dummy (E : T);
19
20   procedure Reset_Counter;
21
22end CT_Finalize_Exception;








show_finalize_exception.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with CT_Finalize_Exception;
 4use  CT_Finalize_Exception;
 5
 6procedure Show_Finalize_Exception is
 7   A : T;
 8begin
 9   Dummy (A);
10
11   Finalize (A);
12
13   Put_Line ("After Finalize");
14exception
15   when Constraint_Error =>
16      Put_Line
17        ("Constraint_Error is being handled...");
18      Reset_Counter;
19end Show_Finalize_Exception;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Exception_Handling.CT_Finalize_Exception
MD5: f43133c997076c491a20117960be8807








Runtime output



Initialize...
(Dummy...)
Finalize...
Constraint_Error is being handled...
Finalize...







Now, we're calling the Finalize procedure explicitly in the
Show_Finalize_Exception procedure. As we know, due to the operation on
I in the Finalize procedure, the Constraint_Error
exception is raised in the procedure. Because we're handling this exception in
the Show_Finalize_Exception procedure, we see the corresponding user
message ("Constraint_Error is being handled...") at runtime.

(Note that in the exception handling block, we're calling the
Reset_Counter procedure. This prevents Constraint_Error from
being raised in the next call to Finalize.)



Memory allocation and exceptions

When a memory block is allocated for controlled types and a bounded error
occurs, there is no guarantee that this memory block will be deallocated.
Roughly speaking, the compiler has the freedom — but not the obligation
— to generate appropriate calls to Finalize, which may deallocate
memory blocks.

For example, we've seen that
subcomponents of controlled type
of a controlled object A are initialized before the initialization of
object A takes place. Because memory might have been allocated for the
subcomponents, the compiler can insert code that attempts to finalize those
subcomponents, which in turn deallocates the memory blocks (if they were
allocated in the first place).

We can visualize this strategy in the following diagram:



[image:  @startuml      actor Processing      participant "object A" as A       Processing -> A ** : << create >>      Processing -> A : << initialize subcomponents of object A\n(Memory was allocated here!) >>      Processing -> A : Initialize (A) \n << (An exception is raised here!) >>      Processing -> A !! : << finalize subcomponents\n(Deallocate memory.) >>  @enduml]



This strategy (of finalizing subcomponents that haven't raised exceptions)
prevents memory leaks. However, this behavior very much depends on the compiler
implementation. The Ada Reference Manual[#13] delineates (in the
"Implementation Permissions" section) the cases where the compiler is allowed
— but not required — to finalize objects when exceptions are
raised.

Because the actual behavior isn't defined, custom implementation of
Adjust and Finalize procedures for controlled types should be
designed very carefully in order to avoid exceptions, especially when memory
is allocated in the Initialize procedure.




Applications of Controlled Types

In this section, we discuss applications of controlled types. In this context,
it's important to remember that controlled types have an associated overhead,
which can become non-negligible depending in which context the controlled
objects are used. However, there are applications where utilizing controlled
types is the best approach.

(Note that this overhead we've just mentioned is not specific to Ada. In fact,
types similar to controlled types will be relatively expensive in any
programming language. As an example, destructors in C++ may require a similar
maintenance of state at run-time.)


Encapsulating access type handling

Previously, when discussing
design strategies for access types,
we saw an example on using
limited controlled types to encapsulate access types.

A more generalized example is the one of an unbounded stack. Because it's
unbounded, it allows for increasing the stack's size on demand. We can
implement this kind of stack by using access types. Let's look at a simple
(unoptimized) implementation:


unbounded_stacks.ads

 1with Ada.Finalization;
 2
 3generic
 4   Default_Chunk_Size : Positive := 5;
 5   type Element is private;
 6package Unbounded_Stacks is
 7
 8   Stack_Underflow : exception;
 9
10   type Unbounded_Stack is private;
11
12   procedure Push (S : in out Unbounded_Stack;
13                   E :        Element);
14
15   function Pop (S : in out Unbounded_Stack)
16                 return Element;
17
18   function Is_Empty (S : Unbounded_Stack)
19                      return Boolean;
20
21private
22
23   type Element_Array is
24     array (Positive range <>) of
25       Element;
26
27   type Element_Array_Access is
28     access Element_Array;
29
30   type Unbounded_Stack is new
31     Ada.Finalization.Controlled with
32      record
33         Chunk_Size : Positive
34           := Default_Chunk_Size;
35         Data       : Element_Array_Access;
36         Top        : Natural := 0;
37      end record;
38
39   procedure Initialize
40     (S : in out Unbounded_Stack);
41
42   procedure Adjust
43     (S : in out Unbounded_Stack);
44
45   procedure Finalize
46     (S : in out Unbounded_Stack);
47
48end Unbounded_Stacks;








unbounded_stacks.adb

  1with Ada.Text_IO; use Ada.Text_IO;
  2
  3with Ada.Unchecked_Deallocation;
  4
  5package body Unbounded_Stacks is
  6
  7   --
  8   --  LOCAL SUBPROGRAMS
  9   --
 10
 11   procedure Free is
 12     new Ada.Unchecked_Deallocation
 13       (Object => Element_Array,
 14        Name   => Element_Array_Access);
 15
 16   function Is_Full (S : Unbounded_Stack)
 17                     return Boolean is
 18   begin
 19      return S.Top = S.Data'Last;
 20   end Is_Full;
 21
 22   procedure Reallocate_Data
 23     (To         : in out Element_Array_Access;
 24      From       :        Element_Array_Access;
 25      Max_Last   :        Positive;
 26      Valid_Last :        Positive) is
 27   begin
 28      To := new Element_Array (1 .. Max_Last);
 29
 30      for I in 1 .. Valid_Last loop
 31         To (I) := From (I);
 32      end loop;
 33   end Reallocate_Data;
 34
 35   procedure Increase_Size
 36     (S : in out Unbounded_Stack)
 37   is
 38      Old_Data : Element_Array_Access := S.Data;
 39      Old_Last : constant Positive
 40                 := Old_Data'Last;
 41      New_Last : constant Positive
 42                 := Old_Data'Last + S.Chunk_Size;
 43   begin
 44      Put_Line ("Increasing Unbounded_Stack "
 45                & "(1 .. "
 46                & Old_Last'Image
 47                & ") to (1 .. "
 48                & New_Last'Image
 49                & ")");
 50
 51      Reallocate_Data
 52        (To         => S.Data,
 53         From       => Old_Data,
 54         Max_Last   => New_Last,
 55         Valid_Last => S.Top);
 56
 57      Free (Old_Data);
 58   end Increase_Size;
 59
 60   --
 61   --  SUBPROGRAMS
 62   --
 63
 64   procedure Push (S : in out Unbounded_Stack;
 65                   E :        Element) is
 66   begin
 67      if Is_Full (S) then
 68         Increase_Size (S);
 69      end if;
 70
 71      S.Top := S.Top + 1;
 72      S.Data (S.Top) := E;
 73   end Push;
 74
 75   function Pop (S : in out Unbounded_Stack)
 76                 return Element is
 77   begin
 78      return E : Element do
 79         if Is_Empty (S) then
 80            raise Stack_Underflow;
 81         end if;
 82
 83         E := S.Data (S.Top);
 84         S.Top := S.Top - 1;
 85      end return;
 86   end Pop;
 87
 88   function Is_Empty (S : Unbounded_Stack)
 89                      return Boolean is
 90   begin
 91      return S.Top = 0;
 92   end Is_Empty;
 93
 94   --
 95   --  PRIVATE SUBPROGRAMS
 96   --
 97
 98   procedure Initialize
 99     (S : in out Unbounded_Stack)
100   is
101      Last : constant Positive
102             := S.Chunk_Size;
103   begin
104      Put_Line ("Initializing Unbounded_Stack "
105                & "(1 .. "
106                & Last'Image
107                & ")");
108      S.Data := new Element_Array
109                      (1 .. S.Chunk_Size);
110   end Initialize;
111
112   procedure Allocate_Duplicate_Data
113     (S : in out Unbounded_Stack)
114   is
115      Last : constant Positive
116             := S.Data'Last;
117   begin
118      Put_Line ("Duplicating data for new "
119                & "Unbounded_Stack (1 .. "
120                & Last'Image
121                & ")");
122
123      Reallocate_Data
124        (To         => S.Data,
125         From       => S.Data,
126         Max_Last   => Last,
127         Valid_Last => S.Top);
128   end Allocate_Duplicate_Data;
129
130   procedure Adjust
131     (S : in out Unbounded_Stack)
132   is
133   begin
134      Put_Line ("Adjusting Unbounded_Stack...");
135      Allocate_Duplicate_Data (S);
136   end Adjust;
137
138   procedure Finalize
139     (S : in out Unbounded_Stack)
140   is
141      Last : constant Positive
142             := S.Data'Last;
143   begin
144      Put_Line ("Finalizing Unbounded_Stack "
145                & "(1 .. "
146                & Last'Image
147                & ")");
148      if S.Data /= null then
149        Free (S.Data);
150      end if;
151   end Finalize;
152
153end Unbounded_Stacks;








show_unbounded_stack.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Unbounded_Stacks;
 4
 5procedure Show_Unbounded_Stack is
 6
 7   package Unbounded_Integer_Stacks is new
 8     Unbounded_Stacks (Element => Integer);
 9   use Unbounded_Integer_Stacks;
10
11   procedure Print_Pop_Stack
12      (S    : in out Unbounded_Stack;
13       Name :        String)
14   is
15      V : Integer;
16   begin
17      Put_Line ("STACK: " & Name);
18      Put ("= ");
19      while not Is_Empty (S) loop
20         V := Pop (S);
21         Put (V'Image & " ");
22      end loop;
23      New_Line;
24   end Print_Pop_Stack;
25
26   Stack   : Unbounded_Stack;
27   Stack_2 : Unbounded_Stack;
28begin
29   for I in 1 .. 10 loop
30      Push (Stack, I);
31   end loop;
32
33   Stack_2 := Stack;
34
35   for I in 11 .. 20 loop
36      Push (Stack, I);
37   end loop;
38
39   Print_Pop_Stack (Stack, "Stack");
40   Print_Pop_Stack (Stack_2, "Stack_2");
41
42end Show_Unbounded_Stack;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Applications.Unbounded_Stacks
MD5: 22c795f2dfd2fbdf5468b54722d7126b








Runtime output



Initializing Unbounded_Stack (1 ..  5)
Initializing Unbounded_Stack (1 ..  5)
Increasing Unbounded_Stack (1 ..  5) to (1 ..  10)
Finalizing Unbounded_Stack (1 ..  5)
Adjusting Unbounded_Stack...
Duplicating data for new Unbounded_Stack (1 ..  10)
Increasing Unbounded_Stack (1 ..  10) to (1 ..  15)
Increasing Unbounded_Stack (1 ..  15) to (1 ..  20)
STACK: Stack
=  20  19  18  17  16  15  14  13  12  11  10  9  8  7  6  5  4  3  2  1 
STACK: Stack_2
=  10  9  8  7  6  5  4  3  2  1 
Finalizing Unbounded_Stack (1 ..  10)
Finalizing Unbounded_Stack (1 ..  20)







Let's first focus on the Unbounded_Stack type from the
Unbounded_Stacks package. The actual stack is implemented via the array
that we allocate for the Data component. The initial allocation takes
place in the Initialize procedure, which is called when an object of
Unbounded_Stack type is created. The corresponding deallocation of the
stack happens in the Finalize procedure.

In the Push procedure, we check whether the stack is full or not before
storing a new element into the stack. If the stack is full, we call the
Increase_Size procedure to increase the size of the array. This is
actually done by calling the Reallocate_Data procedure, which allocates
a new array for the stack and copies the original data to the new array.

Also, when copying an unbounded stack object to another object of this type, a
call to the Adjust procedure is triggered — we do this by the
assignment Stack_2 := Stack in the Show_Unbounded_Stack
procedure. In the Adjust procedure, we call the
Allocate_Duplicate_Data procedure to allocate a new array for the stack
data and copy the data from the original stack. (Internally, the
Allocate_Duplicate_Data procedure calls the Reallocate_Data
procedure, which we already mentioned.)

By encapsulating the access type handling in controlled types, we can ensure
that the access objects are handled correctly: no incorrect pointer usage or
memory leak can happen when we use this strategy.



Encapsulating file handling

Controlled types can be used to encapsulate file handling, so that files are
automatically created and closed. A common use-case is when a new file is
expected to be created or opened when we declare the controlled object, and
closed when the controlled object gets out of scope.

A simple example is the one of a logger, which we can use to write to a
logfile by simple calls to Put_Line:


loggers.ads

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Finalization;
 3
 4package Loggers is
 5
 6   type Logger (<>) is
 7     limited private;
 8
 9   function Init (Filename : String)
10                  return Logger;
11
12   procedure Put_Line (L : Logger;
13                       S : String);
14
15private
16
17   type Logger is new
18     Ada.Finalization.Limited_Controlled with
19      record
20         Logfile : File_Type;
21      end record;
22
23   procedure Finalize
24     (L : in out Logger);
25
26end Loggers;








loggers.adb

 1package body Loggers is
 2
 3   --
 4   --  SUBPROGRAMS
 5   --
 6
 7   function Init (Filename : String)
 8                  return Logger is
 9   begin
10      return L : Logger do
11         Create (L.Logfile, Out_File, Filename);
12      end return;
13   end Init;
14
15   procedure Put_Line (L : Logger;
16                       S : String) is
17   begin
18      Put_Line ("Logger: Put_Line");
19      Put_Line (L.Logfile, S);
20   end Put_Line;
21
22   --
23   --  PRIVATE SUBPROGRAMS
24   --
25
26   procedure Finalize
27     (L : in out Logger) is
28   begin
29      Put_Line ("Finalizing Logger...");
30      if Is_Open (L.Logfile) then
31         Close (L.Logfile);
32      end if;
33   end Finalize;
34
35end Loggers;








some_processing.adb

1with Loggers; use Loggers;
2
3procedure Some_Processing (Log : Logger) is
4begin
5   Put_Line (Log, "Some processing...");
6end Some_Processing;








show_logger.adb

1with Loggers;         use Loggers;
2with Some_Processing;
3
4procedure Show_Logger is
5   Log : constant Logger := Init ("report.log");
6begin
7   Put_Line (Log, "Some info...");
8   Some_Processing (Log);
9end Show_Logger;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Applications.Logger
MD5: 0ac4b5dff9ded8b64cb2b1f001e763fa








Let's report the example:


Some info...
Some processing...








Runtime output



Logger: Put_Line
Logger: Put_Line
Finalizing Logger...







The Logger type from the Loggers package has two subprograms:


	Init, which creates a logger object and creates a logfile
in the background, and


	Put_Line, which writes a message to the logfile.




Note that we use the (<>) in the declaration of the Logger type
to ensure that clients call the Init function. This allows us to specify
the location of the logfile (as the Filename parameter).

Also, we can pass the logger to other subprograms and use it there. In this
example, we pass the logger to the Some_Processing procedure and there,
we the call Put_Line using the logger object.

Finally, as soon as the logger goes out of scope, the log is automatically
closed via the call to Finalize.


For further reading...

Instead of enforcing a call to Init, we could have overridden the
Initialize procedure and opened the logfile there. This approach,
however, would have prevented the client from specifying the location of
the logfile in a simple way. Specifying the filename as a type discriminant
wouldn't work because we cannot use a string as a discriminant — as
we mentioned
in a previous chapter,
we cannot use indefinite subtypes as discriminants.

If we had preferred this approach, we could generate a random name for the
file in the Initialize procedure and store the file itself in a
temporary directory indicated by the operating system. Alternatively, we
could use the access to a string as a discriminant:


loggers.ads

 1with Ada.Text_IO; use Ada.Text_IO;
 2with Ada.Finalization;
 3
 4package Loggers is
 5
 6   type Logger (Filename : access String) is
 7     limited private;
 8
 9   procedure Put_Line (L : Logger;
10                       S : String);
11
12private
13
14   type Logger (Filename : access String) is new
15     Ada.Finalization.Limited_Controlled with
16      record
17         Logfile : File_Type;
18      end record;
19
20   procedure Initialize
21     (L : in out Logger);
22
23   procedure Finalize
24     (L : in out Logger);
25
26end Loggers;








loggers.adb

 1package body Loggers is
 2
 3   --
 4   --  SUBPROGRAMS
 5   --
 6
 7   procedure Put_Line (L : Logger;
 8                       S : String) is
 9   begin
10      Put_Line ("Logger: Put_Line");
11      Put_Line (L.Logfile, S);
12   end Put_Line;
13
14   --
15   --  PRIVATE SUBPROGRAMS
16   --
17
18   procedure Initialize
19     (L : in out Logger) is
20   begin
21      Create (L.Logfile,
22              Out_File,
23              L.Filename.all);
24   end Initialize;
25
26   procedure Finalize
27     (L : in out Logger) is
28   begin
29      Put_Line ("Finalizing Logger...");
30      if Is_Open (L.Logfile) then
31         Close (L.Logfile);
32      end if;
33   end Finalize;
34
35end Loggers;








show_logger.adb

 1with Loggers;         use Loggers;
 2with Some_Processing;
 3
 4procedure Show_Logger is
 5   Name : aliased String := "report.log";
 6   Log : Logger (Name'Access);
 7begin
 8   Put_Line (Log, "Some info...");
 9   Some_Processing (Log);
10end Show_Logger;








Code block metadata



Project: Courses.Advanced_Ada.Resource_Management.Controlled_Types.Applications.Logger
MD5: d60ffbafd26d3d70a3d7807487dd95ab








Let's report the example:


Some info...
Some processing...








Runtime output



Logger: Put_Line
Logger: Put_Line
Finalizing Logger...







This approach works, but requires us to declare an aliased string
(Name), which we can give access to in the declaration of the
Log object.



By encapsulating the file handling in controlled types, we ensure that files
are properly opened when we want to use them, and that the files are closed
when they're not going to be used anymore.
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Generics


Mapping of Definite and Indefinite Subtypes

Earlier on, we had a discussion about
definite and indefinite subtypes. In this
section, we look into formal definite and indefinite types and how those types
are mapped.

We can distinguish between the definite and indefinite version of many formal
types. For example, consider the simple formal type type T is private,
which is the definite version of a formal nonlimited private type. The
indefinite version of this formal type is type T (<>) is private. Here,
the syntax (<>) is used to distinguish the indefinite form from the
definite form.

Let's create a generic package using the definite form of the formal nonlimited
private type and map an actual data type to it:


definite_formal_type_example.ads

1generic
2   type T is private;
3package Definite_Formal_Type_Example is
4   Dummy : T;
5end Definite_Formal_Type_Example;








show_map_to_definite_formal_type.ads

 1with Definite_Formal_Type_Example;
 2
 3package Show_Map_To_Definite_Formal_Type is
 4
 5   type Null_Record is null record;
 6
 7   package Map_Definite_Type is new
 8     Definite_Formal_Type_Example
 9       (T => Null_Record);
10
11end Show_Map_To_Definite_Formal_Type;







We can map any nonlimited, definite type to the type T above. However,
we cannot map indefinite types to it:


show_map_to_definite_formal_type.ads

 1with Definite_Formal_Type_Example;
 2
 3package Show_Map_To_Definite_Formal_Type is
 4
 5   type Simple_Record (Extended : Boolean) is
 6   record
 7      V : Integer;
 8      case Extended is
 9         when False =>
10            null;
11         when True  =>
12            V_Float : Float;
13      end case;
14   end record;
15
16   package Map_Indefinite_Type is new
17     Definite_Formal_Type_Example
18       (T => Simple_Record);
19   --  ERROR: trying to map an indefinite type
20   --         to a formal definite type!
21
22end Show_Map_To_Definite_Formal_Type;







When we try to compile this example, we get a compilation error at the
declaration of the Map_Indefinite_Type package. We could solve this
problem by changing type T to a formal indefinite type, for example:


indefinite_formal_type_example.ads

1generic
2   type T (<>) is private;
3package Indefinite_Formal_Type_Example is
4   function Dummy (Unused : T)
5                   return Boolean is
6     (True);
7end Indefinite_Formal_Type_Example;








show_map_to_indefinite_formal_type.ads

 1with Indefinite_Formal_Type_Example;
 2
 3package Show_Map_To_Indefinite_Formal_Type is
 4
 5   type Simple_Record (Extended : Boolean) is
 6   record
 7      V : Integer;
 8      case Extended is
 9         when False =>
10            null;
11         when True  =>
12            V_Float : Float;
13      end case;
14   end record;
15
16   package Map_Indefinite_Type is new
17     Indefinite_Formal_Type_Example
18       (T => Simple_Record);
19
20end Show_Map_To_Indefinite_Formal_Type;







Now, we don't get a compilation error because type T allows us to map an
indefinite type. Note that we could still map a definite type to type T.
For example:


show_map_to_indefinite_formal_type.ads

 1with Indefinite_Formal_Type_Example;
 2
 3package Show_Map_To_Indefinite_Formal_Type is
 4
 5   type Null_Record is null record;
 6
 7   package Map_Definite_Type is new
 8     Indefinite_Formal_Type_Example
 9       (T => Null_Record);
10
11end Show_Map_To_Indefinite_Formal_Type;







In other words, we can map any nonlimited type — indefinite or definite
— to a formal indefinite nonlimited private type.

Many instances of formal types have an indefinite and a definite version. Here
are a few examples:



	Formal limited private type:



	Definite version: type T is limited private


	Indefinite version: type T (<>) is limited private









	Tagged private type:



	Definite version: type T is tagged private


	Indefinite version: type T (<>) is tagged private









	Abstract tagged limited private type:



	Definite version: type T is abstract tagged limited private


	Indefinite version: type T (<>) is abstract tagged limited private














Appendix A of the Introduction to Ada course[#1]
provides a detailed list of formal types and their variations.

Note that, instead of just using a formal indefinite nonlimited private type,
we could be more specific about the discriminants that we use for type
T. Consider the following example:


formal_type_discriminants_example.ads

1generic
2   type T (B : Boolean) is private;
3package Formal_Type_Discriminants_Example is
4   function Dummy (Unused : T)
5                   return Boolean is
6     (True);
7end Formal_Type_Discriminants_Example;








show_map_to_formal_type_with_discrimants.ads

 1with Formal_Type_Discriminants_Example;
 2
 3package Show_Map_To_Formal_Type_With_Discrimants
 4is
 5   type Simple_Record (Extended : Boolean) is
 6   record
 7      V : Integer;
 8      case Extended is
 9         when False =>
10            null;
11         when True  =>
12            V_Float : Float;
13      end case;
14   end record;
15
16   type Integer_Array is
17     array (Positive range <>) of Integer;
18
19   type Simple_Record_2 (Last : Integer) is record
20      A : Integer_Array (1 .. Last);
21   end record;
22
23   type Null_Record is null record;
24
25   package Map_Boolean_Discriminant is new
26     Formal_Type_Discriminants_Example
27       (T => Simple_Record);
28
29end Show_Map_To_Formal_Type_With_Discrimants;







Here, we replaced (<>) by (B : Boolean) in the declaration of
type T. This means that, now, we can only map indefinite types with that
specific list of discriminants. For example, we cannot map the following types:


show_map_to_formal_type_with_discrimants.ads

 1with Formal_Type_Discriminants_Example;
 2
 3package Show_Map_To_Formal_Type_With_Discrimants
 4is
 5   type Integer_Array is
 6     array (Positive range <>) of Integer;
 7
 8   type Simple_Record_2 (Last : Integer) is record
 9      A : Integer_Array (1 .. Last);
10   end record;
11
12   type Null_Record is null record;
13
14   package Map_Type_With_Integer_Discriminant
15   is new
16     Formal_Type_Discriminants_Example
17       (T => Simple_Record_2);
18
19   package Map_Definite_Type is new
20     Formal_Type_Discriminants_Example
21       (T => Null_Record);
22
23end Show_Map_To_Formal_Type_With_Discrimants;







The compilation of this example fails as expected because, as soon as we
specify a list of discriminants for a formal type, we can only map actual types
that have the exact same discriminants. We cannot use a type with a different
set of discriminants — as in the declaration of
Map_Type_With_Integer_Discriminant — nor a definite type —
as in the declaration of Map_Definite_Type.



Formal incomplete types

A formal incomplete type has the following syntax:


using_formal_incomplete.ads

1generic
2  type Formal_Incomplete;
3package Using_Formal_Incomplete
4  with Pure is
5end Using_Formal_Incomplete;







We can use them to map incomplete types when instantiating generic packages or
subprograms. For example:


show_inst_formal_incomplete.ads

 1with Using_Formal_Incomplete;
 2
 3package Show_Inst_Formal_Incomplete is
 4
 5   type R;
 6
 7   package R_Pkg is new
 8     Using_Formal_Incomplete (R);
 9
10   type R is record
11      I : Integer;
12   end record;
13
14end Show_Inst_Formal_Incomplete;







As we've seen before, incomplete types are rather restricted in terms of usage.
Therefore, formal incomplete types are typically used in conjunction with other
generic packages or subprograms. We explain later how to use them to create
signature packages.

A formal incomplete type can also be tagged:

generic
  type Incomplete_Tagged is tagged;
package Dummy;





Let's see an example:


formal_incomplete_tagged_type_example.ads

 1generic
 2  type Incomplete_Tagged is tagged;
 3  with function Test (V : Incomplete_Tagged)
 4                      return Boolean;
 5package Formal_Incomplete_Tagged_Type_Example
 6is
 7
 8   procedure Perform_Test (I : Incomplete_Tagged);
 9
10end Formal_Incomplete_Tagged_Type_Example;








formal_incomplete_tagged_type_example.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Formal_Incomplete_Tagged_Type_Example
 4is
 5
 6   procedure Perform_Test (I : Incomplete_Tagged)
 7   is
 8   begin
 9      if Test (I) then
10         Put_Line ("Test passed!");
11      else
12         Put_Line ("Test failed!");
13      end if;
14   end Perform_Test;
15
16end Formal_Incomplete_Tagged_Type_Example;







Note that this example only compiles because Incomplete_Tagged is
tagged. If it was an untagged formal incomplete type, we wouldn't be allowed
to call the Test function in the body of Perform_Test. This is
possible, however, with tagged formal incomplete types — as well as with
other kinds of formal types.



Formal packages


Abstracting definitions into packages

In this section and in the next ones, we will reuse the generic
reversing algorithm that we discussed in the
chapter about generics[#2]
from the introductory course.


test_reverse_colors.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3procedure Test_Reverse_Colors is
 4   generic
 5      type T is private;
 6      type Index is range <>;
 7      type Array_T is array (Index range <>) of T;
 8   procedure Generic_Reverse_Array
 9     (X : in out Array_T);
10
11   procedure Generic_Reverse_Array
12     (X : in out Array_T) is
13   begin
14      for I in X'First ..
15               (X'Last + X'First) / 2 loop
16         declare
17            Tmp     : T;
18            X_Left  : T renames X (I);
19            X_Right : T renames X
20                          (X'Last + X'First - I);
21         begin
22            Tmp     := X_Left;
23            X_Left  := X_Right;
24            X_Right := Tmp;
25         end;
26      end loop;
27   end Generic_Reverse_Array;
28
29   type Color is (Black, Red, Green, Blue, White);
30   type Color_Array is
31     array (Integer range <>) of Color;
32
33   procedure Reverse_Color_Array is new
34     Generic_Reverse_Array
35       (T      => Color,
36       Index   => Integer,
37       Array_T => Color_Array);
38
39   My_Colors : Color_Array (1 .. 5) :=
40                (Black, Red, Green, Blue, White);
41
42begin
43   for C of My_Colors loop
44      Put_Line ("My_Color: " & Color'Image (C));
45   end loop;
46
47   New_Line;
48   Put_Line ("Reversing My_Color...");
49   New_Line;
50   Reverse_Color_Array (My_Colors);
51
52   for C of My_Colors loop
53      Put_Line ("My_Color: " & Color'Image (C));
54   end loop;
55
56end Test_Reverse_Colors;







In that example, we were declaring three formal types for the
Generic_Reverse_Array procedure: a type T, a range Index
and the array type Array_T. However, we could abstract the array
definition into a separate package and reuse it for the generic procedure.
This could be potentially useful in case we want to create more generic
procedures for the same array.

In order to achieve this, we start by first specifying a generic package
that contains the generic array type definition:


simple_generic_array_pkg.ads

1generic
2   type T is private;
3   type Index is range <>;
4package Simple_Generic_Array_Pkg is
5   type Array_T is array (Index range <>) of T;
6end Simple_Generic_Array_Pkg;







As you can see, this definition is the same that we've seen in the
previous section: we just moved it into a separate package. Now, we have a
definition of Array_T that can be reused in multiple places.

The next step is to reuse the Simple_Generic_Array_Pkg package in
the Generic_Reverse_Array procedure. By doing this, we can
eliminate the declaration of the Index and Array_T types
that we had before, since the definition will come from the
Simple_Generic_Array_Pkg package.

In order to reuse the Simple_Generic_Array_Pkg package in the
Generic_Reverse_Array procedure, we need to use a formal package
parameter in the form:

with package P is new Simple_Generic_Array_Pkg(<params>)





This will allow us to reuse definitions from the generic package.

This is the updated version of the our test application for the reversing
algorithm:


test_reverse_colors_simple_pkg.adb

 1with Ada.Text_IO;
 2use  Ada.Text_IO;
 3
 4with Simple_Generic_Array_Pkg;
 5
 6procedure Test_Reverse_Colors_Simple_Pkg is
 7
 8   generic
 9      type T is private;
10      with package P is new
11        Simple_Generic_Array_Pkg (T      => T,
12                                  others => <>);
13   procedure Reverse_Array (X : in out P.Array_T);
14
15   procedure Reverse_Array (X : in out P.Array_T)
16   is
17      use P;
18   begin
19      for I in X'First ..
20               (X'Last + X'First) / 2 loop
21         declare
22            Tmp     : T;
23            X_Left  : T renames X (I);
24            X_Right : T renames X
25                          (X'Last + X'First - I);
26         begin
27            Tmp     := X_Left;
28            X_Left  := X_Right;
29            X_Right := Tmp;
30         end;
31      end loop;
32   end Reverse_Array;
33
34   type Color is (Black, Red, Green, Blue, White);
35
36   package Color_Pkg is new
37     Simple_Generic_Array_Pkg (T     => Color,
38                               Index => Integer);
39
40   procedure Reverse_Color_Array is new
41     Reverse_Array (T => Color, P => Color_Pkg);
42
43   My_Colors : Color_Pkg.Array_T (1 .. 5) :=
44                 (Black, Red, Green, Blue, White);
45begin
46   for C of My_Colors loop
47      Put_Line ("My_Color: " & Color'Image (C));
48   end loop;
49
50   New_Line;
51   Put_Line ("Reversing My_Color...");
52   New_Line;
53   Reverse_Color_Array (My_Colors);
54
55   for C of My_Colors loop
56      Put_Line ("My_Color: " & Color'Image (C));
57   end loop;
58
59end Test_Reverse_Colors_Simple_Pkg;







In this example, we're first instantiating the
Simple_Generic_Array_Pkg package, thereby creating the
Color_Pkg package. We then proceed to use this Color_Pkg
package in the instantiation of the generic Reverse_Array
procedure. Also, in the declaration of the My_Colors array, we make
use of the array type definition from the Color_Pkg package.



Formal package parametrization

Note that we're using partial parametrization for the formal package
parameter P in the previous example. Partial parametrization makes
use of others => <> to indicate that the generic declaration takes
the definitions from the package argument provided in the generic
instantiation:


show_partial_parametrization.ads

 1with Simple_Generic_Array_Pkg;
 2
 3package Show_Partial_Parametrization is
 4
 5   generic
 6      type T is private;
 7      with package P is new
 8        Simple_Generic_Array_Pkg (T      => T,
 9                                  others => <>);
10   procedure Reverse_Array (X : in out P.Array_T);
11
12end Show_Partial_Parametrization;







For the previous example, the definitions come from the declarations of
the Color_Pkg package:

A complete parametrization, in constrast, contains the definition of all
types in the generic declaration. For example:


show_complete_parametrization.ads

 1with Simple_Generic_Array_Pkg;
 2
 3package Show_Complete_Parametrization is
 4
 5   generic
 6      type T is private;
 7      type Index is range <>;
 8      with package P is new
 9        Simple_Generic_Array_Pkg (T     => T,
10                                  Index => Index);
11   procedure Reverse_Array (X : in out P.Array_T);
12
13end Show_Complete_Parametrization;







Another approach is to take all definitions from the formal package
parameter:


show_box_parameter.ads

 1with Simple_Generic_Array_Pkg;
 2
 3package Show_Box_Parameter is
 4
 5   generic
 6      with package P is new
 7        Simple_Generic_Array_Pkg (<>);
 8   procedure Reverse_Array (X : in out P.Array_T);
 9
10end Show_Box_Parameter;







In this case, package P contains all type and subprogram
definitions that are used by the generic Reverse_Array procedure.
By using the box syntax (<>), we indicate that we make use of all
definitions from the formal package parameter.



Abstracting procedures into packages

In the previous example, we moved the array type definition into a
separate package, but left the generic procedure (Reverse_Array) in
the test application. We could also move the generic procedure into the
generic package:


generic_array_pkg.ads

1generic
2   type T is private;
3   type Index is range <>;
4package Generic_Array_Pkg is
5   type Array_T is array (Index range <>) of T;
6
7   procedure Reverse_Array (X : in out Array_T);
8end Generic_Array_Pkg;







The advantage of this approach is that we don't need to repeat the formal
declaration for the Reverse_Array procedure. Also, this simplifies
the instantiation in the test application.

However, the disadvantage of this approach is that it also increases code
size: every instantiation of the generic package generates code for each
subprogram from the package. Also, compilation time tends to increase
significantly. Therefore, developers must be careful when considering
this approach.

Because we have a procedure declaration in the generic package, we need a
corresponding package body. Here, we can simply reuse the existing code
and move the procedure into the package body. In the test application, we
just instantiate the Generic_Array_Pkg package and make use of the
array type (Array_T) and the procedure (Reverse_Array):

Color_Pkg.Reverse_Array (My_Colors);





This is the generic package body:


generic_array_pkg.adb

 1package body Generic_Array_Pkg is
 2   procedure Reverse_Array (X : in out Array_T) is
 3   begin
 4      for I in X'First ..
 5               (X'Last + X'First) / 2 loop
 6         declare
 7            Tmp     : T;
 8            X_Left  : T renames X (I);
 9            X_Right : T renames X
10                          (X'Last + X'First - I);
11         begin
12            Tmp     := X_Left;
13            X_Left  := X_Right;
14            X_Right := Tmp;
15         end;
16      end loop;
17   end Reverse_Array;
18end Generic_Array_Pkg;









Abstracting the test application

In the previous examples, we've focused only on abstracting the reversing
algorithm. However, we could have decided to also abstract our little
test application. This could be useful if we, for example, decide to
test other procedures that change elements of an array.

In order to achieve this, we have to abstract quite a few elements. We
will therefore declare the following formal parameters:



	the string S containing the array name;


	the formal Generic_Array_Pkg package parameter, which is a
generic package implemented in the previous section;


	the formal Image function that converts an element of type
T to a string;


	the formal Pkg_Test procedure that performs some operation on
the array.







Note that Image and Pkg_Test are examples of formal
subprograms, which have been discussed in the introductory course. Also,
note that S is an example of a formal object, which we discuss in
later section.

This is a version of the test application that makes use of the generic
Perform_Test procedure:


test_reverse_colors_pkg.adb

 1with Ada.Text_IO;
 2use  Ada.Text_IO;
 3
 4with Generic_Array_Pkg;
 5
 6procedure Test_Reverse_Colors_Pkg is
 7
 8   generic
 9      S : String;
10      with package Array_Pkg is new
11        Generic_Array_Pkg (<>);
12      use Array_Pkg;
13      with function Image (E : T)
14                          return String is <>;
15      with procedure Pkg_Test
16             (X : in out Array_T);
17   procedure Perform_Test (X : in out Array_T);
18
19   procedure Perform_Test (X : in out Array_T) is
20   begin
21      for C of X loop
22         Put_Line (S & ": " & Image (C));
23      end loop;
24
25      New_Line;
26      Put_Line
27        ("Performing operation on " & S & "...");
28      New_Line;
29      Pkg_Test (X);
30
31      for C of X loop
32         Put_Line (S & ": " & Image (C));
33      end loop;
34   end Perform_Test;
35
36   type Color is (Black, Red, Green, Blue, White);
37
38   package Color_Pkg is new
39     Generic_Array_Pkg (T     => Color,
40                        Index => Integer);
41
42   My_Colors : Color_Pkg.Array_T (1 .. 5) :=
43                 (Black, Red, Green, Blue, White);
44
45   procedure Perform_Test_Reverse_Color_Array
46   is new
47     Perform_Test
48       (S         => "My_Color",
49        Image     => Color'Image,
50        Array_Pkg => Color_Pkg,
51        Pkg_Test  => Color_Pkg.Reverse_Array);
52begin
53   Perform_Test_Reverse_Color_Array (My_Colors);
54end Test_Reverse_Colors_Pkg;







In this example, we create the procedure
Perform_Test_Reverse_Color_Array as an instance of the generic
procedure (Perform_Test). Note that:



	For the formal Image function, we make use of the
Image attribute of the Color type


	For the formal Pkg_Test procedure, we reference the
Reverse_Array procedure from the package.







Note that this example includes a formal package declaration:

with package Array_Pkg is new
  Generic_Array_Pkg (<>);





Previously, we've seen package instantiations that define the elements.
For example:

package Color_Pkg is new
  Generic_Array_Pkg (T     => Color,
                     Index => Integer);





In this case, however, we're simply using (<>), as discussed in the
section on
formal package parametrization.
This means that Perform_Test makes use of the default definition
used for the instance of Generic_Array_Pkg.



Cascading generic packages

In the code example from the previous section, we declared four formal
parameters for the Perform_Test procedure. Two of them are directly
related to the array that we're using for the test:



	S: the string containing the array name


	the function Image that converts an elements of the array to a
string







We could abstract our implementation even further by moving these elements
into a separate package named Generic_Array_Bundle and reference
the Generic_Array_Pkg there. This would create a chain of generic
packages:

Generic_Array_Bundle <= Generic_Array_Pkg





This strategy demonstrates that, in Ada, it is really straightforward to
make use of generics in order to abstracts algorithms.

First, let us define the new Generic_Array_Bundle package, which
references the Generic_Array_Pkg package and the two formal elements
(S and Image) mentioned previously:


generic_array_bundle.ads

 1with Generic_Array_Pkg;
 2
 3generic
 4   S : String;
 5   with package Array_Pkg is new
 6     Generic_Array_Pkg (<>);
 7   with function Image (E : Array_Pkg.T)
 8                        return String is <>;
 9package Generic_Array_Bundle is
10end Generic_Array_Bundle;







Then, we update the definition of Perform_Test:


test_reverse_colors_pkg.adb

 1with Ada.Text_IO;
 2use  Ada.Text_IO;
 3
 4with Generic_Array_Pkg;
 5with Generic_Array_Bundle;
 6
 7procedure Test_Reverse_Colors_Pkg is
 8
 9   generic
10      with package Array_Bundle is new
11        Generic_Array_Bundle (<>);
12      use Array_Bundle;
13      use Array_Pkg;
14      with procedure Pkg_Test
15             (X : in out Array_T);
16   procedure Perform_Test (X : in out Array_T);
17
18   procedure Perform_Test (X : in out Array_T) is
19   begin
20      for C of X loop
21         Put_Line (S & ": " & Image (C));
22      end loop;
23
24      New_Line;
25      Put_Line ("Reversing " & S & "...");
26      New_Line;
27      Pkg_Test (X);
28
29      for C of X loop
30         Put_Line (S & ": " & Image (C));
31      end loop;
32   end Perform_Test;
33
34   type Color is (Black, Red, Green, Blue, White);
35
36   package Color_Pkg is new
37     Generic_Array_Pkg (T     => Color,
38                        Index => Integer);
39
40   My_Colors : Color_Pkg.Array_T (1 .. 5) :=
41                 (Black, Red, Green, Blue, White);
42
43   package Color_Array_Bundle is new
44     Generic_Array_Bundle
45       (S         => "My_Color",
46        Image     => Color'Image,
47        Array_Pkg => Color_Pkg);
48
49   procedure Perform_Test_Reverse_Color_Array
50   is new
51     Perform_Test
52       (Array_Bundle => Color_Array_Bundle,
53        Pkg_Test     => Color_Pkg.Reverse_Array);
54begin
55   Perform_Test_Reverse_Color_Array (My_Colors);
56end Test_Reverse_Colors_Pkg;







Note that, in this case, we reduce the number of formal parameters to only
two:




	Array_Bundle: an instance of the new
Generic_Array_Bundle package








	the procedure Pkg_Test that we already had before







We could go even further and move Perform_Test into a separate
package. However, this will be left as an exercise for the reader.



Signature Packages

Signature packages are used to group a set of types and subprograms that
serve as a formal package parameter in another generic package. In the
source-code examples of the previous section, we've seen the
package Generic_Array_Bundle, which was used as a formal package
for the generic procedure Perform_Test. Generic_Array_Bundle
is an example of a signature package.

In this simple example, we define the signature package Sig_Pkg:


sig_pkg.ads

1generic
2   type T is private;
3   with function Image (E : T)
4                        return String is <>;
5package Sig_Pkg is
6end Sig_Pkg;







As a standalone package, Sig_Pkg is not really useful. However, it
becomes useful when used as a formal package in other generic declarations.
For example, let's use this signature package for the generic procedure
Show of a package P:


p.ads

1with Sig_Pkg;
2
3package P is
4   generic
5      with package SP is new Sig_Pkg (<>);
6   procedure Show (V : SP.T);
7end P;








p.adb

1with Ada.Text_IO; use Ada.Text_IO;
2
3package body P is
4   procedure Show (V : SP.T) is
5   begin
6      Put_Line ("Value: " & SP.Image (V));
7   end Show;
8end P;







Finally, we can use this package in an application:


main.adb

 1with Sig_Pkg;
 2with P;
 3
 4procedure Main is
 5   package Int_P is new Sig_Pkg (Integer,
 6                                 Integer'Image);
 7   procedure Show_Int is new P.Show (Int_P);
 8
 9   V : Integer;
10begin
11   V := 42;
12   Show_Int (V);
13end Main;







We can also use formal incomplete types for signature packages. For example:


formal_incomplete_type_example.ads

1generic
2  type Incomplete;
3  with function "+" (V1, V2 : Incomplete)
4                     return Incomplete;
5  with function "-" (V1, V2 : Incomplete)
6                     return Incomplete;
7package Formal_Incomplete_Type_Example
8  with Pure is
9end Formal_Incomplete_Type_Example;







This allows us to map other formal incomplete types, for example:


map_incomplete_type_example.ads

 1with Formal_Incomplete_Type_Example;
 2
 3generic
 4   type T;
 5   with package P is new
 6     Formal_Incomplete_Type_Example
 7       (T,
 8        others => <>);
 9package Map_Incomplete_Type_Example
10  with Pure is
11end Map_Incomplete_Type_Example;







In general, signature packages aren't used in isolation, but in
combination with other generic packages. Also, they don't define anything
themselves. In this sense, signature packages don't have an associated
package body.

Using signature packages is an useful approach to clean-up the declaration
of generic packages or subprograms that contain many formal parameters.
You may move these formal parameters into multiple signature packages,
each one containing a group of formal parameters that belong together.
Also, multiple signature packages can be cascaded to create more complex
generic implementations.




Formal objects

Formal objects are used to bind objects to a generic specification. They
are similar to parameters in subprograms and can have in or
in out modes.

One of the simplest applications of formal objects is to use them to
configure a generic subprogram or package during instantiation. For
example, we can implement a generic function that processes an array of
floating-point values and calculates an output value. This calculation is
implemented in two versions:


	a standard version;


	a faster version that is less accurate than the standard version.




While the generic implementation offers both variants, developers can
select the version that is more appropriate for their system during
instantiation.


show_formal_object.adb

 1with Ada.Text_IO;
 2use  Ada.Text_IO;
 3
 4procedure Show_Formal_Object is
 5
 6   type Array_Float is
 7     array (Positive range <>) of Float;
 8
 9   generic
10      Use_Fast_Version : Boolean;
11   function Gen_Calc (A : Array_Float)
12                      return Float;
13
14   function Gen_Calc (A : Array_Float)
15                      return Float is
16   begin
17      if Use_Fast_Version then
18         Put_Line ("Using fast version");
19      else
20         Put_Line ("Using standard version");
21      end if;
22
23      --  Implementation missing here...
24      return 0.0;
25   end Gen_Calc;
26
27   function Calc is new
28     Gen_Calc (Use_Fast_Version => True);
29
30   Vals : Array_Float (1 .. 2) := (0.5, 0.3);
31   X    : Float;
32
33begin
34   X := Calc (Vals);
35end Show_Formal_Object;







In this example, we instantiate the fast version of Gen_Calc.


Input-output formal objects

Formal objects with in out mode are used to bind objects in an
instance of a generic specification. For example, we may bind a global
object from a package to the instantiation of a generic procedure, so that
all calls to this instance make use of that object internally.

In the application below, we create a database using a container and bind
it to procedures that display information from the database in a specific
format.

The Data_Elements package describes the data fields of the data
container. It also includes an Image function that returns a string
based on the specified field.


data_elements.ads

 1with Ada.Calendar; use Ada.Calendar;
 2
 3with Ada.Strings.Unbounded;
 4use  Ada.Strings.Unbounded;
 5
 6package Data_Elements is
 7
 8   type Data_Element is record
 9      First_Name : Unbounded_String;
10      Last_Name  : Unbounded_String;
11      Birthday   : Time;
12   end record;
13
14   type Data_Fields is
15     (First_Name_F, Last_Name_F,
16      Birthday_F, Age_F);
17
18   function Image (D : Data_Element;
19                   F : Data_Fields) return String;
20
21end Data_Elements;







This is the corresponding package body:


data_elements.adb

 1with Ada.Calendar.Formatting;
 2use  Ada.Calendar.Formatting;
 3
 4with Ada.Calendar.Time_Zones;
 5use  Ada.Calendar.Time_Zones;
 6
 7package body Data_Elements is
 8   TZ   : Time_Offset := UTC_Time_Offset;
 9
10   function To_Year (D : Duration)
11                     return Natural is
12     (Natural (D) / 86_400 / 365);
13
14   function Image (D : Data_Element;
15                   F : Data_Fields)
16                   return String is
17      Now : Time := Clock;
18      Age : Natural := To_Year (Now - D.Birthday);
19   begin
20      case F is
21         when First_Name_F =>
22           return To_String (D.First_Name);
23
24         when Last_Name_F  =>
25           return To_String (D.Last_Name);
26
27         when Birthday_F   =>
28           return Image (D.Birthday, True, TZ);
29
30         when Age_F        =>
31           return Natural'Image (Age);
32      end case;
33   end Image;
34
35end Data_Elements;







Note that the age field in the Image function (represented by
Age_F) isn't a field from the data container, but a calculated
value instead.

The Data package below implements the data container using a
vector. It includes the generic procedure Display that exhibits the
information from the data container based on the fields specified by the
developer at the procedure instantiation.


data.ads

 1with Ada.Containers;
 2with Ada.Containers.Vectors;
 3
 4with Data_Elements; use Data_Elements;
 5
 6package Data is
 7
 8   type Data_Container is private;
 9
10   procedure Insert (C : in out Data_Container;
11                     V : Data_Element);
12
13   type Data_Fields_Array is
14     array (Positive range <>) of Data_Fields;
15
16   generic
17      Container : in out Data_Container;
18      Fields    : Data_Fields_Array;
19      Header    : String := "";
20   procedure Display;
21
22private
23
24   package Vectors is new Ada.Containers.Vectors
25     (Index_Type   => Natural,
26      Element_Type => Data_Element);
27
28   type Data_Container is record
29      V : Vectors.Vector;
30   end record;
31
32end Data;







Note that, in addition to Container, which is a formal input-output
object, we make use of the Fields and Header objects, which
are formal input objects. Also, note that we could have declared
Container as a parameter of Display instead of declaring it
as a formal object:

generic
   Fields    : Data_Fields_Array;
   Header    : String := "";
procedure Display (Container : in out Data_Container);





In this case, we wouldn't be able to bind a local Container object
to the instantiation of the Display procedure. Instead, we would
always have to pass the container as an argument. Potentially, we could
pass the wrong container to the procedure. By using a formal input-output
object, we make sure that a specific object is bound to the procedure.
This design decision ensures that we always have the same object being
used in all calls to an instance of the Display procedure.

This is the corresponding body of the Data package:


data.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Data is
 4
 5   procedure Insert (C : in out Data_Container;
 6                     V : Data_Element) is
 7   begin
 8      C.V.Append (V);
 9   end Insert;
10
11   procedure Display is
12   begin
13      if Header /= "" then
14         Put_Line (Header);
15         New_Line;
16      end if;
17
18      for E of Container.V loop
19         for F of Fields loop
20            Put (Image (E, F) & " ");
21         end loop;
22         New_Line;
23      end loop;
24
25      New_Line;
26   end Display;
27
28end Data;







Finally, we implement the Test_Data_Container procedure, which
makes use of the data container:


test_data_container.adb

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4with Ada.Calendar.Formatting;
 5
 6with Data;          use Data;
 7with Data_Elements; use Data_Elements;
 8
 9procedure Test_Data_Container is
10
11   package App_Data_Container is
12
13      --
14      --  Data container for all operations.
15      --
16      C : Data_Container;
17
18      --
19      --  Display procedures are specific for
20      --  the data container.
21      --
22
23      procedure Display_First_Name_Age is new
24        Display (Container => C,
25                 Fields    => (1 => First_Name_F,
26                               2 => Age_F),
27                 Header    => "FIRST_NAME AGE");
28
29      procedure Display_Name_Birthday is new
30        Display (Container => C,
31                 Fields    => (1 => First_Name_F,
32                               2 => Last_Name_F,
33                               3 => Birthday_F),
34                 Header    => "NAME BIRTHDAY");
35   end App_Data_Container;
36
37   use App_Data_Container;
38
39   --
40   --  Data container initialization
41   --
42
43   procedure Init_Container is
44      function To_US (S : String)
45                      return Unbounded_String
46        renames
47          To_Unbounded_String;
48   begin
49      Insert
50        (C, (First_Name => To_US ("John"),
51             Last_Name  => To_US ("Smith"),
52             Birthday   =>
53               Ada.Calendar.Formatting.Time_Of
54                 (Year        => 1951,
55                  Month       => 5,
56                  Day         => 1)));
57
58      Insert
59        (C, (First_Name => To_US ("Alice"),
60             Last_Name  => To_US ("Williams"),
61             Birthday   =>
62               Ada.Calendar.Formatting.Time_Of
63                 (Year        => 1968,
64                  Month       => 10,
65                  Day         => 12)));
66   end Init_Container;
67
68begin
69   Init_Container;
70
71   Display_First_Name_Age;
72   Display_Name_Birthday;
73
74end Test_Data_Container;







In this example, we declare the data container C and bind it to
two instantiations of the Display procedure:


	Display_First_Name_Age, which displays the first name and age of
each person from the database;


	Display_Name_Birthday, which displays the full name and birthday
of each person.







Formal definite and indefinite types


Relevant topics


	definite and indefinite (sub)types in the context of generics


	
	discriminants
	
	A'Constrained
















Formal incomplete type


Relevant topics


	Formal incomplete type mentioned in
Formal Types[#3]








Default subtype mark


Relevant topics


	Default subtype mark (or use) mentioned in
Formal Types[#4]








Formal private and derived types


Relevant topics


	Formal Private and Derived Types[#5]








Formal interfaces


Generating subprogram specifications

Formal interfaces can be used to generate a collection of pre-defined
subprograms for new types. For example, let's suppose that, for a given
type T, we need at least a pair of subprograms that set and get
elements of type T based on another type. We might want to convert
back and forth between the types T and Integer. In addition,
we might want to convert from and to other types (e.g., Float). To
implement this, we can define the following generic interface:


gen_interface.ads

 1package Gen_Interface is
 2
 3   generic
 4      type TD is private;
 5      type TI is interface;
 6   package Set_Get is
 7      type T is interface and TI;
 8
 9      procedure Set (E : in out T;
10                     D :        TD) is abstract;
11      function Get (E : T)
12                    return TD is abstract;
13   end Set_Get;
14
15end Gen_Interface;







In this example, the package Set_Get defines subprograms that allow
converting from any definite type (TD) and the interface type
(TI).

We then proceed to declare packages for converting between Integer
and Float types and the interface type. Also, we declare an actual
tagged type that combines these conversion subprograms into a single type:


my_type_pkg.ads

 1with Gen_Interface;
 2
 3package My_Type_Pkg is
 4
 5   type My_Type_Interface is interface;
 6
 7   package Set_Get_Integer is new
 8     Gen_Interface.Set_Get
 9       (TD => Integer,
10        TI => My_Type_Interface);
11   use Set_Get_Integer;
12
13   package Set_Get_Float   is new
14     Gen_Interface.Set_Get
15       (TD => Float,
16        TI => My_Type_Interface);
17   use Set_Get_Float;
18
19   type My_Type is
20     new Set_Get_Integer.T and
21         Set_Get_Float.T
22     with private;
23
24   overriding procedure Set (E : in out My_Type;
25                             D :        Integer);
26   overriding function Get (E : My_Type)
27                            return Integer;
28
29   overriding procedure Set (E : in out My_Type;
30                             D :        Float);
31   overriding function Get (E : My_Type)
32                            return Float;
33
34private
35   type My_Type is
36     new Set_Get_Integer.T and
37         Set_Get_Float.T
38     with record
39      I : Integer;
40      F : Float;
41   end record;
42
43end My_Type_Pkg;







First, we declare the packages Set_Get_Integer and
Set_Get_Float based on the generic Set_Get package. Next,
we declare My_Type based on the interface type from these two
packages. By doing this, My_Type now needs to implement the actual
conversion from and to Integer and Float types.

Note that, in the private part of My_Type, we're storing the
floating-point and integer representations that we receive in the calls to
the Set procedures. However, we could have complex data as well and
just use conversion subprograms to provide a simplified representation of
the complex data.

This is just an example on how we could implement these Set and
Get subprograms:


my_type_pkg.adb

 1package body My_Type_Pkg is
 2
 3   procedure Set (E : in out My_Type;
 4                  D :        Integer) is
 5   begin
 6      E.I := D;
 7      E.F := Float (D);
 8   end Set;
 9
10   function Get (E : My_Type)
11                 return Integer is
12   begin
13      return E.I;
14   end Get;
15
16   procedure Set (E : in out My_Type;
17                  D :        Float) is
18   begin
19      E.F := D;
20      E.I := Integer (D);
21   end Set;
22
23   function Get (E : My_Type)
24                 return Float is
25   begin
26      return E.F;
27   end Get;
28
29end My_Type_Pkg;







As expected, declaring and using variable of My_Type is
straightforward:


show_gen_interface.adb

1with My_Type_Pkg; use My_Type_Pkg;
2
3procedure Show_Gen_Interface is
4   C : My_Type;
5begin
6   C.Set (2);
7   C.Set (2.1);
8end Show_Gen_Interface;









Facilitating arrays of interfaces

Formal interfaces can facilitate the handling of arrays of interface
types. Let's consider an interface type TI and the derived tagged
types T and T2. We may declare arrays containing elements
that access the TI class. These arrays can be initialized with
elements that access types T or T2. Also, we may process
these arrays with an operation Op using the API of the TI
interface.


ti_pkg.ads

 1package TI_Pkg is
 2
 3   type TI is interface;
 4
 5   procedure Op (E : in out TI) is abstract;
 6
 7   type TI_Class_Access is
 8     access all TI'Class;
 9
10   type TI_Array is
11     array (Positive range <>) of TI_Class_Access;
12
13   procedure Op (A : in out TI_Array);
14
15end TI_Pkg;








ti_pkg.adb

 1package body TI_Pkg is
 2
 3   procedure Op (A : in out TI_Array) is
 4   begin
 5      for E of A loop
 6         E.Op;
 7      end loop;
 8   end Op;
 9
10end TI_Pkg;








t_pkg.ads

 1with TI_Pkg; use TI_Pkg;
 2
 3package T_Pkg is
 4
 5   type T is new
 6     TI with null record;
 7
 8   type T_Class_Access is
 9     access all T'Class;
10
11   type T_Array is
12     array (Positive range <>) of T_Class_Access;
13
14   --  Missing implementation
15   procedure Op (E : in out T) is null;
16
17   type T2 is new T with null record;
18
19   --  Missing implementation
20   procedure Op (E : in out T2) is null;
21
22end T_Pkg;







This is a test application that declares an array A of the
interface type TI and calls Op for A:


test_t.adb

 1with TI_Pkg; use TI_Pkg;
 2with T_Pkg;  use T_Pkg;
 3
 4procedure Test_T is
 5
 6   A : TI_Array (1 .. 3) :=
 7         (1 => new T,
 8          2 => new T2,
 9          3 => new T);
10
11begin
12
13   Op (TI_Array (A));
14
15end Test_T;







This example doesn't work if we use an array of the derived type T:

with TI_Pkg; use TI_Pkg;
with T_Pkg;  use T_Pkg;

procedure Test_T is

   A : T_Array (1 .. 3) :=
         (1 => new T,
          2 => new T2,
          3 => new T);

begin

   Op (A);

end Test_T;





This is incorrect because Op expects an array of type TI,
not T. Even if the type T is derived from TI, the
corresponding array type is not. Formal interfaces can be used to create
a generic version of Op that operates directly on an array of
type T. Let's look at an example.

The example below calculates the average of interface types that are
convertible to floating-point values. We consider that a type is
convertible to floating-point if it provides a To_Float function.
This is implemented with the Float_Cnvt_Type interface. We also
declare a generic package containing the Average function, which
calculates the average of an array containing elements of a
convertible type (i.e. any type derived from the Float_Cnvt_Type
interface).


float_interface_pkg.ads

1package Float_Interface_Pkg is
2
3   type Float_Cnvt_Type is interface;
4   function To_Float (E : Float_Cnvt_Type)
5                      return Float is abstract;
6
7end Float_Interface_Pkg;








float_interface_pkg-ops.ads

 1generic
 2   type Float_Cnvt_T is new
 3     Float_Cnvt_Type with private;
 4   type Float_Cnvt_Class_Access is
 5     access all Float_Cnvt_T'Class;
 6   type Float_Cnvt_Array is
 7     array (Positive range <>) of
 8       Float_Cnvt_Class_Access;
 9package Float_Interface_Pkg.Ops is
10
11   function Average (A : Float_Cnvt_Array)
12                     return Float;
13
14end Float_Interface_Pkg.Ops;







This is the corresponding package body containing the implementation of
the generic Average function:


float_interface_pkg-ops.adb

 1package body Float_Interface_Pkg.Ops is
 2
 3   function Average (A : Float_Cnvt_Array)
 4                     return Float is
 5   begin
 6      return Acc : Float do
 7         Acc := 0.0;
 8         for E of A loop
 9            Acc := Acc + E.To_Float;
10         end loop;
11         Acc := Acc /
12                Float (A'Last - A'First + 1);
13      end return;
14   end Average;
15
16end Float_Interface_Pkg.Ops;







In the App_Data package, we declare two types derived from
Float_Cnvt_Type: T and T2. We also declare the
corresponding To_Float functions.


app_data.ads

 1with Float_Interface_Pkg; use Float_Interface_Pkg;
 2
 3package App_Data is
 4
 5   type T is new Float_Cnvt_Type with private;
 6   type T_Class_Access is access all T'Class;
 7   type T_Array is
 8     array (Positive range <>) of T_Class_Access;
 9
10   procedure Set (E : in out T; F : Float);
11   function To_Float (E : T) return Float;
12
13   type T2 is new T with private;
14   type T2_Class_Access is access all T2'Class;
15
16   procedure Set_Ext (E : in out T2;
17                      F :        Float);
18   overriding function To_Float (E : T2)
19                                 return Float;
20
21private
22
23   type T is new Float_Cnvt_Type with record
24      F : Float := 0.0;
25   end record;
26
27   type T2 is new T with record
28      F2 : Float := 0.0;
29   end record;
30
31end App_Data;







This is the corresponding package body:


app_data.adb

 1package body App_Data is
 2
 3   procedure Set (E : in out T; F : Float) is
 4   begin
 5      E.F := F;
 6   end Set;
 7
 8   function To_Float (E : T) return Float is
 9     (E.F);
10
11   procedure Set_Ext (E : in out T2; F : Float) is
12   begin
13      E.F2 := F;
14   end Set_Ext;
15
16   function To_Float (E : T2) return Float is
17     (E.F + E.F2);
18
19end App_Data;







Finally, this is a test application that declares an array of
convertible types and calls the Average function to calculate
the average of all elements.


show_average.adb

 1with App_Data;                use App_Data;
 2with Float_Interface_Pkg.Ops;
 3
 4with Ada.Text_IO;             use Ada.Text_IO;
 5
 6procedure Show_Average is
 7
 8   package Ops is new Float_Interface_Pkg.Ops
 9     (Float_Cnvt_T            => T,
10      Float_Cnvt_Class_Access => T_Class_Access,
11      Float_Cnvt_Array        => T_Array);
12
13   A : T_Array (1 .. 3) :=
14         (1 => new T,
15          2 => new T2,
16          3 => new T);
17
18   Avg : Float;
19begin
20   for I in A'Range loop
21      A (I).Set (1.0);
22
23      if A (I).all in T2'Class then
24         declare
25            A_I : T2_Class_Access :=
26                    T2_Class_Access (A (I));
27         begin
28            A_I.Set_Ext (3.0);
29         end;
30      end if;
31   end loop;
32
33   Avg := Ops.Average (A);
34
35   Put_Line ("Avg: " & Float'Image (Avg));
36
37end Show_Average;







In this example, we declare the array A with elements of both
T and T2 types. After initializing the elements of A,
we call the Average function from Ops, an instance of the
generic package Float_Interface_Pkg.Ops.



Discussion: formal interfaces vs. other approaches

In Ada, we basically have three approaches to describe interfaces for
generic types. In addition to the approach using formal interfaces that
we've just seen above, we also have these approaches:


	Formal subprograms, which we've presented in the introductory course
(in the
chapter about generics[#6] of the
Introduction to Ada course).


	Signature packages, which we've discussed in a
previous section.




Let's briefly recapitulate these approaches:


interface_approaches.ads

 1package Interface_Approaches is
 2
 3   -------------------------------
 4   --  Using Formal Subprograms --
 5   -------------------------------
 6   package Using_Formal_Subprograms is
 7
 8      generic
 9         type T is private;
10         with procedure P (E : T) is <>;
11      package Pkg is
12      end Pkg;
13
14   end Using_Formal_Subprograms;
15
16   -------------------------------
17   --  Using Signature Packages --
18   -------------------------------
19   package Using_Signature_Packages is
20
21      generic
22         type T2;
23         with procedure P (E : T2) is <>;
24      package Sig_Pkg is
25      end Sig_Pkg;
26
27      generic
28         type T is private;
29         with package SP is new Sig_Pkg (T, <>);
30      package Pkg is
31      end Pkg;
32
33   end Using_Signature_Packages;
34
35   -------------------------
36   --  Using Tagged Types --
37   -------------------------
38   package Using_Tagged_Types is
39
40      type I is interface;
41      procedure P (E : I) is abstract;
42
43      generic
44         type T is new I with private;
45      package Pkg is
46      end Pkg;
47
48   end Using_Tagged_Types;
49
50end Interface_Approaches;







The following subsections discuss the pros and cons of each approach.
For the source-code examples, we'll implement a generic hash table.


Interfaces using formal subprograms

Formal subprograms, combined with a formal type, can be used to define
an implicit interface. Let's look at the implementation of a generic hash
table:


interface_using_formal_function.ads

 1with Ada.Containers; use Ada.Containers;
 2
 3package Interface_Using_Formal_Function is
 4
 5   generic
 6      type T is private;
 7      with function Hash (Self : T)
 8                          return Hash_Type is <>;
 9   package Hash_Tables is
10      --  Missing implementation
11   end Hash_Tables;
12
13end Interface_Using_Formal_Function;







In contrast to formal interfaces, the interface described with formal
subprograms is implicit: we don't have an explicit interface type
defined here. However, the combination of type T and the function
Hash represent an interface.

The fact that we don't declare an explicit interface has the disadvantage
of not being as obvious as when the interface keyword is used in
the code. Developers are forced to recognize the design pattern: they have
to deduce that the intention of declaring T and Hash is to
define an interface. However, this approach has the advantage of not
requiring the use of tagged types in the package instantiation.

This is an example of a package instantiating the generic hash table:


instantiation_using_formal_function.ads

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Strings.Hash;
 3
 4with Interface_Using_Formal_Function;
 5use  Interface_Using_Formal_Function;
 6
 7package Instantiation_Using_Formal_Function is
 8
 9   type My_Type is record
10      Key   : String (1 .. 100);
11      Key_2 : String (1 .. 100);
12   end record;
13
14   function Hash (Self : My_Type)
15                  return Hash_Type is
16     (Ada.Strings.Hash (Self.Key));
17
18   function Alt_Hash (Self : My_Type)
19                      return Hash_Type is
20     (Ada.Strings.Hash (Self.Key_2));
21
22   package My_Type_Hash_Tables is new
23     Hash_Tables (My_Type);
24
25   package My_Type_Alt_Hash_Tables is new
26     Hash_Tables (T    => My_Type,
27                  Hash => Alt_Hash);
28
29end Instantiation_Using_Formal_Function;







Note that, in the declaration of the My_Type_Hash_Tables, we're
not specifying the Hash function for the instantiation of the
generic Hash_Tables package. This is possible for two reasons:


	In the declaration of the formal function parameter, we're using
is <>, which automatically selects a function with the same name
and a compatible signature in the package instantiation if available.


	For My_Type, we've declared a function that has the same name as
the formal function and the expected signature.




If the above-mentioned conditions are not met, we have to provide an
argument for the formal function parameter in the package instantiation.

We may also instantiate the formal package using alternative versions of
the function associated with the formal package. This is what we're doing
in the declaration of the My_Type_Alt_Hash_Tables package. In this
case, we're using Alt_Hash instead of Hash for the formal
function parameter. Note that, because the name of the actual function
doesn't match the name of the formal function, we need to indicate it
explicitly.



Interfaces using signature packages

The basic form of signature packages is similar to the approach we've just
seen using formal subprograms: a signature package defines an interface
using a formal type and formal subprograms.

Signature packages make it more explicit that the types and subprograms
defined in the package represent an interface. This is an advantage over
the approach using formal subprograms directly. However, using signature
package isn't as explicit as using the interface keyword.

As mentioned before, signature packages aren't used in isolation, but in
combination with other generic packages. Also, they don't define anything
themselves. These features might provide a hint that a package is used to
represent an interface.

Let's look at the implementation of a generic hash table using a signature
package:


interface_using_signature_package.ads

 1with Ada.Containers; use Ada.Containers;
 2
 3package Interface_Using_Signature_Package is
 4
 5   generic
 6      type Element;
 7      with function Hash (Self : Element)
 8                          return Hash_Type is <>;
 9   package Hashable_Signature is
10   end Hashable_Signature;
11
12   generic
13      type T is private;
14      with package T_Hashable is new
15        Hashable_Signature (T, <>);
16   package Hash_Tables is
17      --  Missing implementation
18   end Hash_Tables;
19
20end Interface_Using_Signature_Package;







Note that this approach is more verbose than the previous one using formal
subprograms directly. In this case, we have to declare two generic
packages instead of one.

This is an example of a package instantiating a signature package and the
generic hash table:


instantiation_using_signature_package.ads

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Strings.Hash;
 3
 4with Interface_Using_Signature_Package;
 5use  Interface_Using_Signature_Package;
 6
 7package Instantiation_Using_Signature_Package is
 8
 9   type My_Type is record
10      Key   : String (1 .. 100);
11      Key_2 : String (1 .. 100);
12   end record;
13
14   function Hash (Self : My_Type)
15                  return Hash_Type is
16     (Ada.Strings.Hash (Self.Key));
17
18   function Alt_Hash (Self : My_Type)
19                      return Hash_Type is
20     (Ada.Strings.Hash (Self.Key_2));
21
22   package My_Type_Hashable is new
23     Hashable_Signature (My_Type, Hash);
24
25   package My_Type_Hash_Tables is new
26     Hash_Tables (My_Type, My_Type_Hashable);
27
28   package My_Type_Alt_Hashable is new
29     Hashable_Signature (My_Type, Alt_Hash);
30
31   package My_Type_Alt_Hash_Tables is new
32     Hash_Tables (My_Type, My_Type_Alt_Hashable);
33
34end Instantiation_Using_Signature_Package;







This approach shares the same advantage listed for the previous approach:
we may use any type, not only tagged types for instantiating the generic
package. However, when using signature packages, the generic package
instantiation also becomes more verbose: we have to instantiate two
packages instead of one to achieve the same result. For the example above,
we first declare the My_Type_Hashable package and use it in the
declaration of the My_Type_Hash_Tables package.

The advantage of this approach is that the instantiation of the actual
package (the hash table in our example) is simplified: instead of passing
all formal subprograms as parameters to My_Type_Hash_Tables, we
only need to specify the signature package which contains the complete
interface. When implementing complex interfaces, this approach might lead
to a cleaner design than the previous approach using formal subprograms
directly.

Similar to the previous approach, we may also instantiate the formal
package using alternative versions of the function associated with the
formal package. This is what we're doing in the declaration of the
My_Type_Alt_Hash_Tables package.



Interfaces using tagged types

Finally, let's discuss the design of generic packages using formal
interfaces and tagged types. In contrast to the two approaches mentioned
above, formal interfaces explicitly indicate what's the interface in the
implementation through the interface keyword. No interpretation of
design patterns is needed in this case.

For the approaches we've discussed earlier (using formal subprograms and
signature packages), we were free to use any type in the instantiation of
the generic package. However, for generic packages using formal
interfaces, we can only use tagged types in the instantiation. This may
be a serious restriction, especially if we have to deal with existing code
containing types that are not tagged. Fortunately, in this case, we can
use the previous approaches to implement interfaces.

Let's look at the implementation of a generic hash table using a formal
interface:


interface_using_tagged_types.ads

 1with Ada.Containers; use Ada.Containers;
 2
 3package Interface_Using_Tagged_Types is
 4
 5   type Hashable is interface;
 6   function Hash (Self : Hashable)
 7                  return Hash_Type is abstract;
 8
 9   generic
10      type T is new Hashable with private;
11   package Hash_Tables is
12      --  Missing implementation
13   end Hash_Tables;
14
15end Interface_Using_Tagged_Types;







This is an example of a package instantiating the generic hash table
using a tagged type:


instantiation_using_tagged_types.ads

 1with Ada.Containers; use Ada.Containers;
 2with Ada.Strings.Hash;
 3
 4with Interface_Using_Tagged_Types;
 5use  Interface_Using_Tagged_Types;
 6
 7package Instantiation_Using_Tagged_Types is
 8
 9   type My_Type is new Hashable with record
10      Key   : String (1 .. 100);
11      Key_2 : String (1 .. 100);
12   end record;
13
14   function Hash (Self : My_Type)
15                  return Hash_Type is
16     (Ada.Strings.Hash (Self.Key));
17
18   package My_Type_Hash_Tables is new
19     Hash_Tables (My_Type);
20
21end Instantiation_Using_Tagged_Types;







The instantiation of generic packages is much simpler in this case: we
don't have to pass operations as parameters in the package instantiation.
In this example, the declaration of My_Type_Hash_Tables is very
straightforward: we just have to specify the tagged type (My_Type).
All operations are implicitly defined in the tagged type, so we don't
have to specify them. Conversely, we're bound to use the implementation
associated with the type. We cannot easily replace Hash by
Alt_Hash as in the previous approaches. In order to do that, we
have to declare a derived type and override the Hash function. This
is how we may create the My_Type_Alt_Hash_Tables package using the
alternative hashing function, as we did in the previous approaches:


instantiation_using_alt_tagged_types.ads

 1with Ada.Containers;   use  Ada.Containers;
 2with Ada.Strings.Hash;
 3
 4with Interface_Using_Tagged_Types;
 5use  Interface_Using_Tagged_Types;
 6
 7with Instantiation_Using_Tagged_Types;
 8use  Instantiation_Using_Tagged_Types;
 9
10package Instantiation_Using_Alt_Tagged_Types is
11
12   type My_Alt_Type is new
13     My_Type with null record;
14
15   overriding function Hash (Self : My_Alt_Type)
16                             return Hash_Type is
17     (Ada.Strings.Hash (Self.Key_2));
18
19   package My_Type_Alt_Hash_Tables is new
20     Hash_Tables (My_Alt_Type);
21
22end Instantiation_Using_Alt_Tagged_Types;







In this example, the Hash function of the My_Alt_Type type
corresponds to the Alt_Hash function that we implemented in the
previous approaches.




Formal synchronized interfaces

Formal synchronized interfaces are a specialized case of formal
interfaces that can be used for task types and protected types. Since
formal synchronized interfaces are similar to formal interfaces,
we can reuse the previous source-code example with minimal adaptations.

When adapting the Gen_Interface package, we just need to make use
of the synchronized keyword:


gen_sync_interface.ads

 1package Gen_Sync_Interface is
 2
 3   generic
 4      type TD is private;
 5      type TI is synchronized interface;
 6   package Set_Get is
 7      type T is synchronized interface and TI;
 8
 9      procedure Set (E : in out T;
10                     D :        TD) is abstract;
11      function Get (E : T)
12                    return TD is abstract;
13   end Set_Get;
14
15end Gen_Sync_Interface;







Note that we're also renaming some packages (e.g., renaming
Gen_Interface to Gen_Sync_Interface) to better differentiate
between them. This approach is used in the adaptations below as well.

When adapting the My_Type_Pkg, we again need to make use of
the synchronized keyword. Also, we need to declare My_Type
as a protected type and adapt the subprogram and component declarations.
Note that we could have used a task type instead. This is the adapted
package:


my_sync_type_pkg.ads

 1with Gen_Sync_Interface;
 2
 3package My_Sync_Type_Pkg is
 4
 5   type My_Type_Interface is
 6     synchronized interface;
 7
 8   package Set_Get_Integer is new
 9     Gen_Sync_Interface.Set_Get
10       (TD => Integer,
11        TI => My_Type_Interface);
12   use Set_Get_Integer;
13
14   package Set_Get_Float is new
15     Gen_Sync_Interface.Set_Get
16       (TD => Float,
17        TI => My_Type_Interface);
18   use Set_Get_Float;
19
20   protected type My_Type is new
21     Set_Get_Integer.T and Set_Get_Float.T with
22
23      overriding procedure Set (D : Integer);
24      function Get return Integer;
25
26      overriding procedure Set (D : Float);
27      function Get return Float;
28   private
29      I : Integer;
30      F : Float;
31   end My_Type;
32
33end My_Sync_Type_Pkg;







In the package body, we just need to adapt the access to components in the
subprograms:


my_sync_type_pkg.adb

 1package body My_Sync_Type_Pkg is
 2
 3   protected body My_Type is
 4      procedure Set (D : Integer) is
 5      begin
 6         I := D;
 7         F := Float (D);
 8      end Set;
 9
10      function Get return Integer is
11      begin
12         return I;
13      end Get;
14
15      procedure Set (D : Float) is
16      begin
17         F := D;
18         I := Integer (D);
19      end Set;
20
21      function Get return Float is
22      begin
23         return F;
24      end Get;
25   end My_Type;
26
27end My_Sync_Type_Pkg;







Finally, the main application doesn't require adaptations:


show_gen_sync_interface.adb

1with My_Sync_Type_Pkg; use My_Sync_Type_Pkg;
2
3procedure Show_Gen_Sync_Interface is
4   C : My_Type;
5begin
6   C.Set (2);
7   C.Set (2.1);
8end Show_Gen_Sync_Interface;










Formal numeric types

Ada supports the use of numeric types for generics. This can be used to
describe a numeric algorithm independently of the actual data type. We'll
see examples below.

This is the corresponding syntax:


	For floating-point types:  type T is digits <>;


	For binary fixed-point type: type T is delta <>;


	For decimal fixed-point types: type T is delta <> digits <>;




In this section, we discuss generic floating-point and binary fixed-point
types.


Formal floating-point types


Simple generic package

Let's look at an example of a generic package containing a procedure that
saturates floating-point numbers. In this code, we work with a
normalized range between -1.0 and 1.0. Due to the fact that some
calculations might lead to results outside this range, we use the
Saturate  procedure to put values back into the normalized range.

This is the package specification:


gen_float_ops.ads

1generic
2   type F is digits <>;
3package Gen_Float_Ops is
4   procedure Saturate (V : in out F);
5end Gen_Float_Ops;







This is the package body:


gen_float_ops.adb

 1package body Gen_Float_Ops is
 2
 3   procedure Saturate (V : in out F) is
 4   begin
 5      if V > 1.0 then
 6         V := 1.0;
 7      elsif V < -1.0 then
 8         V := -1.0;
 9      end if;
10   end Saturate;
11
12end Gen_Float_Ops;







Finally, we create a test application:


show_float_ops.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Gen_Float_Ops;
 3
 4procedure Show_Float_Ops is
 5
 6   package Float_Ops is new
 7     Gen_Float_Ops (F => Float);
 8   use Float_Ops;
 9
10   package Long_Float_Ops is new
11     Gen_Float_Ops (F => Long_Float);
12   use Long_Float_Ops;
13
14   F  : Float := 0.5;
15   LF : Long_Float := -0.5;
16
17begin
18   F  := F + 0.7;
19   LF := LF - 0.7;
20
21   Put_Line ("F:  " & Float'Image (F));
22   Put_Line ("LF: " & Long_Float'Image (LF));
23
24   Saturate (F);
25   Saturate (LF);
26
27   Put_Line ("F:  " & Float'Image (F));
28   Put_Line ("LF: " & Long_Float'Image (LF));
29
30end Show_Float_Ops;







In this application, we create two instances of the Gen_Float_Ops
package: one for the Float type and one for the Long_Float
type. We then make use of computations whose results are outside the
normalized range. By calling the Saturate procedure, we ensure that
the values are inside the range again.



Operations in generic packages

In this section, we discuss how to declare operations associated with
floating-point types in generic packages.

Let's first define a package that implements a new type My_Float
based on the standard Float type. For this type, we override the
addition operator with an implementation that saturates the value after
the actual addition.

This is the package specification:


float_types.ads

1package Float_Types is
2
3   type My_Float is new Float;
4   function "+" (A, B : My_Float) return My_Float;
5
6end Float_Types;







This is the corresponding package body:


float_types.adb

 1package body Float_Types is
 2
 3   procedure Saturate (V : in out My_Float) is
 4   begin
 5      if V > 1.0 then
 6         V := 1.0;
 7      elsif V < -1.0 then
 8         V := -1.0;
 9      end if;
10   end Saturate;
11
12   overriding function "+" (A, B : My_Float)
13                            return My_Float is
14   begin
15      return R : My_Float do
16         R := My_Float (Float (A) + Float (B));
17         Saturate (R);
18      end return;
19   end "+";
20
21end Float_Types;







Next, we create a package containing a procedure that accumulates
floating-point values. This is the package specification:


gen_float_acc.ads

1generic
2   type F is digits <>;
3   with function "+" (A, B : F) return F is <>;
4package Gen_Float_Acc is
5   procedure Acc (V : in out F; S : F);
6end Gen_Float_Acc;







In this specification, we declare a formal function for the addition
operator using with function. This operator is used by the
Acc procedure in the package body. Also, because we use <>
in the specification, the corresponding addition operator for type
F is selected.

This is the package body:


gen_float_acc.adb

1package body Gen_Float_Acc is
2
3   procedure Acc (V : in out F; S : F) is
4   begin
5      V := V + S;
6   end Acc;
7
8end Gen_Float_Acc;







This is a test application that makes use of the Float_Types and
Gen_Float_Acc packages.


show_float_overriding.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2
 3with Float_Types; use Float_Types;
 4with Gen_Float_Acc;
 5
 6procedure Show_Float_Overriding is
 7
 8   package Float_Ops is new
 9     Gen_Float_Acc (F => My_Float);
10   use Float_Ops;
11
12   F1, F2 : My_Float := 0.5;
13
14begin
15   Put_Line ("F1:  " & My_Float'Image (F1));
16   Put_Line ("F2:  " & My_Float'Image (F2));
17
18   Acc (F1, 3.0);
19   F2 := F2 + 3.0;
20
21   Put_Line ("F1:  " & My_Float'Image (F1));
22   Put_Line ("F2:  " & My_Float'Image (F2));
23
24end Show_Float_Overriding;







We create an instance of the Gen_Float_Acc by using the
My_Float type declared in the Float_Types package. Because
we used <> in the specification of function "+" (in the
Gen_Float_Acc package), the compiler will automatically select
the addition operator that we've overriden in the Float_Types
package, so that we don't need to specify it in the package instantiation.

The main reason for the formal subprogram in the specification of the
Gen_Float_Acc package is that it prevents the compiler from
selecting the standard operator. We could have removed the
function "+" from the specification, as illustrated in the
example below, where we modified the Gen_Float_Acc package:

generic
   type F is digits <>;
   --  no "with function" here!
package Gen_Float_Acc is
   procedure Acc (V : in out F; S : F);
end Gen_Float_Acc;

package body Gen_Float_Acc is

   procedure Acc (V : in out F; S : F) is
   begin
      --  Using standard addition for universal
      --  floating-point type (digits <>) here:
      V := V + S;
   end Acc;

end Gen_Float_Acc;





In this case, however, even though we declared a custom addition operator
for the My_Float type in the Float_Types package, an
instantiation of the modified Gen_Float_Acc package would always
make use of the standard addition:

--  This makes use of the type definition of
--  My_Float, but not its overridden operators.
package Float_Ops is new
  Gen_Float_Acc (F => My_Float);





Because the type F is declared as digits <>, which
corresponds to the universal floating-point data type, the compiler
selects operators associated with the universal floating-point data type
in the package body. By specifying the formal subprogram, we make sure
that the operator associated with the actual type is used.

Alternatively, we could make use of the Float_Types package
directly in the generic package. For example:


gen_float_acc.ads

1with Float_Types; use Float_Types;
2
3generic
4   type F is new My_Float;
5package Gen_Float_Acc is
6   procedure Acc (V : in out F; S : F);
7end Gen_Float_Acc;







In this case, because the formal type is now based on My_Float, the
corresponding operator for My_Float is used in the Acc
procedure.




Formal fixed-point types


Simple generic package

In the previous section, we looked into an example of saturation for
generic floating-point types. Let's adapt this example for fixed-point
types. This is the package specification:


gen_fixed_ops.ads

1generic
2   type F is delta <>;
3package Gen_Fixed_Ops is
4   function Sat_Add (V1, V2 : F) return F;
5end Gen_Fixed_Ops;







For the fixed-point version, we specify the normalized range in the
definition of the data type. Therefore, any computation that leads to
values out of the normalized range will raise a Constraint_Error
exception. In order to circumvent this, we can declare a fixed-point data
type with a wider range and use it in combination with the actual
operation that we want to perform -- an addition, in this case. This
approach  can be seen in the implementation of Sat_Add, which
computes the addition using the local Ovhd_Fixed type with wider
range, calls the Saturate procedure and converts the data type back
into the original range.


gen_fixed_ops.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2
 3package body Gen_Fixed_Ops is
 4
 5   Ovhd_Depth : constant Positive := 64;
 6   Ovhd_Bits  : constant := 32;
 7   Ovhd_Delta : constant :=
 8                  2.0 ** Ovhd_Bits /
 9                  2.0 ** (Ovhd_Depth - 1);
10
11   type Ovhd_Fixed is delta Ovhd_Delta range
12     -2.0 ** Ovhd_Bits ..
13      2.0 ** Ovhd_Bits - Ovhd_Delta
14        with Size => Ovhd_Depth;
15
16   --  Ensure that Ovhd_Fixed has enough headroom
17   pragma Assert (Ovhd_Fixed'First <=
18                  2.0 * Ovhd_Fixed (F'First));
19   pragma Assert (Ovhd_Fixed'Last  >=
20                  2.0 * Ovhd_Fixed (F'Last));
21
22   --  Ensure that the precision is at least
23   --  the same
24   pragma Assert (Ovhd_Fixed'Small <= F'Small);
25
26   procedure Saturate (V : in out Ovhd_Fixed)
27      with Inline;
28
29   procedure Saturate (V : in out Ovhd_Fixed) is
30      First : constant Ovhd_Fixed :=
31                Ovhd_Fixed (F'First);
32      Last  : constant Ovhd_Fixed :=
33                Ovhd_Fixed (F'Last);
34   begin
35      if V > Last then
36         V := Last;
37      elsif V < First then
38         V := First;
39      end if;
40   end Saturate;
41
42   function Sat_Add (V1, V2 : F) return F is
43      VC1 : Ovhd_Fixed := Ovhd_Fixed (V1);
44      VC2 : Ovhd_Fixed := Ovhd_Fixed (V2);
45      VC  : Ovhd_Fixed;
46   begin
47      VC := VC1 + VC2;
48      Saturate (VC);
49      return F (VC);
50   end Sat_Add;
51
52end Gen_Fixed_Ops;







Ovhd_Fixed is a 64-bit fixed-point data type. By using
Asserts in the package body that compare this data type to the
formal F type from the package specification, we ensure that the
local fixed-point data type has enough overhead to cope with any
fixed-point operation that we want to implement. Also, we ensure that we
don't lose precision when converting back-and-forth between the local type
and the original type.

We then use the Gen_Fixed_Ops package in a test application:


show_fixed_ops.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Gen_Fixed_Ops;
 3
 4procedure Show_Fixed_Ops is
 5
 6   F_Depth  : constant Positive := 16;
 7   LF_Depth : constant Positive := 32;
 8
 9   F_Delta  : constant :=
10                1.0 / 2.0 ** (F_Depth - 1);
11   LF_Delta : constant :=
12                1.0 / 2.0 ** (LF_Depth - 1);
13
14   type Fixed is
15     delta F_Delta
16     range -1.0 .. 1.0 - F_Delta
17       with Size => F_Depth;
18
19   type Long_Fixed is
20     delta LF_Delta
21     range -1.0 .. 1.0 - LF_Delta
22       with Size => LF_Depth;
23
24   package Fixed_Ops is new
25     Gen_Fixed_Ops (F => Fixed);
26   use Fixed_Ops;
27
28   package Long_Fixed_Ops is new
29     Gen_Fixed_Ops (F => Long_Fixed);
30   use Long_Fixed_Ops;
31
32   F  : Fixed      :=  0.5;
33   LF : Long_Fixed := -0.5;
34
35begin
36   Put_Line ("F:  " & Fixed'Image (F));
37   Put_Line ("LF: " & Long_Fixed'Image (LF));
38
39   F  := Sat_Add (F,   0.75);
40   LF := Sat_Add (LF, -0.75);
41
42   Put_Line ("F:  " & Fixed'Image (F));
43   Put_Line ("LF: " & Long_Fixed'Image (LF));
44
45end Show_Fixed_Ops;







In this test application, we declare two fixed-point data types:
the 16-bit type Fixed and the 32-bit type Long_Fixed.
These types are used to create instances of the Gen_Fixed_Ops. By
calling Sat_Add, we ensure that the result of adding fixed-point
values will always be in the allowed range and the computation will never
raise an exception.



Operations in generic packages

In this section, we discuss how to declare operations associated with
fixed-point types in generic packages. We start by adapting the examples
used for floating-point in the previous section, so that fixed-point types
are used instead.

First, we define a package that implements a new fixed-point type called
Fixed. For this type, we override the addition operator with an
implementation that saturates the value after the actual addition. This is
the package specification:


fixed_types.ads

 1package Fixed_Types is
 2
 3   F_Depth : constant Positive := 16;
 4   F_Delta     : constant :=
 5                   1.0 / 2.0 ** (F_Depth - 1);
 6
 7   type Fixed is
 8     delta F_Delta
 9     range -1.0 .. 1.0 - F_Delta
10       with Size => F_Depth;
11
12   function "+" (A, B : Fixed) return Fixed;
13
14end Fixed_Types;







In the package body, we make use of the Gen_Fixed_Ops package that
we discussed earlier in the previous section. By instantiating the
Gen_Fixed_Ops package, we can use the Sat_Add function in
the implementation of the saturating addition operator.


fixed_types.adb

 1with Gen_Fixed_Ops;
 2
 3package body Fixed_Types is
 4
 5   package Fixed_Ops is new
 6     Gen_Fixed_Ops (F => Fixed);
 7   use Fixed_Ops;
 8
 9   function "+" (A, B : Fixed) return Fixed is
10   begin
11      return R : Fixed do
12         R := Sat_Add (A, B);
13      end return;
14   end "+";
15
16end Fixed_Types;







Next, we create a package containing a procedure that accumulates
fixed-point values. This is the package specification:


gen_fixed_acc.ads

1generic
2   type F is delta <>;
3   with function "+" (A : F; B : F)
4                      return F is <>;
5package Gen_Fixed_Acc is
6   procedure Acc (V : in out F; S : F);
7end Gen_Fixed_Acc;







In this specification, we declare a formal function for the addition
operator using with function. This operator is used by the
Acc procedure in the package body, which we show next.


gen_fixed_acc.adb

1package body Gen_Fixed_Acc is
2
3   procedure Acc (V : in out F; S : F) is
4   begin
5      V := V + S;
6   end Acc;
7
8end Gen_Fixed_Acc;







This is a test application that makes use of the Fixed_Types and
Gen_Fixed_Acc packages.


show_fixed_overriding.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Fixed_Types; use Fixed_Types;
 4with Gen_Fixed_Acc;
 5
 6procedure Show_Fixed_Overriding is
 7
 8   package Fixed_Ops is new
 9     Gen_Fixed_Acc (F => Fixed);
10   use Fixed_Ops;
11
12   F1 : Fixed := -0.5;
13
14begin
15   Put_Line ("F1:  " & Fixed'Image (F1));
16
17   Acc (F1, -0.9);
18
19   Put_Line ("F1:  " & Fixed'Image (F1));
20end Show_Fixed_Overriding;







We create an instance of the Gen_Fixed_Acc by using the
Fixed type declared in the Fixed_Types package. We then
call Acc to accumulate and saturate a fixed-point variable.

As mentioned earlier in the section on generic floating-point types, the
main reason for the formal subprogram in the specification of the
Gen_Fixed_Acc package is that it prevents the compiler from
selecting the standard operator. Alternatively, we could make use of the
Fixed_Types package directly in the generic package:

with Fixed_Types; use Fixed_Types;

generic
   type F is new Fixed;
package Gen_Fixed_Acc is
   procedure Acc (V : in out F; S : F);
end Gen_Fixed_Acc;
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Relevant topics


	Generic Renaming Declarations[#7]
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Object-Oriented Programming


Primitives



Overriding indicators


Relevant topics


	Briefly discuss overriding and not overriding mentioned
in
Overriding Indicators[#1]


	Mention that not overriding is not recommended.








Abstract types and subprograms



Interfaces


Null records vs. interfaces

Earlier on in the course, we discussed how to use null
records to create a prototype. We could also consider using interfaces instead.
However, as we've just learned, the consequences are that:


	we can only create an API for the package specification, but we cannot use
that interface type in an application in the same way as we do with null
records;


	we're forced to use object-oriented programming — which, depending on
our goal, might be more complex than actually needed.




Let's revisit a previous example from the section on null records:


devices.ads

 1package Devices is
 2
 3   type Device is private;
 4
 5   function Create
 6     (Active : Boolean)
 7      return Device;
 8
 9   procedure Reset
10     (D : out Device) is null;
11
12   procedure Process
13     (D : in out Device) is null;
14
15   procedure Activate
16     (D : in out Device) is null;
17
18   procedure Deactivate
19     (D : in out Device) is null;
20
21private
22
23   type Device is null record;
24
25   function Create
26     (Active : Boolean)
27      return Device is (null record);
28
29end Devices;







We can easily rewrite this specification using interfaces:


devices.ads

 1package Devices is
 2
 3   type Device is interface;
 4
 5   function Create
 6     (Active : Boolean)
 7      return Device is abstract;
 8
 9   procedure Reset
10     (D : out Device) is null;
11
12   procedure Process
13     (D : in out Device) is null;
14
15   procedure Activate
16     (D : in out Device) is null;
17
18   procedure Deactivate
19     (D : in out Device) is null;
20
21end Devices;







These are the only changes we made:


	Device is now an interface, and


	Create is now an abstract function.




Keep in mind, however, that a null record isn't an abstract type, even though
it looks abstract (as it doesn't store any information). This contrasts
with interfaces, which are abstract and therefore more restricted. For example,
as indicated above, we cannot use the interface from the Devices package
in an application, as we cannot declare objects of an abstract type. The
following application — which works fine when Device is a null
record — doesn't compile when Device is an interface:


show_device.adb

 1with Devices; use Devices;
 2
 3procedure Show_Device is
 4   A : Device;
 5begin
 6   A := Create (Active => True);
 7   Process (A);
 8   Deactivate (A);
 9   Activate (A);
10   Reset (A);
11end Show_Device;







A possible compromise is, of course, to reintroduce null records in our
specification as a derived type. For example:


devices.ads

 1package Devices is
 2
 3   type Abstract_Device is interface;
 4
 5   function Create
 6     (Active : Boolean)
 7      return Abstract_Device is abstract;
 8
 9   procedure Reset
10     (D : out Abstract_Device) is null;
11
12   procedure Process
13     (D : in out Abstract_Device) is null;
14
15   procedure Activate
16     (D : in out Abstract_Device) is null;
17
18   procedure Deactivate
19     (D : in out Abstract_Device) is null;
20
21   type Device is new
22     Abstract_Device with private;
23
24private
25
26   type Device is new
27     Abstract_Device with null record;
28
29   function Create
30     (Active : Boolean)
31      return Device is (null record);
32
33end Devices;








show_device.adb

 1with Devices; use Devices;
 2
 3procedure Show_Device is
 4   A : Device;
 5begin
 6   A := Create (Active => True);
 7   Process (A);
 8   Deactivate (A);
 9   Activate (A);
10   Reset (A);
11end Show_Device;







Now, our interface was renamed to Abstract_Device and we're just using
it to specify our API. We derive the Device from this interface type
(Abstract_Device) as a null record. In a prototype — such as the
Show_Device procedure — we can use the null record as expected.




Example: Extending Interfaces


Note

This section was originally written by Quentin Ochem and published as
Gem #48: Extending Interfaces in Ada 2005[#2].




Using new interfaces

Let's assume we have the following interface:


animals.ads

1package Animals is
2
3   type Animal is interface;
4
5   procedure Eat (Beast : in out Animal)
6     is abstract;
7
8end Animals;







All types implementing the Animal interface have to override the
Eat operation:


animals-cats.ads

1package Animals.Cats is
2
3   type Cat is new Animal with null record;
4
5   procedure Eat (Beast : in out Cat);
6
7end Animals.Cats;








animals-cats.adb

1package body Animals.Cats is
2
3   procedure Eat (Beast : in out Cat) is
4   begin
5      --  no implementation yet
6      null;
7   end Eat;
8
9end Animals.Cats;








show_cat.adb

1with Animals.Cats; use Animals.Cats;
2
3procedure Show_Cat is
4   C : Cat;
5begin
6   C.Eat;
7end Show_Cat;







Now, after a while, the developer of Animal might feel the need to
let animals eat something specific, and would like to add the following
operation to the interface:

procedure Eat (Beast : in out Animal;
               Thing : in out A_Thing);





Unfortunately, there are hundreds of species of animals implementing this
interface, and having to migrate everything will be too painful. Not to
mention that most of them don't even need this new way of eating ---
they're just happy eating some random amount of anonymous food. Extending
this interface is just not the way to go --- so the extension has to be
done separately, in a new interface, such as:


animals-extensions.ads

 1package Animals.Extensions is
 2
 3   type Animal_Extension_1 is interface;
 4
 5   type A_Thing is null record;
 6   --  no implementation yet
 7
 8   procedure Eat
 9     (Beast : in out Animal_Extension_1;
10      Thing : in out A_Thing) is abstract;
11
12end Animals.Extensions;







So now, Animals that need to rely on this new way of eating will
need to be declared, such as:


animals-cats.ads

 1with Animals.Extensions; use Animals.Extensions;
 2
 3package Animals.Cats is
 4
 5   type Cat is new
 6     Animal and Animal_Extension_1
 7       with null record;
 8
 9   procedure Eat
10     (Beast : in out Cat);
11
12   procedure Eat
13     (Beast : in out Cat;
14      Thing : in out A_Thing);
15
16end Animals.Cats;








animals-cats.adb

 1package body Animals.Cats is
 2
 3   procedure Eat (Beast : in out Cat) is
 4   begin
 5      --  no implementation yet
 6      null;
 7   end Eat;
 8
 9   procedure Eat (Beast : in out Cat;
10                  Thing : in out A_Thing) is
11   begin
12      --  no implementation yet
13      null;
14   end Eat;
15
16end Animals.Cats;








show_cat.adb

1with Animals.Cats;       use Animals.Cats;
2with Animals.Extensions; use Animals.Extensions;
3
4procedure Show_Cat is
5   C : Cat;
6   T : A_Thing;
7begin
8   C.Eat (T);
9end Show_Cat;







Note that it's even possible to enforce the fact that an extension of
Animal has to be an Animal in the first place, by writing:

type Animal_Extension_1 is interface and Animal;





which will lead to a simpler declaration for type Cat, as there's
no longer a need to extend from two interfaces:

type Cat is new
  Animal_Extension_1 with null record;





The rest of the code will remain completely untouched thanks to this
change. Calls to the new subprogram will require some additional amount of
work though, as we'll first have to check that the type of an
Animal that we're dealing with is indeed a descendant of
Animal_Extension_1, and perform a conversion to that interface's
class, before calling the new version of Eat:


show_animal_eat.adb

 1with Animals;            use Animals;
 2with Animals.Cats;       use Animals.Cats;
 3with Animals.Extensions; use Animals.Extensions;
 4
 5procedure Show_Animal_Eat is
 6   C : Cat;
 7   T : A_Thing;
 8
 9   A : Animal'Class := C;
10begin
11   if A in Animal_Extension_1'Class then
12      Animal_Extension_1'Class (A).Eat (T);
13   end if;
14end Show_Animal_Eat;









Using null procedures

Since Ada 2005, we have the notion of null procedures. As
discussed previously, a null procedure is
a procedure that is declared using is null and logically has an
empty body. Fortunately, null procedures are allowed in interface
definitions — they define the default behavior of such a subprogram as
doing nothing. Back to the Animal example, the programmer can
declare the interface's Eat primitive as follows:

procedure Eat (Beast : in out Animal;
               Thing : in out A_Thing) is null;





This is adapted code:


animals.ads

 1package Animals is
 2
 3   type Animal is interface;
 4
 5   type A_Thing is null record;
 6   --  no implementation yet
 7
 8   procedure Eat
 9     (Beast : in out Animal) is abstract;
10
11   procedure Eat
12     (Beast : in out Animal;
13      Thing : in out A_Thing) is abstract;
14
15end Animals;








animals-cats.ads

 1package Animals.Cats is
 2
 3   type Cat is new Animal with null record;
 4
 5   procedure Eat (Beast : in out Cat);
 6
 7   procedure Eat (Beast : in out Cat;
 8                  Thing : in out A_Thing);
 9
10end Animals.Cats;








animals-cats.adb

 1package body Animals.Cats is
 2
 3   procedure Eat (Beast : in out Cat) is
 4   begin
 5      --  no implementation yet
 6      null;
 7   end Eat;
 8
 9   procedure Eat (Beast : in out Cat;
10                  Thing : in out A_Thing) is
11   begin
12      --  no implementation yet
13      null;
14   end Eat;
15
16end Animals.Cats;







All of our hundreds of kinds of animals will automatically inherit from
this procedure, but won't have to implement it. The addition of this
declaration does not break source compatibility with the contract of the
Animal interface. Moreover, as no new types are involved, it's a
lot easier to make calls to this subprogram --- no more need to check
membership or write a type conversion, and we can just write:


show_animal_eat.adb

 1with Animals;            use Animals;
 2with Animals.Cats;       use Animals.Cats;
 3
 4procedure Show_Animal_Eat is
 5   C : Cat;
 6   T : A_Thing;
 7
 8   A : Animal'Class := C;
 9begin
10   A.Eat (T);
11end Show_Animal_Eat;







which will execute as a no-op except for animals that have explicitly
overridden the primitive.




Calling inherited subprograms


Note

This section was originally written by Emmanuel Briot and published as blog
post
Calling inherited subprograms in Ada[#3].



In object-oriented code, it is often the case that we need to call
inherited subprograms. Some programing languages make it very easy by
introducing a new keyword super (although this approach has its limits
for languages that allow multiple inheritance of implementation).

In Ada, things are slightly more complicated. Let's take an example, using
the traditional geometric classes that are often found in text books:


geometric_forms.ads

 1package Geometric_Forms is
 2
 3   type Polygon is tagged private;
 4   procedure Initialize (Self : in out Polygon);
 5
 6   type Square is new Polygon with private;
 7
 8   overriding
 9   procedure Initialize (Self : in out Square);
10
11private
12
13   type Polygon is tagged null record;
14   type Square is new
15     Polygon with null record;
16
17end Geometric_Forms;







Let's assume now that Square's Initialize needs to call
Polygon's Initialize, in addition to doing a number of
square specific setups. To do this, we need to use type conversions to
change the view of Self, so that the compiler statically knows
which Initialize to call. The code thus looks like:


geometric_forms.adb

 1package body Geometric_Forms is
 2
 3   procedure Initialize (Self : in out Polygon) is
 4   begin
 5      null;
 6   end Initialize;
 7
 8   overriding
 9   procedure Initialize (Self : in out Square) is
10   begin
11      Initialize (Polygon (Self));
12      --  ^^^^^^^^^^^^^^^^^^^^^^^^
13      --  calling inherited procedure
14
15      --  ... square-specific setups
16   end Initialize;
17
18end Geometric_Forms;








show_geometric_forms.adb

1with Geometric_Forms; use Geometric_Forms;
2
3procedure Show_Geometric_Forms is
4   S : Square;
5begin
6   S.Initialize;
7end Show_Geometric_Forms;







The main issue with this code (apart from its relative lack of
readability) is the need to hard-code the name of the ancestor class. If
we suddenly realize that a Square is after all a special case of a
Rectangle, and thus decide to add the new rectangle class, the code
needs to be changed (and not just in the spec), as in:


geometric_forms.ads

 1package Geometric_Forms is
 2
 3   type Polygon is tagged private;
 4   procedure Initialize (Self : in out Polygon);
 5
 6   type Rectangle is new
 7     Polygon with private;       --  NEW
 8
 9   overriding
10   procedure Initialize
11     (Self : in out Rectangle);  --  NEW
12
13   type Square is new
14     Rectangle with private;     --  MODIFIED
15
16   overriding
17   procedure Initialize
18     (Self : in out Square);
19
20private
21
22   type Polygon is tagged null record;
23   type Rectangle is new
24     Polygon with null record;
25   type Square is new
26     Rectangle with null record;
27
28end Geometric_Forms;








geometric_forms.adb

 1package body Geometric_Forms is
 2
 3   procedure Initialize (Self : in out Polygon) is
 4   begin
 5      null;
 6   end Initialize;
 7
 8   overriding
 9   procedure Initialize
10     (Self : in out Rectangle)
11   is
12   begin
13      Initialize (Polygon (Self));
14      --  ^^^^^^^^^^^^^^^^^^^^^^^^
15      --  calling inherited procedure
16
17      --  ... rectangle-specific setups
18   end Initialize;
19
20   procedure Initialize (Self : in out Square) is
21   begin
22      Initialize (Rectangle (Self));  --  MODIFIED
23      --  ... square-specific setups
24   end Initialize;
25
26end Geometric_Forms;








show_geometric_forms.adb

1with Geometric_Forms; use Geometric_Forms;
2
3procedure Show_Geometric_Forms is
4   S : Square;
5begin
6   S.Initialize;
7end Show_Geometric_Forms;







The last change --- in the implementation of the Initialize
procedure of the Square type --- is easy to forget when one
modifies the inheritance tree, and its omission would result in not
initializing the Rectangle specific data.

Let's look into how the code should best be organized to limit the risks
here. An interesting idiom is the one that makes use of parent subtypes.
The trick is to always define a Parent subtype every time one
extends a type, and use that subtype when calling the inherited procedure.
Here is a full example:


geo_forms.ads

1package Geo_Forms with Pure is
2
3end Geo_Forms;








geo_forms-polygons.ads

 1package Geo_Forms.Polygons is
 2
 3   type Polygon is tagged private;
 4   procedure Initialize (Self : in out Polygon);
 5
 6private
 7
 8   type Polygon is tagged null record;
 9
10end Geo_Forms.Polygons;








geo_forms-rectangles.ads

 1with Geo_Forms.Polygons;
 2
 3package Geo_Forms.Rectangles is
 4
 5   subtype Parent is
 6     Geo_Forms.Polygons.Polygon;
 7   type Rectangle is new
 8     Parent with private;
 9
10   overriding
11   procedure Initialize (Self : in out Rectangle);
12
13private
14
15   type Rectangle is new Parent with null record;
16
17end Geo_Forms.Rectangles;








geo_forms-squares.ads

 1with Geo_Forms.Rectangles;
 2
 3package Geo_Forms.Squares is
 4
 5   subtype Parent is
 6     Geo_Forms.Rectangles.Rectangle;
 7
 8   type Square is new Parent with private;
 9
10   overriding
11   procedure Initialize (Self : in out Square);
12
13private
14
15   type Square is new Parent with null record;
16
17end Geo_Forms.Squares;








geo_forms-polygons.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Geo_Forms.Polygons is
 4
 5   procedure Initialize (Self : in out Polygon) is
 6   begin
 7      Put_Line ("Initializing Polygon type...");
 8   end Initialize;
 9
10end Geo_Forms.Polygons;








geo_forms-rectangles.adb

 1with Ada.Text_IO;        use Ada.Text_IO;
 2with Geo_Forms.Polygons; use Geo_Forms.Polygons;
 3
 4package body Geo_Forms.Rectangles is
 5
 6   overriding
 7   procedure Initialize (Self : in out Rectangle)
 8   is
 9   begin
10      Initialize (Parent (Self));
11
12      --  ... rectangle-specific setups
13      Put_Line ("Initializing Rectangle type...");
14   end Initialize;
15
16end Geo_Forms.Rectangles;








geo_forms-squares.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Geo_Forms.Rectangles;
 4use  Geo_Forms.Rectangles;
 5
 6package body Geo_Forms.Squares is
 7
 8   procedure Initialize (Self : in out Square) is
 9   begin
10      Initialize (Parent (Self));
11
12      --  ... square-specific setups
13      Put_Line ("Initializing Square type...");
14   end Initialize;
15
16end Geo_Forms.Squares;








show_geo_forms.adb

 1with Ada.Text_IO;       use Ada.Text_IO;
 2with Geo_Forms.Squares; use Geo_Forms.Squares;
 3
 4procedure Show_Geo_Forms is
 5   S : Square;
 6begin
 7   Put_Line ("Initialize Square object:");
 8
 9   S.Initialize;
10end Show_Geo_Forms;







Now, if we want to add an extra Parallelogram class between
Polygon and Rectangle, we just need to change the definition
of the Parent subtype in the Rectangles package, and no
change is needed for the body.

This is not a new syntax nor a new idiom, but is worth considering it when
one is developing a complex hierarchy of types, or at least a hierarchy
that is likely to change regularly in the future.
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Strong typing

In this chapter, we discuss the advantages of strong typing and how it can
be used to avoid common implementation and maintenance issues.


Type-based security


Note

This section was originally written by Yannick Moy and published as
Gem #82: Type-Based Security 1[#1] and
Gem #83: Type-Based Security 2[#2].



The notions of tainted data and trusted data usually refer to data coming
from the user vs. data coming from the application. Tainting is viral, in
that any result of a computation where one of the operands is tainted
becomes tainted too.

Various C/C++ static analyzers provide checkers for tainted data that help
find bugs where data from the user serves to compute the size of an
allocation, so that an attacker could use this to trigger a buffer
overflow leading to an Elevation of Privilege (EoP) attack.

In Ada, the compiler can provide the guarantee that no such bugs have been
introduced by accident (although you can still bypass the rule if you
really want to, for example by using Unchecked_Conversion or
address clause overlays), provided different types are used for tainted
and trusted data, with no run-time penalty. This can be done with many
types of data, including basic types like integers.

Let's say tainted data is of an integer type. The basic idea is to derive
the trusted type from the tainted one, and to provide a function Value to
get to the raw data inside a trusted value, like the following:


taint.ads

1package Taint is
2
3   type Trusted_Value is new Integer;
4
5   function Value (V : Trusted_Value)
6                   return Integer;
7   pragma Inline (Value);
8
9end Taint;







Notice that the implementation of Value is just a type conversion:


taint.adb

1package body Taint is
2
3   function Value (V : Trusted_Value)
4                   return Integer is
5   begin
6      return Integer (V);
7   end Value;
8
9end Taint;







Then, make sure the sensitive program uses trusted data:


sensitive.adb

1with Taint; use Taint;
2
3procedure Sensitive (X : Trusted_Value) is
4begin
5   null; --  Do something sensitive with value X
6end Sensitive;







Let's try to pass in data from the user to the sensitive program:


main.adb

 1with Taint;
 2with Sensitive;
 3
 4procedure Main is
 5
 6   procedure Bad (Some_Value : Integer) is
 7   begin
 8      Sensitive (Some_Value);
 9   end Bad;
10
11   A : Integer := 0;
12begin
13   Bad (A);
14end Main;







The compiler returns with a type error.

Now, this does not prevent us from doing useful computations on trusted
data as easily as on tainted data, including initialization with literals,
case statements, array indexing, etc.


main.adb

 1with Taint; use Taint;
 2with Sensitive;
 3
 4procedure Main is
 5   Max_Value : constant := 100;
 6   X : Trusted_Value := Max_Value;
 7begin
 8   X := X + 1; --  Perform any computations on X
 9   Sensitive (X);
10end Main;







Because Trusted_Value is a type derived from the tainted type
(Integer), all operations allowed on tainted data are also allowed
on trusted data, but operations mixing them are not allowed.

Be aware that nothing prevents the program itself from converting between
tainted data and trusted data freely, but this requires inserting an
explicit conversion, which can be spotted during code reviews.

To completely prevent such unintended conversions (say, to facilitate
maintenance), the type used for trusted data must be made private, so that
only the package which defines it can convert to and from it. With
Trusted_Value being private, we should also provide a corresponding
function for each literal which we used previously, as well as the
operations that we'd like to allow on trusted values (note that for
efficiency all operations could be inlined):


taint.ads

 1package Taint is
 2
 3   type Trusted_Value is private;
 4
 5   function Value (V : Trusted_Value)
 6                   return Integer;
 7
 8   function Trusted_1 return Trusted_Value;
 9   function Trusted_100 return Trusted_Value;
10
11   function "+" (V, W : Trusted_Value)
12                 return Trusted_Value;
13
14private
15
16   type Trusted_Value is new Integer;
17
18end Taint;







The new implementation is as expected:


taint.adb

 1package body Taint is
 2
 3   function Value (V : Trusted_Value)
 4                   return Integer is
 5   begin
 6      return Integer (V);
 7   end Value;
 8
 9   function Trusted_1 return Trusted_Value is
10   begin
11      return 1;
12   end Trusted_1;
13
14   function Trusted_100 return Trusted_Value is
15   begin
16      return 100;
17   end Trusted_100;
18
19   function "+" (V, W : Trusted_Value)
20                 return Trusted_Value is
21   begin
22      return Trusted_Value (Integer (V) +
23                            Integer (W));
24   end "+";
25
26end Taint;







Of course, the client now needs to be adapted to this new interface:


sensitive.ads

1with Taint; use Taint;
2procedure Sensitive (X : Trusted_Value);








sensitive.adb

1procedure Sensitive (X : Trusted_Value) is
2begin
3   --  Missing implementation!
4   null;
5end Sensitive;








good.adb

 1with Taint; use Taint;
 2with Sensitive;
 3
 4procedure Good is
 5   X : Trusted_Value := Trusted_100;
 6begin
 7   X := X + Trusted_1;
 8   --  ^^^^^^^^^^^^^^^
 9   --  Perform any computations on X
10
11   Sensitive (X);
12end Good;







That's it! No errors can result in tainted data being accidentally passed
by the user where trusted data is expected, and future maintainers of the
code won't be tempted to insert conversions when the compiler complains.

Input validation consists of checking a set of properties on the input
which guarantee it is well-formed. This usually involves excluding a set
of ill-formed inputs (black-list) or matching the input against an
exhaustive set of well-formed patterns (white-list).

Here, we consider the task of validating an input for inclusion in an SQL
command. This is a well-known defense against SQL injection attacks, where
an attacker passes in a specially crafted string that is interpreted as a
command rather than a plain string when executing the initial SQL command.

The basic idea is to define a new type SQL_Input derived from type
String. Function Validate checks that the input is properly
validated and fails if not. Function Valid_String returns the raw
data inside a validated string, as follows:


inputs.ads

 1package Inputs is
 2
 3   type SQL_Input is new String;
 4
 5   function Validate (Input : String)
 6                      return SQL_Input;
 7
 8   function Valid_String (Input : SQL_Input)
 9                          return String;
10
11end Inputs;







The implementation of Validate simply checks that the input string
does not contain a dangerous character before returning it as an
SQL_Input, while Valid_String is a simple type conversion:


inputs.adb

 1with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 2with Ada.Strings.Maps;  use Ada.Strings.Maps;
 3
 4package body Inputs is
 5
 6   Dangerous_Characters : constant
 7     Character_Set := To_Set ("""*^';&><</");
 8
 9   function Validate (Input : String)
10                      return SQL_Input is
11   begin
12      if Index (Input,
13                Dangerous_Characters) /= 0
14      then
15         raise Constraint_Error
16           with "Invalid input "
17                & Input
18                & " for an SQL query ";
19      else
20         return SQL_Input (Input);
21      end if;
22   end Validate;
23
24   function Valid_String (Input : SQL_Input)
25                          return String is
26   begin
27      return String (Input);
28   end Valid_String;
29
30end Inputs;







Now, this does not prevent future uses of such type conversions in the
program, whether malicious or unintended. To guard against such
possibilities, we must make type SQL_Input private. To make sure we
do not ourselves inadvertently convert an input string into a valid one in
the implementation of package Inputs, we use this opportunity to
make SQL_Input a discriminated record parameterized by the
validation status.


inputs.ads

 1with Ada.Strings.Unbounded;
 2use  Ada.Strings.Unbounded;
 3
 4package Inputs is
 5
 6   type SQL_Input (<>) is private;
 7
 8   function Validate (Input : String)
 9                      return SQL_Input;
10
11   function Valid_String (Input : SQL_Input)
12                          return String;
13
14   function Is_Valid (Input : SQL_Input)
15                      return Boolean;
16
17private
18
19   type SQL_Input (Validated : Boolean) is
20      record
21         case Validated is
22            when True =>
23               Valid_Input : Unbounded_String;
24            when False =>
25               Raw_Input   : Unbounded_String;
26         end case;
27      end record;
28
29end Inputs;







Each time we access field Valid_Input, a discriminant check will be
performed to ensure that the operand of type SQL_Input has been
validated. Observe the use of Unbounded_String for the type of the
input component, which is more convenient and flexible than using a
constrained string.

Note in the implementation of Validate, that instead of raising an
exception when the string cannot be validated, as in the first
implementation, here we create corresponding validated or invalid input
values based on the result of the check against dangerous characters.
Also, an Is_Valid function has been added to allow clients to query
validity of an SQL_Input value.


inputs.adb

 1with Ada.Strings.Fixed; use Ada.Strings.Fixed;
 2with Ada.Strings.Maps;  use Ada.Strings.Maps;
 3
 4package body Inputs is
 5
 6   Dangerous_Characters : constant
 7     Character_Set := To_Set ("""*^';&><</");
 8
 9   function Validate (Input : String)
10                      return SQL_Input is
11      Local_Input : constant Unbounded_String :=
12                      To_Unbounded_String (Input);
13   begin
14      if Index (Input,
15                Dangerous_Characters) /= 0
16      then
17         return (Validated   => False,
18                 Raw_Input   => Local_Input);
19      else
20         return (Validated   => True,
21                 Valid_Input => Local_Input);
22      end if;
23   end Validate;
24
25   function Valid_String (Input : SQL_Input)
26                          return String is
27   begin
28      return To_String (Input.Valid_Input);
29   end Valid_String;
30
31   function Is_Valid (Input : SQL_Input)
32                      return Boolean is
33   begin
34      return Input.Validated;
35   end Is_Valid;
36
37end Inputs;







That's it! As long as this interface is used, no errors can result in
improper input being interpreted as a command, while ensuring that future
maintainers of the code won't inadvertently be able to insert
inappropriate conversions.

Of course, this minimal interface does not really provide anything other
than the validation of the input. Simply having an Is_Valid
function to tell whether a string is valid input data would seem to give
you much the same functionality. However, you can now safely extend this
package with additional capabilities, such as transformations on valid SQL
inputs (for example, to optimize queries before sending them to the
database), or to resolve queries faster using a local cache, and so forth.
By using the private encapsulation, you are guaranteed that no client
package will tamper with the validity of the SQL inputs you are
manipulating.

Incidentally, the similar but distinct problem of input sanitization,
where possibly invalid data is transformed into something that is known
valid prior to use, can be handled in the same way.



Example: Table access

In this section, we discuss an application that accesses a two-dimensional
table. We first look into a typical implementation, and then discuss how
to improve it with better use of strong typing.


Typical implementation

Let's look at an application that declares a two-dimensional lookup table,
retrieves a value from it an displays this value.


show_tab_access.adb

 1with Ada.Text_IO; use  Ada.Text_IO;
 2
 3procedure Show_Tab_Access is
 4
 5   Tab : array (1 .. 5, 1 .. 10) of Float
 6     := ((0.50, 0.73, 0.22, 0.66, 0.64,
 7          0.20, 0.73, 0.22, 0.66, 0.64),
 8         (0.60, 0.23, 0.56, 0.27, 0.72,
 9          0.36, 0.27, 0.18, 0.18, 0.08),
10         (0.20, 0.56, 0.74, 0.43, 0.72,
11          0.19, 0.46, 0.45, 0.25, 0.49),
12         (0.75, 0.88, 0.29, 0.08, 0.17,
13          0.96, 0.23, 0.83, 0.89, 0.97),
14         (0.18, 0.97, 0.82, 0.86, 0.96,
15          0.24, 0.84, 0.83, 0.14, 0.26));
16
17   X, Y : Positive;
18   V    : Float;
19
20begin
21   X := 1;
22   Y := 5;
23   V := Tab (X, Y);
24
25   Put_Line (Float'Image (V));
26end Show_Tab_Access;







In this application, we use X and Y as indices to access the
Tab table. We store the value in V and display it.

In principle, there is nothing wrong with this implementation. Also, we're
already making use of strong typing here, since accessing an invalid
position of the array (say Tab (6, 25)) raises an exception.
However, in this application, we're assuming that X always refers
to the first dimension, while Y refers to the second dimension.
What happens, however, if we write Tab (Y, X)? In the application
above, this would still work because Tab (5, 1) is in the table's
range. Even though this works fine here, it's not the expected behavior.
In the next section, we'll look into strategies to make better use of
strong typing to avoid this problem.

One could argue that the problem we've just described doesn't happen to
competent developers, who are expected to be careful. While this might be
true for the simple application we're discussing here, complex systems
can be much more complicated to understand: they might include multiple
tables and multiple indices for example. In this case, even competent
developers might make use of wrong indices to access tables. Fortunately,
Ada provides means to avoid this problem.



Using stronger typing

In the example above, we make use of the Positive type, which is
already a constrained type: we're avoiding accessing the Tab table
using an index with negative values or zero. But we still may use indices
that are out-of-range in the positive range, or switch the indices, as in
the Tab (Y, X) example we mentioned previously. These problems can
be avoided by defining range types for each dimension. This is the updated
implementation:


show_tab_access.adb

 1with Ada.Text_IO; use  Ada.Text_IO;
 2
 3procedure Show_Tab_Access is
 4
 5   type X_Range is range 1 .. 5;
 6   type Y_Range is range 1 .. 10;
 7
 8   Tab : array (X_Range, Y_Range) of Float
 9     := ((0.50, 0.73, 0.22, 0.66, 0.64,
10          0.20, 0.73, 0.22, 0.66, 0.64),
11         (0.60, 0.23, 0.56, 0.27, 0.72,
12          0.36, 0.27, 0.18, 0.18, 0.08),
13         (0.20, 0.56, 0.74, 0.43, 0.72,
14          0.19, 0.46, 0.45, 0.25, 0.49),
15         (0.75, 0.88, 0.29, 0.08, 0.17,
16          0.96, 0.23, 0.83, 0.89, 0.97),
17         (0.18, 0.97, 0.82, 0.86, 0.96,
18          0.24, 0.84, 0.83, 0.14, 0.26));
19
20   X : X_Range;
21   Y : Y_Range;
22   V : Float;
23
24begin
25   X := 1;
26   Y := 5;
27   V := Tab (X, Y);
28
29   Put_Line (Float'Image (V));
30end Show_Tab_Access;







Now, we not only avoid mistakes like Tab (Y, X), but we also detect
them at compile time! This might decrease development time, since we don't
need to run the application in order to check for those issues.

Also, maintenance becomes easier as well. Because we're explicitly stating
the allowed ranges for X and Y, developers can know how to
avoid constraint issues when accessing the Tab table. We're also
formally indicating the expected behavior. For example, because we declare
X to be of X_Range type, and that type is used in the first
dimension of Tab, we're documenting — using the syntax of the
Ada language — that X is supposed to be used to access the
first dimension of Tab. Based on this information, developers that
need to maintain this application can immediately identify the purpose of
X and use the variable accordingly.




Example: Multiple indices

In this section, we discuss another example where the use of strong typing
is relevant. Let's consider an application with the following
requirements:


	The application receives the transmission of chunks of information.


	Each chunk contains two floating-point coefficients.


	Also, these chunks are received out of order, so that the chunk itself
includes an index indicating its position in an ordered array.






	The application also receives a list of indices for the ordered array
of chunks. This list — a so-called selector — is used to
select two chunks from the array of ordered chunks.


	Due to external constraints, the application shall use the unordered
array; creating an array of ordered chunks shall be avoided.


	A function that returns an ordered array of chunks shall be available
for testing purposes only.


	A function that returns the selected chunks shall be available for
testing purposes only.


	A function that returns a mapping from the index of ordered chunks to
the index of unordered chunks must be available.








For example, consider the following picture containing input chunks and a
selector:

[image: digraph {     node [shape=plaintext, fontcolor=black, fontsize=18];      "Selector:" [fontcolor=brown]     "Chunks:"   [fontcolor=brown]      "Selector:" -> "Mapping:" -> "Selected chunks:" ->         "Chunks:" -> "Ordered chunks:" [color=white];      node [shape=record,         height=0.75, width=6.00,         fontcolor=black, fontsize=12, fixedsize=true];      chunks [         label="{ <j1> v1=0.70 | v2=0.72 | <i1> idx=3} |\                { <j2> v1=0.20 | v2=0.15 | <i2> idx=1} |\                { <j3> v1=0.40 | v2=0.74 | <i3> idx=2} |\                { <j4> v1=0.80 | v2=0.26 | <i4> idx=4}",         color=brown,         fillcolor=gray95, style=filled];      ord_chunks [         label="{ <i1> v1=0.20 | v2=0.15 | idx=1} |\                { <i2> v1=0.40 | v2=0.74 | idx=2} |\                { <i3> v1=0.70 | v2=0.72 | idx=3} |\                { <i4> v1=0.80 | v2=0.26 | idx=4}",         color=black,         fillcolor=lightgrey, style=filled];      sel_chunks [         label="{ <j1> v1=0.40 | v2=0.74 | <i1> idx=2 } |\                { <j2> v1=0.70 | v2=0.72 | <i2> idx=3 }",         color=black,         fillcolor=lightgrey, style=filled];      mapping [         label="<i1> 2 | <i2> 3 | <i3> 1 | <i4> 4",         color=black,         fillcolor=lightgrey, style=filled];      selector [         label="<i1> 2 | <i2> 3",         color=brown,         fillcolor=gray95, style=filled];      { rank=same; "Chunks:";             chunks      }     { rank=same; "Ordered chunks:";     ord_chunks  }     { rank=same; "Mapping:";            mapping     }     { rank=same; "Selector:";           selector    }     { rank=same; "Selected chunks:";    sel_chunks  }      chunks:i1   -> ord_chunks:i3    [color=darkgoldenrod]     chunks:i2   -> ord_chunks:i1    [color=darkgoldenrod]     chunks:i3   -> ord_chunks:i2    [color=darkgoldenrod]     chunks:i4   -> ord_chunks:i4    [color=darkgoldenrod]      selector:i1 -> mapping:i2       [color=lightgrey]     selector:i2 -> mapping:i3       [color=lightgrey]      mapping:i3  -> chunks:j1        [color=lightblue]     mapping:i2  -> chunks:j3        [color=lightblue]      chunks:j3   -> sel_chunks:i1    [color=dodgerblue4]     chunks:j1   -> sel_chunks:i2    [color=dodgerblue4] }]

By using the mapping, we can select the correct chunks from the input
(unordered) chunks. Also, we may create an array of ordered chunks for
testing purposes.

Let's skip the discussion whether the design used in this application is
good or not and assume that all requirements listed above are set on stone
and can't be changed.


Typical implementation

This is a typical specification of the main package:


indirect_ordering.ads

 1package Indirect_Ordering is
 2
 3   type Chunk is record
 4      V1  : Float;
 5      V2  : Float;
 6      Idx : Positive;
 7   end record;
 8
 9   type Selector is
10     array (1 .. 2) of Positive;
11
12   type Mapping is
13     array (Positive range <>) of Positive;
14
15   type Chunks is
16     array (Positive range <>) of Chunk;
17
18   function Get_Mapping (C : Chunks)
19                         return Mapping;
20
21end Indirect_Ordering;








indirect_ordering.adb

 1package body Indirect_Ordering is
 2
 3   function Get_Mapping (C : Chunks)
 4                         return Mapping is
 5   begin
 6      return Map : Mapping (C'Range) do
 7         for J in C'Range loop
 8            Map (C (J).Idx) := J;
 9         end loop;
10      end return;
11   end Get_Mapping;
12
13end Indirect_Ordering;







And this is a typical specification of the Test child package:


indirect_ordering-test.ads

 1package Indirect_Ordering.Test is
 2
 3   function Get_Ordered_Chunks (C : Chunks)
 4                                return Chunks;
 5
 6   function Get_Selected_Chunks (C : Chunks;
 7                                 S : Selector)
 8                                 return Chunks;
 9
10end Indirect_Ordering.Test;








indirect_ordering-test.adb

 1package body Indirect_Ordering.Test is
 2
 3   function Get_Ordered_Chunks (C : Chunks)
 4                                return Chunks
 5   is
 6      Map : constant Mapping := Get_Mapping (C);
 7   begin
 8      return OC : Chunks (C'Range) do
 9         for I in OC'Range loop
10            OC (I) := C (Map (I));
11         end loop;
12      end return;
13   end Get_Ordered_Chunks;
14
15   function Get_Selected_Chunks (C : Chunks;
16                                 S : Selector)
17                                 return Chunks
18   is
19      Map : constant Mapping := Get_Mapping (C);
20   begin
21      return SC : Chunks (S'Range) do
22         for I in S'Range loop
23            SC (I) := C (Map (S (I)));
24         end loop;
25      end return;
26   end Get_Selected_Chunks;
27
28end Indirect_Ordering.Test;







Note that the information transmitted to the application might be
inconsistent due to errors in the transmission channel. For example, the
information from Idx (Chunk record) might be wrong. In a
real-world application, we should deal with those transmission errors.
However, for the discussion in this section, these problems are not
crucial, so that we can simplify the implementation by skipping error
handling.

Let's finally look at a test application that makes use of the package
we've just implemented. In order to simplify the discussion, we'll
initialize the array containing the unordered chunks and the selector
directly in the application instead of receiving input data from an
external source.


show_indirect_ordering.adb

 1with Indirect_Ordering; use Indirect_Ordering;
 2
 3with Ada.Text_IO; use  Ada.Text_IO;
 4
 5procedure Show_Indirect_Ordering is
 6
 7   function Init_Chunks return Chunks is
 8      C : Chunks (1 .. 4);
 9   begin
10      C (1) := (V1  => 0.70,
11                V2  => 0.72,
12                Idx => 3);
13      C (2) := (V1  => 0.20,
14                V2  => 0.15,
15                Idx => 1);
16      C (3) := (V1  => 0.40,
17                V2  => 0.74,
18                Idx => 2);
19      C (4) := (V1  => 0.80,
20                V2  => 0.26,
21                Idx => 4);
22
23      return C;
24   end Init_Chunks;
25
26   C  : Chunks            := Init_Chunks;
27   S  : constant Selector := (2, 3);
28   M  : constant Mapping  := Get_Mapping (C);
29
30begin
31   --  Loop over selector using original chunks
32   for I in S'Range loop
33      declare
34         C1 : Chunk := C (M (S (I)));
35      begin
36         Put_Line ("Selector #"
37                   & Positive'Image (I)
38                   & ": V1 = "
39                   & Float'Image (C1.V1));
40      end;
41   end loop;
42   New_Line;
43
44end Show_Indirect_Ordering;







In this line of the test application, we retrieve the chunk using the
index from the selector:

C1 : Chunk := C (M (S (I)));





Because C contains the unordered chunks and the index from S
refers to the ordered chunks, we need to map between the ordered index
and the unordered index. This is achieved by the mapping stored in
M.

If we'd use the ordered array of chunks, we could use the index from
S directly, as illustrated in the following procedure:


display_ordered_chunk.adb

 1with Indirect_Ordering;
 2use  Indirect_Ordering;
 3
 4with Indirect_Ordering.Test;
 5use  Indirect_Ordering.Test;
 6
 7with Ada.Text_IO; use Ada.Text_IO;
 8
 9procedure Display_Ordered_Chunk (C : Chunks;
10                                 S : Selector)
11is
12   OC : Chunks := Get_Ordered_Chunks (C);
13begin
14   --  Loop over selector using ordered chunks
15   for I in S'Range loop
16      declare
17         C1 : Chunk := OC (S (I));
18      begin
19         Put_Line ("Selector #"
20                   & Positive'Image (I)
21                   & ": V1 = "
22                   & Float'Image (C1.V1));
23      end;
24   end loop;
25   New_Line;
26end Display_Ordered_Chunk;







In this relatively simple application, we're already dealing with 3
indices:


	The index of the unordered chunks.


	The index of the ordered chunks.


	The index of the selector array.




The use of the wrong index to access an array can be a common source of
issues. This becomes even more problematic when the application is
extended and new features are implemented: the amount of arrays might
increase and developers need to be especially careful not to use the
wrong index.

For example, a mistake that developers can make when using the package
above is to skip the mapping and access the array of unordered chunks
directly with the index from the selector — i.e. C (S (I)) in
the test application above. Detecting this mistake requires extensive testing
and debugging, since both the array of unordered chunks and the array of
ordered chunks have the same range, so the corresponding indices can be
used interchangeably without raising constraint exceptions, even though
the behavior is not correct. Fortunately, we can use Ada's strong typing
to detect such issues in an early stage of the development.



Using stronger typing

In the previous implementation, we basically used the Positive type
for all indices. We can, however, declare individual types for each index
of the application. This is the updated specification of the main package:


indirect_ordering.ads

 1package Indirect_Ordering is
 2
 3   type Chunk_Index     is new Positive;
 4   type Ord_Chunk_Index is new Chunk_Index;
 5
 6   type Chunk is record
 7      V1  : Float;
 8      V2  : Float;
 9      Idx : Ord_Chunk_Index;
10   end record;
11
12   type Selector_Index is range 1 .. 2;
13
14   type Selector is
15     array (Selector_Index) of Ord_Chunk_Index;
16
17   type Mapping is
18     array (Ord_Chunk_Index range <>) of
19       Chunk_Index;
20
21   type Chunks is
22     array (Chunk_Index range <>) of Chunk;
23
24   function Get_Mapping (C : Chunks)
25                        return Mapping;
26
27end Indirect_Ordering;







By declaring these new types, we can avoid using the wrong index.
Moreover, we're documenting — using the syntax provided by the
language — which index is expected in each array or function from
the package.
This allows for better understanding of the package specification and
makes maintenance easier, as well as it helps when implementing new
features for the package.

This is the updated specification of the Test child package:


indirect_ordering-test.ads

 1package Indirect_Ordering.Test is
 2
 3   pragma Assertion_Policy
 4     (Dynamic_Predicate => Check);
 5
 6   type Ord_Chunks is
 7     array (Ord_Chunk_Index range <>) of Chunk
 8       with Dynamic_Predicate =>
 9         (for all I in Ord_Chunks'Range =>
10            Ord_Chunks (I).Idx = I);
11
12   type Sel_Chunks is
13     array (Selector_Index) of Chunk;
14
15   function Get_Ordered_Chunks
16     (C : Chunks)
17      return Ord_Chunks;
18
19   function Get_Selected_Chunks
20     (C : Chunks;
21      S : Selector)
22      return Sel_Chunks;
23
24end Indirect_Ordering.Test;







Note that we also declared a separate type for the array of ordered
chunks: Ord_Chunks. This is needed because the arrays uses a
different index (Ord_Chunk_Index) and therefore can't be the same
type as Chunks. For the same reason, we declared a separate type
for the array of selected chunks: Sel_Chunks.

As a side note, we're now able to include a Dynamic_Predicate to
Ord_Chunks that verifies that the index stored in the each chunk
matches the corresponding index of its position in the ordered array.

We also had to add a new private package that includes a function that
retrieves the range of an array of Chunk type — which are of
Chunk_Index type — and converts the range using the
Ord_Chunk_Index type.


indirect_ordering-cnvt.ads

 1private package Indirect_Ordering.Cnvt is
 2
 3   type Ord_Chunk_Range is record
 4      First : Ord_Chunk_Index;
 5      Last  : Ord_Chunk_Index;
 6   end record;
 7
 8   function Get_Ord_Chunk_Range
 9     (C : Chunks)
10      return Ord_Chunk_Range is
11        ((Ord_Chunk_Index (C'First),
12          Ord_Chunk_Index (C'Last)));
13
14end Indirect_Ordering.Cnvt;







This is needed for example in the Get_Mapping function, which has
to deal with indices of these two types. Although this makes the code a
little bit more verbose, it helps documenting the expected types in that
function.

This is the corresponding update to the body of the main package:


indirect_ordering.adb

 1with Indirect_Ordering.Cnvt;
 2use  Indirect_Ordering.Cnvt;
 3
 4package body Indirect_Ordering is
 5
 6   function Get_Mapping (C : Chunks)
 7                         return Mapping is
 8      R : constant Ord_Chunk_Range :=
 9            Get_Ord_Chunk_Range (C);
10   begin
11      return Map : Mapping (R.First .. R.Last) do
12         for J in C'Range loop
13            Map (C (J).Idx) := J;
14         end loop;
15      end return;
16   end Get_Mapping;
17
18end Indirect_Ordering;







This is the corresponding update to the body of the Test child
package:


indirect_ordering-test.adb

 1with Indirect_Ordering.Cnvt;
 2use  Indirect_Ordering.Cnvt;
 3
 4package body Indirect_Ordering.Test is
 5
 6   function Get_Ordered_Chunks
 7     (C : Chunks)
 8      return Ord_Chunks
 9   is
10      Map : constant Mapping := Get_Mapping (C);
11      R   : constant Ord_Chunk_Range :=
12              Get_Ord_Chunk_Range (C);
13   begin
14      return OC : Ord_Chunks (R.First .. R.Last)
15      do
16         for I in OC'Range loop
17            OC (I) := C (Map (I));
18         end loop;
19      end return;
20   end Get_Ordered_Chunks;
21
22   function Get_Selected_Chunks
23     (C : Chunks;
24      S : Selector)
25      return Sel_Chunks
26   is
27      Map : constant Mapping := Get_Mapping (C);
28   begin
29      return SC : Sel_Chunks do
30         for I in S'Range loop
31            SC (I) := C (Map (S (I)));
32         end loop;
33      end return;
34   end Get_Selected_Chunks;
35
36end Indirect_Ordering.Test;







This is the updated test application:


show_indirect_ordering.adb

 1with Indirect_Ordering; use Indirect_Ordering;
 2
 3with Ada.Text_IO; use  Ada.Text_IO;
 4
 5procedure Show_Indirect_Ordering is
 6
 7   function Init_Chunks return Chunks is
 8      C : Chunks (1 .. 4);
 9   begin
10      C (1) := (V1  => 0.70,
11                V2  => 0.72,
12                Idx => 3);
13      C (2) := (V1  => 0.20,
14                V2  => 0.15,
15                Idx => 1);
16      C (3) := (V1  => 0.40,
17                V2  => 0.74,
18                Idx => 2);
19      C (4) := (V1  => 0.80,
20                V2  => 0.26,
21                Idx => 4);
22
23      return C;
24   end Init_Chunks;
25
26   C  : Chunks            := Init_Chunks;
27   S  : constant Selector := (2, 3);
28   M  : constant Mapping  := Get_Mapping (C);
29
30begin
31   --  Loop over selector using original chunks
32   for I in S'Range loop
33      declare
34         C1 : Chunk := C (M (S (I)));
35      begin
36         Put_Line ("Selector #"
37                   & Selector_Index'Image (I)
38                   & ": V1 = "
39                   & Float'Image (C1.V1));
40      end;
41   end loop;
42   New_Line;
43
44end Show_Indirect_Ordering;







Apart from minor changes, the test application is basically still the
same. However, if we now change the following line:

C1 : Chunk := C (M (S (I)));





to

C1 : Chunk := C (S (I));





The compiler will gives us an error, telling us that it expected the
Chunk_Index type, but found the Ord_Chunk_Index instead.
By using Ada's strong typing, we're detecting issues at compile time
instead of having to rely on extensive testing and debugging to detect
them. Basically, this eliminates a whole category of potential bugs
and reduces development time. At the same time, we're improving the
documentation of the source-code and facilitating further improvements
to the application.




Discriminants


Relevant topics


	discriminants in the context of strong typing








Footnotes



[#1]
https://www.adacore.com/gems/gem-82



[#2]
https://www.adacore.com/gems/gem-83
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Legacy features


Nested packages

Nested packages, as the name suggests, are declared within a parent
package. This contrasts with child packages, which are declared independently.
For example, this would be a nested package for the Week package:


week.ads

 1package Week is
 2
 3   Mon : constant String := "Monday";
 4   Tue : constant String := "Tuesday";
 5   Wed : constant String := "Wednesday";
 6   Thu : constant String := "Thursday";
 7   Fri : constant String := "Friday";
 8   Sat : constant String := "Saturday";
 9   Sun : constant String := "Sunday";
10
11   package Nested is
12
13      function Get_First_Of_Week return String;
14
15   end Nested;
16
17end Week;







In contrast to child packages, we don't write
package body Week.Nested is ... to implement the package body of
Nested. Instead, the package body of Nested is nested in
the package body of the parent package Week:


week.adb

 1package body Week is
 2
 3   package body Nested is
 4
 5      function Get_First_Of_Week return String is
 6      begin
 7         return Mon;
 8      end Get_First_Of_Week;
 9
10   end Nested;
11
12end Week;







We can now use elements from Week.Nested in a test application:


main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Week;
3
4procedure Main is
5   use Week.Nested;
6begin
7   Put_Line ("First day of the week is "
8             & Get_First_Of_Week);
9end Main;







Note that we cannot access the Week.Nested package directly using
with Week.Nested because Nested is actually part of Week,
not a child package. We can, however, still write use Week.Nested
— as we did in the example above.


Visibility

Let's now discuss visibility of nested packages. Because the body of nested
packages is part of the body of their parent, nested packages have the same
visibility as their parent package. Let's rewrite the previous example using
nested packages to illustrate this:


book.ads

 1package Book is
 2
 3   Title : constant String :=
 4             "Visible for my children";
 5
 6   function Get_Title return String;
 7
 8   function Get_Author return String;
 9
10   package Additional_Operations is
11
12      function Get_Extended_Title return String;
13
14      function Get_Extended_Author return String;
15
16   end Additional_Operations;
17
18end Book;







Now, because Author is declared before the body of the nested package
Additional_Operations, we can use it in the implementation of the
Get_Extended_Author function:


book.adb

 1package body Book is
 2
 3   Author : constant String :=
 4             "Author not visible for my children";
 5
 6   function Get_Title return String is
 7   begin
 8      return Title;
 9   end Get_Title;
10
11   function Get_Author return String is
12   begin
13      return Author;
14   end Get_Author;
15
16   package body Additional_Operations is
17
18      function Get_Extended_Title return String
19      is
20      begin
21         return "Book Title: " & Title;
22      end Get_Extended_Title;
23
24      function Get_Extended_Author return String
25      is
26      begin
27         return "Book Author: " & Author;
28      end Get_Extended_Author;
29
30   end Additional_Operations;
31
32end Book;







This is the test application in this case:


main.adb

1with Ada.Text_IO; use Ada.Text_IO;
2with Book;
3
4procedure Main is
5   use Book.Additional_Operations;
6begin
7   Put_Line (Get_Extended_Title);
8   Put_Line (Get_Extended_Author);
9end Main;
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	Include link to parts of the book where some of the elements below
are explained



	otherwise, maybe explain them briefly in this chapter









	Point to the RM if an element is not explained neither in this
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Note

This section was originally written by Patrick Rogers and published as
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Interfacing with C and C++


Interfacing with C


Using unconstrained types

In the previous examples, we're being careful about the data types: all of
them are coming from the Interfaces.C package. Using Ada built-in
types when interfacing with C can be problematic, especially in case of
unconstrained types. For example:

/*% filename: test.h */

char * my_func (void);





This is the function implementation:

#include <stdio.h>
#include "test.h"

char * my_func (void)
{
  return "hello";
}





In the Ada application, we try to import this as a String type:

with Interfaces.C;
use  Interfaces.C;

with Ada.Text_IO;
use  Ada.Text_IO;

procedure Show_C_Func is

   function my_func return String
     with
       Import        => True,
       Convention    => C;

   S : String := my_func;

begin
   Put_Line (S);
end Show_C_Func;





When running this application, we'll get a Storage_Error exception.
Therefore, the recommendation is to be very careful about the data types
and use the Interfaces.C package whenever possible for interfacing
with C.




Interfacing with C++

All the previous examples focused on interfacing with C code. For C++, the
same methods apply. However, there are a few differences that we need to
take into account:


	When importing or exporting variables and subprograms, we replace 'C'
by 'Cpp' in the Convention aspect of their declaration.


	In the project file for gprbuild, we replace 'C' by 'C++' in the
Languages entry.




There are other aspects specific to C++ that we also have to take into
account. This section will discuss them.


C++ symbol mangling

Let's start by adapting a previous example and converting it to C++
(actually, mainly just replacing the C compiler by a C++ compiler). The
header file is still basically the same:

extern int func_cnt;
int my_func (int a);





And this is the corresponding implementation:

#include "test.hh"

int func_cnt = 0;

int my_func (int a)
{
  func_cnt++;

  return a * 2;
}





In the Ada application, as mentioned before, we need to replace 'C' by
'Cpp' in the Convention of the declarations:

with Interfaces.C; use Interfaces.C;
with Ada.Text_IO;  use Ada.Text_IO;

procedure Show_Cpp_Func is

   function my_func (a : int) return int
     with
       Import        => True,
       Convention    => Cpp,
       External_Name => "_Z7my_funci";

   V : int;

   func_cnt : int
     with
       Import        => True,
       Convention    => Cpp;

begin
   V := my_func (1);
   V := my_func (2);
   V := my_func (3);
   Put_Line ("Result is "
             & int'Image (V));

   Put_Line ("Function was called "
             & int'Image (func_cnt)
             & " times");

end Show_Cpp_Func;





Also, in the declaration of my_func, we need to include a reference to
the original name using External_Name. If we leave this out, the
linker won't be able to find the original implementation of my_func,
so it won't build the application. Note that the function name is not
my_func anymore (as it was the case for the C version). Instead, it is
now called _Z7my_funci.  This situation is caused by symbol mangling.

In C, the symbol names in object files match the symbol name in the
source-code. In C++, due to symbol mangling, the symbol names of
subprograms in the object files are different from the corresponding
source-code implementation. Also, because symbol mangling is not
standardized, different compilers might use different methods. The most
prominent example is the difference between the gcc and MSVC compilers.
However, since GNAT is based on gcc, we can build applications using Ada
and C++ code without issues — as long as we use the same compiler.

In order to retrieved the mangled symbol names, we can simply generate
bindings automatically by using g++ with the -fdump-ada-spec
option:

g++ -c -fdump-ada-spec -C ./test.hh





Alternatively, we could use binary examination tools to retrieve the
symbol names from a library. Examples of such tools are nm for Mac and
Linux, and dumpbin.exe for Windows.



C++ classes

We'll now focus on binding object-oriented features of C++ into Ada.
Let's adapt the previous example to make use of classes. This is adapted
header file:

class Test {
public:
  Test();
  int my_func (int a);
  int get_cnt();
private:
  int func_cnt;
};





And this is the corresponding implementation:

#include "test.hh"

Test::Test() :
  func_cnt(0)
{
};

int
Test::my_func (int a)
{
  func_cnt++;

  return a * 2;
}

int
Test::get_cnt()
{
  return func_cnt;
}





Because of the more complex structure, the recommendation is to generate
bindings using g++ and, if needed, adapt the file. Let's first run
g++:

g++ -c -fdump-ada-spec -C ./test.hh





The generated bindings look like this:

pragma Ada_2005;
pragma Style_Checks (Off);

with Interfaces.C; use Interfaces.C;

package test_hh is

   package Class_Test is
      type Test is limited record
         func_cnt : aliased int;  -- ./test.hh:7
      end record;
      pragma Import (CPP, Test);

      function New_Test return Test;  -- ./test.hh:3
      pragma CPP_Constructor (New_Test, "_ZN4TestC1Ev");

      function my_func (this : access Test; a : int) return int;  -- ./test.hh:4
      pragma Import (CPP, my_func, "_ZN4Test7my_funcEi");

      function get_cnt (this : access Test) return int;  -- ./test.hh:5
      pragma Import (CPP, get_cnt, "_ZN4Test7get_cntEv");
   end;
   use Class_Test;
end test_hh;





As we can see, the original C++ class (Test) is represented as a
nested package (test_hh.Class_Test) in the Ada bindings.

The Ada application can then use the bindings:

with Interfaces.C; use Interfaces.C;
with Ada.Text_IO;  use Ada.Text_IO;
with test_hh;      use test_hh;

procedure Show_Cpp_Class is
   use Class_Test;

   V : int;

   T  : aliased Test := New_Test;
   TA : access Test := T'Access;

begin
   V := my_func (TA, 1);
   V := my_func (TA, 2);
   V := my_func (TA, 3);
   Put_Line ("Result is " & int'Image (V));

   Put_Line ("Function was called "
             & int'Image (get_cnt (TA))
             & " times");

end Show_Cpp_Class;





Note that, in the Ada application, we cannot use the prefixed notation.
This notation would be more similar to the corresponding syntax in C++.
This restriction is caused by the fact that the automatic generated
bindings don't use tagged types. However, if we adapt the declaration of
Test and replace it by type Test is tagged limited record ...,
we'll be able to write TA.my_func(1) and TA.get_cnt in our
application.

Another correction we might want to make is in the visibility of the
Test record. In the original C++ class, the func_cnt element was
declared in the private part of the Test class. However, in the
generated bindings, this element has been exposed, so it could be accessed
directly in our application. In order to correct that, we can simply move
the type declaration to the private part of the Class_Test package and
indicate that in the public part of the package (by using
type Test is limited private;).

After these adaptations, we get the following bindings:

pragma Ada_2005;
pragma Style_Checks (Off);

with Interfaces.C; use Interfaces.C;

package test_hh is

   package Class_Test is
      type Test is tagged limited private;
      pragma Import (CPP, Test);

      function New_Test return Test;  -- ./test.hh:3
      pragma CPP_Constructor (New_Test, "_ZN4TestC1Ev");

      function my_func (this : access Test; a : int) return int;  -- ./test.hh:4
      pragma Import (CPP, my_func, "_ZN4Test7my_funcEi");

      function get_cnt (this : access Test) return int;  -- ./test.hh:5
      pragma Import (CPP, get_cnt, "_ZN4Test7get_cntEv");
   private
      type Test is tagged limited record
         func_cnt : aliased int;  -- ./test.hh:7
      end record;
   end;
   use Class_Test;
end test_hh;





And this is the adapted Ada application:

with Interfaces.C; use Interfaces.C;
with Ada.Text_IO;  use Ada.Text_IO;
with test_hh;      use test_hh;

procedure Show_Cpp_Class is
   use Class_Test;

   V : int;

   T : aliased Test := New_Test;
   TA : access Test := T'Access;

begin
   V := TA.my_func (1);
   V := TA.my_func (2);
   V := TA.my_func (3);
   Put_Line ("Result is "
             & int'Image (V));

   Put_Line ("Function was called "
             & int'Image (TA.get_cnt)
             & " times");

end Show_Cpp_Class;







C++ constructors


Note

This section was originally written by Javier Miranda and Arnaud Charlet,
and published as
Gem #61: Interfacing with C++ constructors[#1]
and
Gem #62: C++ constructors and Ada 2005[#2]






Footnotes



[#1]
https://www.adacore.com/gems/gem-61



[#2]
https://www.adacore.com/gems/gem-62





            

          

      

      

    

  

    
      
          
            
  
Multithreading



	Tasking
	Statements
	Select statements

	Guard expressions

	Requeue instruction

	Abort statements

	select...then statement





	Task IDs and attributes

	Task termination

	Tasking and exceptions

	Task and synchronized interfaces

	Protected Subprograms and Protected Actions










Footnotes



            

          

      

      

    

  

    
      
          
            
  
Tasking


Statements


Select statements



Guard expressions



Requeue instruction



Abort statements



select...then statement




Task IDs and attributes


Relevant topics


	Task and Entry Attributes[#1]


	The Package Task_Identification[#2]


	The Package Task_Attributes[#3]


	The Package Task_Termination[#4]








Task termination



Tasking and exceptions



Task and synchronized interfaces


Relevant topics


	synchronized interface and task interface, as mentioned in
Interface Types[#5]








Protected Subprograms and Protected Actions


Relevant topics


	Protected Subprograms and Protected Actions[#6]








Footnotes



[#1]
http://www.ada-auth.org/standards/22rm/html/RM-9-9.html



[#2]
http://www.ada-auth.org/standards/22rm/html/RM-C-7-1.html



[#3]
http://www.ada-auth.org/standards/22rm/html/RM-C-7-2.html



[#4]
http://www.ada-auth.org/standards/22rm/html/RM-C-7-3.html



[#5]
http://www.ada-auth.org/standards/22rm/html/RM-3-9-4.html



[#6]
http://www.ada-auth.org/standards/22rm/html/RM-9-5-1.html





            

          

      

      

    

  

    
      
          
            
  
Containers


Aggregate aspect


Note

This feature was introduced in Ada 2022.



In a previous chapter, we discussed
container aggregates, which are commonly
used with standard containers. If you look at the type declarations of the
standard containers (in the Ada.Containers packages), you'll notice that
some of them make use of the Aggregate aspect. This aspect is used to
specify which subprograms are called to process a container aggregate for a
data type, let's say a type named T. Suppose we declare an object
Obj like this: Obj : T := [1, 2, 3]. In this case, the
Aggregate aspect specifies which subprograms are going to be called to
process the [1, 2, 3] aggregate.

The Aggregate aspect is used in many declarations of the
Ada.Containers packages. However, this aspect isn't restricted to the
standard containers: we may indeed use the Aggregate aspect to specify
a custom container aggregate for any type other than an array. In this section,
we discuss the elements of the Aggregate aspect and how to use this
aspect to create your own container aggregates.


In the Ada Reference Manual


	Container Aggregates[#1]







Basic syntax

The Aggregate aspect has the following syntax:

type T is private
  with Aggregate =>
    (Empty          => Empty_Func,
     Add_Named      => Add_Named_Proc,
     Add_Unnamed    => Add_Unnamed_Proc,
     New_Indexed    => New_Indexed_Func,
     Assign_Indexed => Assign_Indexed_Proc);





Note that the order of the elements must be exactly as shown above.

Basically, there are three elements you can use in the Aggregate aspect
to specify a procedure that is called when adding an element to the container:
Add_Named, ada:Add_Unnamed, and Assign_Indexed.


Attention

Remember that an indexed aggregate has an index associated with each
component. As discussed in the
section on container aggregates,


	for indexed positional container aggregates, the index of each component
is implied by its position;


	for indexed named container aggregates, the index of each component is
explicitly indicated.




We discuss this topic later in more details.



Some restrictions apply to the Aggregate aspect. For example:


	we have to specify at least one of those elements (Add_Named,
Add_Unnamed, or Assign_Indexed), and


	we cannot specify both Add_Named and Add_Unnamed elements at
the same time.




We can, however, combine Add_Unnamed and Assign_Indexed in the
same aspect declaration.



Classification

We can classify container aggregates in two categories:


	whether they are indexed or not; and


	whether they are positional or named.




This classification depends on the elements that were used in the declaration
of the Aggregate aspect and whether a key is used in the aggregate. The
following table presents the classification:



	Indexed

	Elements in
Aggregate

	Positional
/ named

	Uses
key

	Container aggregate: example





	No

	Add_Named

	Named

	Yes

	["Key_1" => "Hello", "Key_2" => "World"]



	Add_Unnamed

	Positional

	No

	["Hello", "World"]



	Assign_Indexed
Add_Unnamed



	Yes

	Assign_Indexed
Add_Unnamed

	Named

	Yes

	[1 => "Hello", 2 => "World"]



	Assign_Indexed

	Named

	Yes

	[1 => "Hello", 2 => "World"]



	Positional

	No

	["Hello", "World"]






The next table presents the typical use-cases:



	Category

	Typical use





	Add_Named

	Maps



	Add_Unnamed

	Lists, sets



	Add_Unnamed
Assign_Indexed

	Vectors



	Assign_Indexed

	(none)






Before we discuss these approaches, let's first look at the Empty
element.



Empty

The Empty element allows us to specify the behavior for an empty
container, i.e. the simplest version of a container without any components.

Let's assume we a container type T for which we specify an
Empty function in the Aggregate aspect, and we declare an object
Obj : T. In this case, the Empty function is called in one of
two scenarios:


	when we assign a null container to Obj — by writing
Obj := []; — or


	when we assign a container with at least one component to Obj —
for example: Obj := [1, 2];.




Let's see a complete code example:


custom_container_aggregates.ads

 1package Custom_Container_Aggregates is
 2
 3   type T is private
 4     with Aggregate =>
 5       (Empty     => Empty_Func,
 6        Add_Named => Add_Named_Proc);
 7
 8   function Empty_Func return T;
 9
10   procedure Add_Named_Proc
11     (Cont  : in out T;
12      Key   :        String;
13      Value :        String) is null;
14
15private
16
17    type T is record
18       Cnt : Natural;
19    end record;
20
21end Custom_Container_Aggregates;








custom_container_aggregates.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Container_Aggregates is
 4
 5   function Empty_Func return T is
 6   begin
 7      Put_Line ("Calling Empty_Func");
 8
 9      return (Cnt => 0);
10   end Empty_Func;
11
12end Custom_Container_Aggregates;








show_container_aggregate_empty.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Container_Aggregates;
 4use  Custom_Container_Aggregates;
 5
 6procedure Show_Container_Aggregate_Empty is
 7   A : T;
 8begin
 9   Put_Line ("A := []");
10   A := [];
11end Show_Container_Aggregate_Empty;







In this example, we specify the Empty function for the Aggregate
aspect of the container type T. (We also use the Add_Unnamed
element. You can ignore it for the moment: we'll discuss it later on.)

The A := [] statement in the Show_Container_Aggregate_Empty
procedure calls Empty_Func — the function specified in the
Empty element of the Aggregate aspect —, which returns an
object of the container type T, which is then assigned to A. (You
can confirm this by running this example and seeing the
Calling Empty_Func message, which we included in the body of the
Empty_Func function.)

We can also use a constant for the Empty element instead of a function:


custom_container_aggregates.ads

 1package Custom_Container_Aggregates is
 2
 3   type T is private
 4     with Aggregate =>
 5       (Empty     => Empty_Const,
 6        Add_Named => Add_Named_Proc);
 7
 8   Empty_Const : constant T;
 9
10   procedure Add_Named_Proc
11     (Cont  : in out T;
12      Key   :        String;
13      Value :        String) is null;
14
15private
16
17    type T is record
18       Cnt : Natural;
19    end record;
20
21    Empty_Const : constant T := (Cnt => 0);
22
23end Custom_Container_Aggregates;







Here, we simply assign Empty_Const when an actual Empty is
needed.

In addition to this, we can specify a signed integer parameter — which
indicates the number of components — for the Empty function:


custom_container_aggregates.ads

 1package Custom_Container_Aggregates is
 2
 3   type T is private
 4     with Aggregate =>
 5       (Empty       => Empty_Func,
 6        Add_Unnamed => Add_Unnamed_Proc);
 7
 8   T_Len_Typical : constant := 10;
 9
10   function Empty_Func
11     (Total : Integer := T_Len_Typical)
12      return T;
13
14   procedure Add_Unnamed_Proc
15     (Cont : in out T;
16      Item :        String) is null;
17
18private
19
20    type T is record
21       Cnt   : Natural;
22       Total : Integer;
23    end record;
24
25end Custom_Container_Aggregates;








custom_container_aggregates.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Container_Aggregates is
 4
 5   function Empty_Func
 6     (Total : Integer := T_Len_Typical)
 7      return T is
 8   begin
 9      Put_Line ("Calling Empty_Func ("
10                & "Total => "
11                & Total'Image & ")");
12
13      return (Total => Total,
14              Cnt   => 0);
15   end Empty_Func;
16
17end Custom_Container_Aggregates;








show_container_aggregate_empty.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Container_Aggregates;
 4use  Custom_Container_Aggregates;
 5
 6procedure Show_Container_Aggregate_Empty is
 7   A : T;
 8begin
 9   Put_Line ("A := []");
10   A := [];
11
12   Put_Line ("A := [""Hello"", ""World""]");
13   A := ["Hello", "World"];
14end Show_Container_Aggregate_Empty;







In this example, we specify an Empty_Func function with an
Integer parameter (for the Empty element of the Aggregate
aspect).

The actual argument for the integer parameter of the Empty_Func function
depends on the number of elements we use in the container aggregate. In this
specific example, when we write A := [], then Empty_Func (0) is
called, whereas when we write A := ["Hello", "World"], this results in
a call to Empty_Func (2).



Add_Named

The Add_Named element of the Aggregate aspect refers to a
procedure that is called when we have a named container aggregate — i.e.
a container aggregate with components in the Key => Value form —
that doesn't use indexing.

Note that, when we specify the Add_Named element, we cannot specify any
of these elements: Add_Unnamed, New_Indexed or
Assign_Indexed. In other words, when we specify the Add_Named
element, we can only use the Empty element in the same declaration.


custom_container_aggregates.ads

 1package Custom_Container_Aggregates is
 2
 3   type T is private
 4     with Aggregate =>
 5       (Empty     => Empty_Func,
 6        Add_Named => Add_Named_Proc);
 7
 8   T_Len_Typical : constant := 10;
 9
10   function Empty_Func
11     (Total : Integer := T_Len_Typical)
12      return T;
13
14   procedure Add_Named_Proc
15     (Cont  : in out T;
16      Key   :        String;
17      Value :        String);
18
19private
20
21    type T is record
22       Total : Integer;
23       Cnt   : Natural;
24    end record;
25
26end Custom_Container_Aggregates;








custom_container_aggregates.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Container_Aggregates is
 4
 5   function Empty_Func
 6     (Total : Integer := T_Len_Typical)
 7      return T is
 8   begin
 9      Put_Line ("Calling Empty_Func ("
10                & "Total => "
11                & Total'Image & ")");
12
13      return (Total => Total,
14              Cnt   => 0);
15   end Empty_Func;
16
17   procedure Add_Named_Proc
18     (Cont  : in out T;
19      Key   :        String;
20      Value :        String) is
21   begin
22      Put_Line ("Calling Add_Named_Proc (Anon, "
23                & "Key => """
24                & Key   & """, "
25                & "Value => """
26                & Value & """)");
27   end Add_Named_Proc;
28
29end Custom_Container_Aggregates;








show_named_container_aggregate.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Container_Aggregates;
 4use  Custom_Container_Aggregates;
 5
 6procedure Show_Named_Container_Aggregate is
 7   A : T;
 8begin
 9   Put_Line ("A := []");
10   A := [];
11
12   Put_Line ("A := [""Key_1"" => ""Hello"", "
13             &     """Key_2"" => ""World""]");
14   A := ["Key_1" => "Hello",
15         "Key_2" => "World"];
16
17end Show_Named_Container_Aggregate;







When we write A := [], we're just calling Empty_Func (0) —
as we're using a null container aggregate, there are no components to be added
to the container. However, when we write
A := ["Key_1" => "Hello", "Key_2" => "World"], we see the following
calls:


	a call to Empty_Func (2) that creates an empty container with two
components;


	a call to Add_Named_Proc (Anon, "Key_1", "Hello") for the first
component, and


	a call to Add_Named_Proc (Anon, "Key_2", "World") for the second
component.




The Anon argument in the calls above indicates that an anonymous object
is first created and then assigned to A.



Add_Unnamed

The Add_Unnamed element of the Aggregate aspect refers to a
procedure that is called when we have a positional container aggregate.

Let's look at an example:


custom_container_aggregates.ads

 1package Custom_Container_Aggregates is
 2
 3   type T is private
 4     with Aggregate =>
 5       (Empty       => Empty_Func,
 6        Add_Unnamed => Add_Unnamed_Proc);
 7
 8   T_Len_Typical : constant := 10;
 9
10   function Empty_Func
11     (Total : Integer := T_Len_Typical)
12      return T;
13
14   procedure Add_Unnamed_Proc
15     (Cont : in out T;
16      Item :        String);
17
18private
19
20    type T is record
21       Total : Integer;
22       Cnt   : Natural;
23    end record;
24
25end Custom_Container_Aggregates;








custom_container_aggregates.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Container_Aggregates is
 4
 5   function Empty_Func
 6     (Total : Integer := T_Len_Typical)
 7      return T is
 8   begin
 9      Put_Line ("Calling Empty_Func ("
10                & "Total => "
11                & Total'Image & ")");
12
13      return (Total => Total,
14              Cnt   => 0);
15   end Empty_Func;
16
17   procedure Add_Unnamed_Proc
18     (Cont : in out T;
19      Item :        String) is
20   begin
21      Put_Line ("Calling Add_Unnamed_Proc (Anon, "
22                & "Item => """
23                & Item & """)");
24   end Add_Unnamed_Proc;
25
26end Custom_Container_Aggregates;








show_unnamed_container_aggregate.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Container_Aggregates;
 4use  Custom_Container_Aggregates;
 5
 6procedure Show_Unnamed_Container_Aggregate is
 7   A : T;
 8begin
 9   Put_Line ("A := []");
10   A := [];
11
12   Put_Line ("A := [""Hello"", ""World""]");
13   A := ["Hello", "World"];
14end Show_Unnamed_Container_Aggregate;







The A := ["Hello", "World"] statement from the code above generates the
following calls:


	a call to Empty_Func (2) that creates an empty container with two
components;


	a call to Add_Unnamed_Proc (Anon, "Hello") for the first component,
and


	a call to Add_Unnamed_Proc (Anon, "World") for the second component.






Assign_Indexed

The Assign_Indexed element of the Aggregate aspect refers to a
procedure that is called when we have an indexed container aggregate. Note
that, when we specify the Assign_Indexed element, we must also use the
New_Indexed element in the same aspect declaration.

Let's look at an example:


custom_container_aggregates.ads

 1package Custom_Container_Aggregates is
 2
 3   type T is private
 4     with Aggregate =>
 5       (Empty          => Empty_Func,
 6        New_Indexed    => New_Indexed_Func,
 7        Assign_Indexed => Assign_Indexed_Proc);
 8
 9   T_Len_Typical : constant := 10;
10
11   function Empty_Func
12     (Total : Integer := T_Len_Typical)
13      return T;
14
15   function New_Indexed_Func
16     (First, Last : Positive)
17      return T
18     with Pre => First = Positive'First;
19
20   procedure Assign_Indexed_Proc
21     (Cont  : in out T;
22      Index :        Positive;
23      Item  :        String);
24
25private
26
27    type T is record
28       Total : Integer;
29       Cnt   : Natural;
30    end record;
31
32end Custom_Container_Aggregates;








custom_container_aggregates.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Container_Aggregates is
 4
 5   function Empty_Func
 6     (Total : Integer := T_Len_Typical)
 7      return T is
 8   begin
 9      Put_Line
10        ("Calling Empty_Func ("
11         & "Total => " & Total'Image & ")");
12
13      return (Total => Total,
14              Cnt   => 0);
15   end Empty_Func;
16
17   function New_Indexed_Func
18     (First, Last : Positive)
19      return T is
20   begin
21      Put_Line
22        ("Calling New_Indexed_Func ("
23         & "First => " & First'Image & ", "
24         & "Last  => " & Last'Image & ")");
25
26      return (Total => Last - First + 1,
27              Cnt   => 0);
28   end New_Indexed_Func;
29
30   procedure Assign_Indexed_Proc
31     (Cont  : in out T;
32      Index :        Positive;
33      Item  :        String)
34   is
35      pragma Unreferenced (Cont);
36   begin
37      Put_Line
38        ("Calling Assign_Indexed_Proc (Anon, "
39         & "Index => "   & Index'Image & ", "
40         & "Item  => """ & Item & """)");
41
42   end Assign_Indexed_Proc;
43
44end Custom_Container_Aggregates;








show_indexed_container_aggregate.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Container_Aggregates;
 4use  Custom_Container_Aggregates;
 5
 6procedure Show_Indexed_Container_Aggregate is
 7   A : T;
 8begin
 9   Put_Line ("A := []");
10   A := [];
11
12   Put_Line ("A := [""Hello"", ""World""]");
13   A := ["Hello", "World"];
14
15   Put_Line ("A := [1 => ""Hello"", "
16             &     "2 => ""World""]");
17   A := [1 => "Hello", 2 => "World"];
18
19   Put_Line ("A := [1 => ""Hello"", "
20             &     "2 => <>, "
21             &     "3 => ""World""]");
22   A := [1 => "Hello", 2 => <>, 3 => "World"];
23
24end Show_Indexed_Container_Aggregate;







The A := [1 => "Hello", 2 => "World"] statement from the code above
generates the following calls:


	a call to New_Indexed_Func (First => 1, Last => 2) that creates an
empty container with two components (where the first index of the container
is 1 and the last index is 2);


	a call to Assign_Indexed_Proc (Anon, 1, "Hello") for the first
component (which is stored at the position with index 1), and


	a call to Assign_Indexed_Proc (Anon, 2, "World") for the second
component (which is stored at the position with index 2).




Note that, in the case of indexed aggregates, the New_Indexed_Func
function is called instead of the Empty function.

For indexed aggregates, we can use the <> syntax for individual
components. In the code above, we use it in the
A := [1 => "Hello", 2 => <>, 3 => "World"] statement, which generates
the following calls:


	a call to New_Indexed_Func (First => 1, Last => 3) that creates an
empty container with three components (where the first index of the container
is 1 and the last index is 3);


	a call to Assign_Indexed_Proc (Anon, 1, "Hello") for the first
component, and


	a call to Assign_Indexed_Proc (Anon, 3, "World") for the third
component.




In other words, the 2 => <> element from the statement allows us to
allocate a container with more components than we assign to. (There's no
assignment happening at index 2 in the aggregate above: it'll have the default
value or remain uninitialized.)



Combining Add_Named and Assign_Indexed

As mentioned previously, we may specify both Add_Named and
Assign_Indexed elements together in the same aspect declaration. For
example:


custom_container_aggregates.ads

 1package Custom_Container_Aggregates is
 2
 3   type T is private
 4     with Aggregate =>
 5       (Empty          => Empty_Func,
 6        Add_Unnamed    => Add_Unnamed_Proc,
 7        New_Indexed    => New_Indexed_Func,
 8        Assign_Indexed => Assign_Indexed_Proc);
 9
10   T_Len_Typical : constant := 10;
11
12   function Empty_Func
13     (Total : Integer := T_Len_Typical)
14      return T;
15
16   procedure Add_Unnamed_Proc
17     (Cont : in out T;
18      Item :        String);
19
20   function New_Indexed_Func
21     (First, Last : Positive)
22      return T
23     with Pre => First = Positive'First;
24
25   procedure Assign_Indexed_Proc
26     (Cont  : in out T;
27      Index :        Positive;
28      Item  :        String);
29
30private
31
32    type T is record
33       Total : Integer;
34       Cnt   : Natural;
35    end record;
36
37end Custom_Container_Aggregates;








custom_container_aggregates.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3package body Custom_Container_Aggregates is
 4
 5   function Empty_Func
 6     (Total : Integer := T_Len_Typical)
 7      return T is
 8   begin
 9      Put_Line ("Calling Empty_Func ("
10                & "Total => "
11                & Total'Image & ")");
12
13      return (Total => Total,
14              Cnt   => 0);
15   end Empty_Func;
16
17   procedure Add_Unnamed_Proc
18     (Cont : in out T;
19      Item :        String) is
20   begin
21      Put_Line ("Calling Add_Unnamed_Proc (Anon, "
22                & "Item => """ & Item & """)");
23   end Add_Unnamed_Proc;
24
25   function New_Indexed_Func
26     (First, Last : Positive)
27      return T is
28   begin
29      Put_Line
30        ("Calling New_Indexed_Func ("
31         & "First => " & First'Image & ", "
32         & "Last  => " & Last'Image & ")");
33
34      return (Total => Last - First + 1,
35              Cnt   => 0);
36   end New_Indexed_Func;
37
38   procedure Assign_Indexed_Proc
39     (Cont  : in out T;
40      Index :        Positive;
41      Item  :        String)
42   is
43      pragma Unreferenced (Cont);
44   begin
45      Put_Line
46        ("Calling Assign_Indexed_Proc (Anon, "
47         & "Index => "   & Index'Image & ", "
48         & "Item  => """ & Item & """)");
49
50   end Assign_Indexed_Proc;
51
52end Custom_Container_Aggregates;








show_unnamed_indexed_container_aggregate.adb

 1with Ada.Text_IO; use Ada.Text_IO;
 2
 3with Custom_Container_Aggregates;
 4use  Custom_Container_Aggregates;
 5
 6procedure Show_Unnamed_Indexed_Container_Aggregate
 7is
 8   A : T;
 9begin
10   Put_Line ("A := []");
11   A := [];
12
13   Put_Line ("A := [""Hello"", ""World""]");
14   A := ["Hello", "World"];
15
16   Put_Line
17     ("A := [1 => ""Hello"", 2 => ""World""]");
18   A := [1 => "Hello", 2 => "World"];
19end Show_Unnamed_Indexed_Container_Aggregate;







Now, the subprogram calls depend on whether the container aggregate is
positional or not:


	for positional aggregates (e.g.: ["Hello", "World"]), the
Add_Unnamed element is used; while


	for named aggregates ([1 => "Hello", 2 => "World"]), the
New_Indexed / Assign_Indexed elements are used.







User-Defined Iterator Types


Relevant topics


	User-Defined Iterator Types[#2]


	Generalized Loop Iteration[#3]


	Procedural Iterators[#4]








Footnotes



[#1]
http://www.ada-auth.org/standards/22rm/html/RM-4-3-5.html



[#2]
http://www.ada-auth.org/standards/22rm/html/RM-5-5-1.html



[#3]
http://www.ada-auth.org/standards/22rm/html/RM-5-5-2.html



[#4]
http://www.ada-auth.org/standards/22rm/html/RM-5-5-3.html
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Memory Management


Maximum allocation size and alignment

We've seen details about the Size and Object_Size attributes in
the section about
data representation.
Later on, we also mentioned the
Storage_Size attribute.

In this section, we expand our discussion on sizes and talk about the
Max_Size_In_Storage_Elements and the Max_Alignment_For_Allocation
attributes. These attributes return values that are important in the allocation
of memory subpools via the Allocate
procedure from the System.Storage_Pools and the
System.Storage_Pools.Subpools packages:

procedure Allocate(
  Pool                     : in out Root_Storage_Pool;
  Storage_Address          :    out Address;
  Size_In_Storage_Elements :        Storage_Elements.Storage_Count;
  Alignment                :        Storage_Elements.Storage_Count);

procedure Allocate (
  Pool                     : in out Root_Storage_Pool_With_Subpools;
  Storage_Address          :    out Address;
  Size_In_Storage_Elements :        Storage_Elements.Storage_Count;
  Alignment                :        Storage_Elements.Storage_Count);





In fact, the Max_Size_In_Storage_Elements attribute indicates the
maximum value that can be used for the actual Size_In_Storage_Elements
parameter of the Allocate procedure . Likewise, the
Max_Alignment_For_Allocation attribute indicates the maximum value for
the actual Alignment parameter of the Allocate procedure. (We
discuss more details about this procedure later on.)

The Allocate procedure is called when we allocate memory for access
types. Therefore, the value returned by the Max_Size_In_Storage_Elements
attribute for a subtype S indicates the maximum value of storage
elements when allocating memory for an access type whose designated subtype is
S, while the Max_Alignment_For_Allocation attribute indicates the
maximum alignment that we can use when we allocate memory via the new
allocator.


Relevant topics


	13.11 Storage Management[#1]


	13.11.1 Storage Allocation Attributes[#2]


	13.11.4 Storage Subpools[#3]







Code example with scalar type

Let's see a simple type T and two types based on it — an array and
an access type:


custom_types.ads

 1package Custom_Types is
 2
 3   type T is new Integer;
 4
 5   type T_Array is
 6     array (Positive range <>) of T;
 7
 8   type T_Access is access T;
 9
10end Custom_Types;







The test procedure Show_Sizes shows the values returned by the
Size, Max_Size_In_Storage_Elements, and
Max_Alignment_For_Allocation attributes for the T type:


show_sizes.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2with System;
 3
 4with Custom_Types; use Custom_Types;
 5
 6procedure Show_Sizes is
 7begin
 8   Put_Line
 9   ("T'Size:                                "
10    & Integer'Image
11        (T'Size
12         / System.Storage_Unit)
13    & " storage elements ("
14    & T'Size'Image
15    & " bits)");
16
17   Put_Line
18   ("T'Max_Size_In_Storage_Elements:        "
19    & T'Max_Size_In_Storage_Elements'Image
20    & " storage elements ("
21    & Integer'Image
22        (T'Max_Size_In_Storage_Elements
23         * System.Storage_Unit)
24    & " bits)");
25
26   Put_Line
27   ("T'Max_Alignment_For_Allocation:        "
28    & T'Max_Alignment_For_Allocation'Image
29    & " storage elements ("
30    & Integer'Image
31        (T'Max_Alignment_For_Allocation
32         * System.Storage_Unit)
33    & " bits)");
34
35end Show_Sizes;







On a typical desktop PC, you might get 4 storage elements (corresponding to 32
bits) as the value returned by these attributes.

In the original implementation of the Custom_Types package, we allowed
the compiler to select the size of type T. We can be more specific in
the type declarations and use the Size aspect for that type:


custom_types.ads

 1package Custom_Types is
 2
 3   type T is new Integer
 4     with Size => 48;
 5
 6   type T_Array is
 7     array (Positive range <>) of T;
 8
 9   type T_Access is access T;
10
11end Custom_Types;







Let's see how this change affects the Size,
Max_Size_In_Storage_Elements, and Max_Alignment_For_Allocation
attributes:


show_sizes.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2with System;
 3
 4with Custom_Types; use Custom_Types;
 5
 6procedure Show_Sizes is
 7begin
 8   Put_Line
 9   ("T'Size:                                "
10    & Integer'Image
11        (T'Size
12         / System.Storage_Unit)
13    & " storage elements ("
14    & T'Size'Image
15    & " bits)");
16
17   Put_Line
18   ("T'Max_Size_In_Storage_Elements:        "
19    & T'Max_Size_In_Storage_Elements'Image
20    & " storage elements ("
21    & Integer'Image
22        (T'Max_Size_In_Storage_Elements
23         * System.Storage_Unit)
24    & " bits)");
25
26   Put_Line
27   ("T'Max_Alignment_For_Allocation:        "
28    & T'Max_Alignment_For_Allocation'Image
29    & " storage elements ("
30    & Integer'Image
31        (T'Max_Alignment_For_Allocation
32         * System.Storage_Unit)
33    & " bits)");
34
35end Show_Sizes;







If the code compiles, you should see that T'Size now corresponds to 6
storage elements (i.e. 48 bits). On a typical desktop PC, the value of
T'Max_Size_In_Storage_Elements and T'Max_Alignment_For_Allocation
should have increased to 8 storage elements (64 bits).



Code example with array type

Note that using the Size and Max_Size_In_Storage_Elements
attributes on array types can give you a potentially higher number:


show_sizes.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2with System;
 3
 4with Custom_Types; use Custom_Types;
 5
 6procedure Show_Sizes is
 7begin
 8   Put_Line
 9   ("T_Array'Max_Size_In_Storage_Elements:  "
10    & T_Array'Max_Size_In_Storage_Elements'Image
11    & " storage elements ("
12    & Long_Integer'Image
13        (T_Array'Max_Size_In_Storage_Elements
14         * System.Storage_Unit)
15    & " bits)");
16
17   Put_Line
18   ("T_Array'Max_Alignment_For_Allocation:  "
19    & T_Array'Max_Alignment_For_Allocation'Image
20    & " storage elements ("
21    & Integer'Image
22        (T_Array'Max_Alignment_For_Allocation
23         * System.Storage_Unit)
24    & " bits)");
25
26   Put_Line
27   ("T_Array'Size:                          "
28    & Long_Integer'Image
29        (T_Array'Size
30         / System.Storage_Unit)
31    & " storage elements ("
32    & T_Array'Size'Image
33    & " bits)");
34
35end Show_Sizes;







In this case, these values indicate the maximum amount of memory that is
theoretically available for the array in the memory pool. This information
allows us to calculate the (theoretical) maximum number of components for an
array of this type:


show_sizes.adb

 1with Ada.Text_IO;  use Ada.Text_IO;
 2with System;
 3
 4with Custom_Types; use Custom_Types;
 5
 6procedure Show_Sizes is
 7begin
 8
 9   Put_Line
10   ("T_Array: Max. number of components:  "
11    & Long_Integer'Image
12        (T_Array'Max_Size_In_Storage_Elements /
13          (T'Size
14           / System.Storage_Unit))
15    & " components");
16
17end Show_Sizes;







By dividing the value returned by the Max_Size_In_Storage_Elements
attribute with the size of each individual component, we can get the maximum
number of components.




Storage elements

We saw parts of the System.Storage_Elements package while discussing
addresses. However, we haven't discussed yet
the main types from that package: Storage_Element and
Storage_Array.

We defined storage elements previously.
In the System.Storage_Elements package, a storage element is represented
by the Storage_Element type. Its size (Storage_Element'Size) is
equal to Storage_Unit — which we also mentioned previously.

The Storage_Array type is an array type of storage elements. This is its
definition:

type Storage_Array is
  array (Storage_Offset range <>) of
    aliased Storage_Element;





A storage array is used to represent a contiguous sequence of storage elements
in memory. In other words, you can think of an object of Storage_Array
type as a (memory) buffer.


Important

Note that arrays of Storage_Array type are guaranteed by the
language to be contiguous. In contrast, storage pools are not required to
be contiguous blocks of memory. However, each memory allocation in a
storage pool returns a pointer to a contiguous block of memory.

Also, arrays in general are not guaranteed to be contiguous — apart
from arrays of Storage_Array type, as we've just seen. In practice,
however, if you're using a modern architecture, you most likely won't
encounter an array that isn't allocated on a contiguous block. (You would
perhaps see an array allocated on non-contiguous blocks when using an older
architecture with segmented memory.)




For further reading

Note that the Storage_Offset is an integer type with a range defined
by the compiler implementation. It's used not only
in the definition of the Storage_Array but also in
address arithmetic, which we discussed
in an earlier chapter.



In fact, the Storage_Array is used in the generic Storage_IO
package to define a memory buffer:

with System.Storage_Elements;
use  System.Storage_Elements;

subtype Buffer_Type is
  Storage_Array (1 .. Buffer_Size);





Let's see a simple example that makes use of the Storage_IO package:


show_storage_io.adb

 1with Ada.Text_IO;    use Ada.Text_IO;
 2with Ada.Storage_IO;
 3
 4procedure Show_Storage_IO is
 5   type Rec is record
 6      A, B : Integer;
 7      C    : Float;
 8   end record;
 9
10   package Rec_Storage_IO is new
11     Ada.Storage_IO (Element_Type => Rec);
12   use Rec_Storage_IO;
13
14   Buf    : Buffer_Type;
15   R1, R2 : Rec;
16begin
17   R1 := (1, 2, 3.0);
18   Put_Line ("R1 : " & R1'Image);
19
20   --  Writing from R1 to the buffer Buf:
21   Write (Buf, R1);
22
23   --  Reading from the buffer Buf to R2:
24   Read (Buf, R2);
25
26   Put_Line ("R2 : " & R2'Image);
27end Show_Storage_IO;







In this example, we instantiate the Storage_IO package for the
Rec type and declare a buffer Buf of Buffer_Type type.
(Note that Buf is essentially an array of Storage_Array type.)
We then use this buffer and write an element to it (via Write) and read
from it (via Read).


Relevant topics


	13.7.1 The Package System.Storage_Elements[#4]


	A.9 The Generic Package Storage_IO[#5]








Memory pools


Relevant topics


	Memory pools[#6]


	Default Storage Pools[#7]








Memory subpools


Relevant topics


	Storage subpools[#8]


	Subpool Reclamation[#9]








Secondary stack


Relevant topics


	GNAT-specific secondary stack








Footnotes
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Restrictions and Profiles


Pragmas


Relevant topics


	Pragma Restrictions and Pragma Profile[#1]


	Dependence Restriction Identifiers[#2]








Language-Defined Restrictions and Profiles


Relevant topics


	Language-Defined Restrictions and Profiles[#3]








Footnotes



[#1]
http://www.ada-auth.org/standards/22rm/html/RM-13-12.html



[#2]
http://www.ada-auth.org/standards/22rm/html/RM-J-13.html
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Standard Containers


Linked lists


Relevant topics


	Containers.Doubly_Linked_Lists[#1]








Trees


Relevant topics


	Containers.Multiway_Trees[#2]








Queue containers


Relevant topics


	Containers.Synchronized_Queue_Interfaces[#3]


	Containers.Unbounded_Synchronized_Queues[#4]


	Containers.Bounded_Synchronized_Queues[#5]


	Containers.Unbounded_Priority_Queues[#6]


	Containers.Bounded_Priority_Queues[#7]








Indefinite containers


Relevant topics


	Indefinite containers[#8]








Holder container


Relevant topics


	Containers.Indefinite_Holders[#9]
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